Home Dielectric Barrier Discharge (DBD) Plasma Actuators for Flow Control in Turbine Engines: Simulation of Flight Conditions in the Laboratory by Density Matching
Article
Licensed
Unlicensed Requires Authentication

Dielectric Barrier Discharge (DBD) Plasma Actuators for Flow Control in Turbine Engines: Simulation of Flight Conditions in the Laboratory by Density Matching

  • David E. Ashpis EMAIL logo and Douglas R. Thurman
Published/Copyright: July 31, 2018
Become an author with De Gruyter Brill

Abstract

We address requirements for laboratory testing of AC Dielectric Barrier Discharge (AC-DBD) plasma actuators for active flow control in aviation gas turbine engines. The actuator performance depends on the gas discharge properties, which, in turn, depend on the pressure and temperature. It is technically challenging to simultaneously set test-chamber pressure and temperature to the flight conditions. We propose that the AC-DBD actuator performance depends mainly on the gas density, when considering ambient conditions effects. This enables greatly simplified testing at room temperature with only chamber pressure needing to be set to match the density at flight conditions. For turbine engines, we first constructed generic models of four engine thrust-classes; 300-, 150-, 50-passenger, and military fighter, and then calculated the densities along the engine at sea-level takeoff and altitude cruise conditions. The range of chamber pressures that covers all potential applications was found to be from 3 to 1256 kPa (0.03 to 12.4 atm), depending on engine-class, flight altitude, and actuator placement in the engine. The engine models are non-proprietary and can be used as reference data for evaluation requirements of other actuator types and for other purposes. We also provided examples for air vehicles applications up to 19,812 m (65,000 ft).

Nomenclature

H, h

Altitude (m)

M

Mach number

P

Static pressure (Pa)

R

Gas constant (kg m2/s2/K)

Rey

Reynolds number

T

Static temperature (K)

V

Velocity (m/s)

X

Axial distance along the engine (m)

ρ

Density (kg/m3)

Subscripts

c

Conditions in chamber

Freestream conditions

atm

Atmospheric conditions

Acronyms

DBD

Dielectric Barrier Discharge

HPC

High Pressure Compressor

HPT

High Pressure Turbine

LPC

Low Pressure Compressor

LPT

Low Pressure Turbine

PAX

Passengers

References

1. Gad-El Hak M. Flow control: passive, active, and reactive flow management. Cambridge University Press, Cambridge, UK, 2000. DOI:10.1017/cbo9780511529535.Search in Google Scholar

2. Greenblatt D, Wygnanski IJ, Rumsey CL. Aerodynamic Flow Control. In: Encyclopedia of Aerospace Engineering, Volume 1: Fluid Dynamics and Aerothermodynamics, Edited by Blockley R, Shyy W. John Wiley & Sons, Hoboken, NJ, USA, 2010:3–12. DOI:10.1002/9780470686652.eae019.Search in Google Scholar

3. Lord WK, MacMartin DG, Tillman G. Flow control opportunities in gas turbine engines. AIAA Paper 2000–2234. 2000. DOI:10.2514/6.2000-2234.Search in Google Scholar

4. Cattafesta LN, Sheplak M. Actuators for active flow control. Annu Rev Fluid Mechanics. 2011;43:247–72.10.1146/annurev-fluid-122109-160634Search in Google Scholar

5. Moreau E. Airflow control by non-thermal plasma actuators. J Phys. D: Appl Phys. 2007;40:605–36.10.1088/0022-3727/40/3/S01Search in Google Scholar

6. Corke TC, Post ML, Orlov DM. SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog Aerospace Sci. 2007;43:193–217.10.1016/j.paerosci.2007.06.001Search in Google Scholar

7. Corke TC, Post ML, Orlov DM. Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids. 2009;46:1–26.10.1007/s00348-008-0582-5Search in Google Scholar

8. Corke TC, Enloe CL, Wilkinson SP. Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mechanics. 2010;42:505–29.10.1146/annurev-fluid-121108-145550Search in Google Scholar

9. Benard N, Moreau E. Electrical and mechanical characteristics of surface ac dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids. 2014;55:1846 (43 pp).10.1007/s00348-014-1846-xSearch in Google Scholar

10. Kotsonis M. Diagnostics for characterisation of plasma actuators. Meas Sci Technol. 2015;26:092001 (30pp).10.1088/0957-0233/26/9/092001Search in Google Scholar

11. Kriegseis J, Simon B, Grundmann S. Towards in-flight applications? a review on dielectric barrier discharge-based boundary-layer control. Appl Mechanics Rev. 2016;68:020802 (41pp).10.1115/1.4033570Search in Google Scholar

12. Roupassov DV, Nikipelov AA, Nudnova MM, Starikovskii AY. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J. 2009;47:168–85.10.2514/1.38113Search in Google Scholar

13. Starikovskiy A, Gordon S, Post M, Miles R. Barrier discharge development and thrust generation at low and high pressure conditions. AIAA Paper 2014–0329. January 2014. DOI:10.2514/6.2014-0329.Search in Google Scholar

14. Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P. Development and characterization of plasma actuators for high speed and reynolds number jet control. Exp Fluids. 2004;37:577–88.10.1007/s00348-004-0854-7Search in Google Scholar

15. Cybyk BZ, Grossman KR, Wilkerson JT, Chen J, Katz J. Single-pulse performance of the sparkjet flow control actuator. AIAA Paper 2005–0401. 2005. DOI:10.2514/6.2005-401.Search in Google Scholar

16. Chiatto M, De Luca L. Numerical and experimental frequency response of plasma synthetic jet actuators. AIAA Paper 2017–1884. 2017. DOI:10.2514/6.2017-1884.Search in Google Scholar

17. Kronhaus I, Eichler S, Schein J. Schlieren characterization of gas flows generated by cathodic arcs in atmospheric pressure environment. Appl Phys Lett. 2014;104:063507 (4pp).10.1063/1.4865397Search in Google Scholar

18. Kronhaus I, Van Rossum L. Characterization of the formation process of cathodic-arc-jet in atmospheric pressure gas. AIAA Paper 2017–0159. 2017. DOI:10.2514/6.2017-0159.Search in Google Scholar

19. Hultgren LS, Ashpis DE. Demonstration of separation delay with glow-discharge plasma actuators. AIAA Paper 2003–1025. 2003. DOI:10.2514/6.2003-1025. Accepted for publication in AIAA Journal.Search in Google Scholar

20. List J, Byerley AR, McLaughlin TE, VanDyken RD. Using a plasma actuator to control laminar separation on a linear cascade turbine blade. AIAA Paper 2003–1026. 2003. DOI:10.2514/6.2003-1026.Search in Google Scholar

21. Huang J, Corke TC, Thomas FO. Plasma actuators for separation control of low pressure turbine blades. AIAA J. 2006;44:51–57.10.2514/1.2903Search in Google Scholar

22. Huang J, Corke TC, Thomas FO. Unsteady plasma actuators for separation control of low-pressure turbine blades. AIAA J. 2006;44:1477–87.10.2514/1.19243Search in Google Scholar

23. Boxx I, Rivir R, Newcamp J, Woods N. Reattachment of a separated boundary layer on a flat plate in a highly adverse pressure gradient using a plasma actuator. AIAA Paper 2006–3023. June 2006. DOI:10.2514/6.2006-3023.Search in Google Scholar

24. Burman D, Simon T, Kortshagen U, Ernie D. Separation control using plasma actuators: 2-D and edge effects in steady flow in low pressure turbines. AIAA Paper 2010–1220, January 2010. DOI:10.2514/6.2010-1220.Search in Google Scholar

25. Burman D, Simon TW, Kortshagen U, Ernie D. Separation control using plasma actuators: steady flow in low pressure turbines. In: ASME Paper GT2011–46807. June 2011. DOI:10.1115/gt2011-46807.Search in Google Scholar

26. Marks CR, Sondergaard R, Wolff M, Anthony R. Experimental comparison of DBD plasma actuators for low reynolds number separation control. J Turbomachinery. 2012;135:011024.10.1115/1.4006517Search in Google Scholar

27. Matsunuma T, Segawa T. Effects of input voltage on flow separation control for low-pressure turbine at low reynolds number by plasma actuators. Int J Rotating Machinery. 2012;1–10. DOI:10.1155/2012/902548Search in Google Scholar

28. Pescini E, Marra F, De Giorgi MG, Francioso L, Ficarella A. Investigations of the actuation effect of a single DBD plasma actuator for flow separation control under simulated low-pressure turbine blade conditions. ASME Paper GT2016–57432. June 2016. DOI:10.1115/gt2016-57432.Search in Google Scholar

29. Morris SC, Corke TC, VanNess D, Stephens J, Douvillev T. Tip clearance control using plasma actuators. AIAA Paper 2005–782, 2005. DOI:10.2514/6.2005-782.Search in Google Scholar

30. VanNess DK, Corke TC, Morris SC. Turbine tip clearance flow control using plasma actuators. AIAA Paper 2006–21, 2006. DOI:10.2514/6.2006-21.Search in Google Scholar

31. Douville T, Stephens J, Corke T, Morris S. Turbine blade tip leakage flow control by partial squealer tip and plasma actuators. AIAA Paper 2006– 20, 2006. DOI:10.2514/6.2006-20.Search in Google Scholar

32. VanNess DK, Corke TC, Morris SC. Tip clearance flow visualization of a turbine blade cascade with active and passive flow control. In: ASME Paper GT2008–5070, 2008. DOI:10.1115/gt2008-50703.Search in Google Scholar

33. VanNess DK, Corke TC, Morris SC. Plasma actuator blade tip clearance flow control in a linear turbine cascade. AIAA J Propulsion Power. 2012 May–June;28:504–16. DOI:10.2514/1.57919Search in Google Scholar

34. Matsunuma T, Segawa T. Active control of tip leakage flow for low-pressure turbine by ring-type plasma actuators. AIAA Paper 2013–2726. 2013. DOI:10.2514/6.2013-2726.Search in Google Scholar

35. Matsunuma T, Segawa T. Applications of string-type DBD plasma actuators for flow control in turbomachineries. AIAA Paper 2014–1126. 2014. DOI:10.2514/6.2014-1126.Search in Google Scholar

36. Saddoughi S, Bennett G, Boespflug M, Puterbaugh SL, Wadia AR. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators. J Turbomach. 2014;137:041008 (10pp).10.1115/GT2014-25294Search in Google Scholar

37. McGowan RC, Corke TC, Matlis EH, Kaszeta RW, Gold CX. Pulsed-DC plasma actuation for stall control in an axial fan. AIAA Paper 2018–1357. January 2018. DOI:10.2514/6.2018-1357.Search in Google Scholar

38. Vo HD. Rotating stall suppression in axial compressors with casing plasma actuation. AIAA J Propulsion Power. 2010July–August;26:808–18.10.2514/1.36910Search in Google Scholar

39. Göksel B, Fischer M, Rechenberg I, Thallemer A. Elektrostatischer Plasma-Wellantrieb für Bionische Luftschiffe. In: Proceedings of the German Aerospace Congress 2005. Friedrichshafen, Germany: Deutsche Gesellschaft für Luft- und Raumfahrt. Paper No. DGLR-2005–261. 2005; 3:1853–56.Search in Google Scholar

40. Göksel B. b-Ionic Airfish 2008. Available at: http://www.electrofluidsystems.com/airfish/b-ionic-airfish-2008.wmv. 2008, Accessed: 12 January 2018.Search in Google Scholar

41. Sidorenko A, Budovsky A, Pushkarev A, Maslov A. Flight testing of DBD plasma separation control system. AIAA Paper 2008– 373. 2008. DOI:10.2514/6.2008-373.Search in Google Scholar

42. Grundmann S, Frey M, Tropea C. Unmanned aerial vehicle (UAV) with plasma actuators for separation control. AIAA Paper 2009–698, 2009. DOI:10.2514/6.2009-698.Search in Google Scholar

43. Duchmann A. Boundary-Layer Stabilization with Dielectric Barrier Discharge Plasmas for Free-Flight Application. Ph.D. thesis. Darmstadt, Germany: TU Darmstadt, 2012.Search in Google Scholar

44. Duchmann A, Simon B, Tropea C, Grundmann S. Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J. 2014;52:358–67.10.2514/1.J052485Search in Google Scholar

45. Raizer YP. Gas Discharge Physics. Springer, Berlin Heidelberg, Germany, 1991. DOI:10.1007/978-3-642-61247-3.Search in Google Scholar

46. Gregory JW, Enloe CL, Font GI, McLaughlin T. Force production mechanisms of a dielectric-barrier discharge plasma actuator. AIAA Paper 2007–185. 2007. DOI:10.2514/6.2007-185.Search in Google Scholar

47. Abe T, Takizawa Y, Sato S, Kimura N. Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator. AIAA J. 2008;46:2248–56.10.2514/1.30985Search in Google Scholar

48. Schuele CY, Corke T. Characteristics of single dielectric barrier discharge plasma actuators at sub-atmospheric pressures. In: 61st Annual Meeting of the APS/DFD. San Antonio, Texas. Nov. 2008, http://meetings.aps.org/link/BAPS.2008.DFD.ET.9 Accessed: 12 January 2018.Search in Google Scholar

49. Schuele CY. Control of Stationary Cross-Flow Modes in a Mach 3.5 Boundary Layer Using Patterned Passive and Active Roughness. PhD Dissertation. Indiana: University of Notre Dame. December 2011.10.1017/jfm.2012.579Search in Google Scholar

50. Takagaki M, Isono S, Nagai H, Asai K. Evaluation of plasma actuator performance in martian atmosphere for applications to mars airplanes. AIAA Paper 2008–3762, 2008. DOI:10.2514/6.2008-3762.Search in Google Scholar

51. Benard N, Balcon N, Moreau E. Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights. J Phys D: Appl Phys. 2008;41:042002 (5pp).10.1088/0022-3727/41/4/042002Search in Google Scholar

52. Benard N, Balcon N, Moreau E. Electric wind produced by a single dielectric barrier discharge actuator operating in atmospheric flight conditions: pressure outcome. AIAA Paper 2008–3792. 2008. DOI:10.2514/6.2008-3792.Search in Google Scholar

53. Font GI, Enloe CL, Newcomb JY, Teague AL, Vasso AR, McLaughlin TE. Effects of oxygen content on dielectric barrier discharge plasma actuator behavior. AIAA J. 2011;49:1366–73.10.2514/1.J050450Search in Google Scholar

54. Soni J, Roy S. Low pressure characterization of dielectric barrier discharge actuators. Appl Phys Lett. 2013;102:112908 (5 pp.).10.1063/1.4796176Search in Google Scholar

55. Friz P, Rovey J. The effects of electrode size and configuration on plasma actuator thrust and effectiveness at low pressure. Int J Flow Control. 2014;6:75–86.10.1260/1756-8250.6.2.75Search in Google Scholar

56. Starikovskiy A, Pancheshnyi S. Dielectric barrier discharge development at low and moderate pressure conditions. In: AIAA Paper 2013–0902, 2013. DOI:10.2514/6.2013-902.Search in Google Scholar

57. Benard N, Moreau E. Effects of altitude on the electromechanical characteristics of dielectric barrier discharge plasma actuators. AIAA Paper 2010–4633, 2010. DOI:10.2514/6.2010-4633.Search in Google Scholar

58. Benard N, Bayoda KD, Aba’a Ndong AC, Moreau E. A nanosecond surface dielectric barrier discharge operating under altitude conditions for aeronautics applications. IEEE Trans Plasma Sci. 2016;44:774–84.10.1109/TPS.2016.2540160Search in Google Scholar

59. Valerioti JA. Pressure Dependence of Plasma Actuated Flow Control. MS Thesis. Indiana: University of Notre Dame, 2010.Search in Google Scholar

60. Valerioti J, Corke T. Pressure dependence of dielectric barrier discharge plasma flow actuators. AIAA J. July 2012;50:1490–502.10.2514/1.J051194Search in Google Scholar

61. Lytle JK. The numerical propulsion simulation: an overview. In: NASA/TM—2000–209915. 2000.Search in Google Scholar

62. Jones SM. An introduction to thermodynamic performance analysis of aircraft gas turbine engine cycles using the numerical propulsion system simulation code. NASA/TM–2007–214690. 2007.Search in Google Scholar

63. Numerical Propulsion System Simulation (NPSS) Consortium. Availabe at: http://www.swri.org/npss/. Accessed: 12 January, 2018]Search in Google Scholar

64. Tong MT, Naylor BA. An object-oriented computer code for aircraft engine weight estimation. ASME Paper GT2008–50062, 2008. DOI:10.1115/gt2008-50062.Search in Google Scholar

65. Ashpis DE, Thurman DR. DBD plasma actuators for flow control in air vehicles and jet engines—simulation of flight conditions in test chambers by density matching. In: NASA/TM–2011–217006 Rev1. July, 2011.10.2514/6.2011-3730Search in Google Scholar

Received: 2018-06-24
Accepted: 2018-07-12
Published Online: 2018-07-31
Published in Print: 2019-05-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tjj-2018-0021/html
Scroll to top button