Abstract
This paper deals with the creep characteristics of the aircraft turbine disc material of nickel-base superalloy GH4169 under high temperature. From the perspective of continuum damage mechanics, a new creep life prediction model is proposed to predict the creep life of metallic materials under both uniaxial and multiaxial stress states. The creep test data of GH4169 under different loading conditions are used to demonstrate the proposed model. Moreover, from the perspective of numerical simulation, the test data with analysis results obtained by using the finite element analysis based on Graham creep model is carried out for comparison. The results show that numerical analysis results are in good agreement with experimental data. By incorporating the numerical analysis and continuum damage mechanics, it provides an effective way to accurately describe the creep damage process of GH4169.
Funding statement: This research was supported by the Fundamental Research Funds for the Central Universities under contract number ZYGX2014Z010.
References
1. Yang YK, Wu TL. Metal high temperature strength and testing. Shanghai: Shanghai Scientific and Technical Publishers, 1986.Search in Google Scholar
2. Rajendran R, Paik JK, Lee JM, Chae YH, Lee MS. Creep life prediction of a high strength steel plate. Mater Des. 2008;29(2):427–35.10.1016/j.matdes.2007.01.003Search in Google Scholar
3. Aghaie-Khafri M, Farahany S. Creep life prediction of thermally exposed rene 80 superalloy. J Mater Eng Perform. 2010;19(7):1065–70.10.1007/s11665-009-9584-6Search in Google Scholar
4. Kim WG, Yin SN, Lee GG, Kim YW, Kim SJ. Creep oxidation behaviour and creep strength prediction for Alloy 617. Int J Press Vessels Piping. 2010;87(6):289–95.10.1016/j.ijpvp.2010.03.008Search in Google Scholar
5. An D, Choi JH, Kim NH, Pattabhiraman S. Fatigue life prediction based on Bayesian approach to incorporate field data into probability model. Struct Eng Mech. 2011;37(4):427–42.10.12989/sem.2011.37.4.427Search in Google Scholar
6. Zhang G, Yuan H, Li F. Analysis of creep-fatigue life prediction models for nickel-based super alloys. Comput Mater Sci. 2012;57:80–88.10.1016/j.commatsci.2011.07.034Search in Google Scholar
7. Rouse JP, Sun W, Hyde TH, Morris A. Comparative assessment of several creep damage models for use in life prediction. Int J Press Vessels Piping. 2013;108–109:81–87.10.1016/j.ijpvp.2013.04.012Search in Google Scholar
8. Goyal S, Laha K. Creep life prediction of 9Cr-1Mo steel under multiaxial state of stress. Mater Sci Eng A. 2014;615:348–60.10.1016/j.msea.2014.07.096Search in Google Scholar
9. Miyakita A, Yamashita K, Taniguchi G, Suga T. Creep-rupture life prediction for 9Cr-1Mo-Nb-V weld metal. ISIJ Int. 2015;55(10):2189–97.10.2355/isijinternational.ISIJINT-2014-783Search in Google Scholar
10. Yan XL, Zhang XC, Tu ST, Mannan SL, Xuan FZ, Lin YC. Review of creep-fatigue endurance and life prediction of 316 stainless steels. Int J Press Vessels Piping. 2015;126:17–28.10.1016/j.ijpvp.2014.12.002Search in Google Scholar
11. Shi DQ, Quan CB, Niu HW, Yang XG. Constitutive modelling and creep life prediction of a directionally solidified turbine blade under service loadings. Mater High Temp. 2015;32(5):455–60.10.1179/0960340915Z.000000000118Search in Google Scholar
12. Ding YQ, Lu QF, Liu JB, Chen ZT, Zhang Y, Zheng YX. Stress analysis and creep life prediction of hydrogen reformer furnace tube. J Mech Eng Res Dev. 2016;39(3):744–56.Search in Google Scholar
13. Zhang DX, Wang JP, Wen ZX, Liu DS, Yue ZF. V-Notched bar creep life prediction: GH3536 Ni-based superalloy under multiaxial stress state. J Mater Eng Perform. 2016;25(7):2959–68.10.1007/s11665-016-2081-9Search in Google Scholar
14. Ji D, Ren J, Zhang LC. A novel creep-fatigue life prediction model for P92 steel on the basis of cyclic strain energy density. J Mater Eng Perform. 2016;25(11):4868–74.10.1007/s11665-016-2334-7Search in Google Scholar
15. Li YF, Huang HZ, Zhang H, Xiao NC, Liu Y. Fuzzy sets method of reliability prediction and its application to a turbocharger of diesel engines. Adv Mech Eng. 2013;2013:7 pages. Article ID 216192. DOI:10.1155/2013/216192.Search in Google Scholar
16. Li YF, Huang HZ, Zhu SP, Liu Y, Xiao NC. An application of fuzzy fault tree analysis to uncontained events of an areo-engine rotor. Int J Turbo Jet Engines. 2012;29(4):309–15.10.1515/tjj-2012-0032Search in Google Scholar
17. Mi J, Li YF, Yang YJ, Peng W, Huang HZ. Reliability assessment of complex electromechanical systems under epistemic uncertainty. Reliab Eng Syst Saf. 2016;152:1–15.10.1016/j.ress.2016.02.003Search in Google Scholar
18. Mi J, Li YF, Liu Y, Yang YJ, Huang HZ. Belief universal generating function analysis of multi-state systems under epistemic uncertainty and common cause failures. IEEE Trans Reliab. 2015;64(4):1300–09.10.1109/TR.2015.2419620Search in Google Scholar
19. Li YF, Lv Z, Cai W, Zhu SP, Huang HZ. Fatigue life analysis of turbine disks based on load spectra of aero-engines. Int J Turbo Jet Engines. 2016;33(1):27–33.10.1515/tjj-2015-0004Search in Google Scholar
20. Li YF, Zhu SP, Li J, Peng W, Huang HZ. Uncertainty analysis in fatigue life prediction of gas turbine blades using Bayesian inference. Int J Turbo Jet Engines. 2015;32(4):319–24.10.1515/tjj-2014-0037Search in Google Scholar
21. Lemaitre J. Application of damage concepts to predict creep-fatigue failures. J Eng Mater Technol Trans ASME. 1979;101(3):284–92.10.1115/1.3443689Search in Google Scholar
22. Chaboche JL. Continuum damage mechanics: part 2. J Appl Mech Trans ASME. 1988;55(1):65–72.10.1115/1.3173662Search in Google Scholar
23. GB/T 2039-1997. Metallic materials-creep and stress-rupture test in tension. Beijing: China Standard Press, 1997.Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Investigation of a High Pressure Ratio Centrifugal Compressor with Wedge Diffuser and Pipe Diffuser
- Qualification of a Small Gas Turbine Engine as a Starter Unit
- Creep Life Prediction of Aircraft Turbine Disc Alloy Using Continuum Damage Mechanics
- Obtaining Dynamic Responses of Rotor from a Synchronizing Derived System Driven by Responses of Some Elastic Supports
- Effect of Swirling Secondary Flow on the Under-expanded Non-circular Supersonic Jets
- Life enhancement of Nozzle Guide Vane of an Aero Gas Turbine Engine through Pack Aluminization
- Investigation on the Aerodynamic Performance of the Compressor Cascade Using Blended Blade and End Wall
- Numerical Simulation of Terminal Shock Oscillation in Over/Under Turbine-Based Combined-Cycle Inlet
- Model Simulation and Design Optimization of a Can Combustor with Methane/Syngas Fuels for a Micro Gas Turbine
- Matching Performance Prediction Between Core Driven Fan Stage and High Pressure Compressor
- Effect of Variable Geometry Guide-Vane with Cylindrical Endwalls on Turbine Stage Performance
Articles in the same Issue
- Frontmatter
- Investigation of a High Pressure Ratio Centrifugal Compressor with Wedge Diffuser and Pipe Diffuser
- Qualification of a Small Gas Turbine Engine as a Starter Unit
- Creep Life Prediction of Aircraft Turbine Disc Alloy Using Continuum Damage Mechanics
- Obtaining Dynamic Responses of Rotor from a Synchronizing Derived System Driven by Responses of Some Elastic Supports
- Effect of Swirling Secondary Flow on the Under-expanded Non-circular Supersonic Jets
- Life enhancement of Nozzle Guide Vane of an Aero Gas Turbine Engine through Pack Aluminization
- Investigation on the Aerodynamic Performance of the Compressor Cascade Using Blended Blade and End Wall
- Numerical Simulation of Terminal Shock Oscillation in Over/Under Turbine-Based Combined-Cycle Inlet
- Model Simulation and Design Optimization of a Can Combustor with Methane/Syngas Fuels for a Micro Gas Turbine
- Matching Performance Prediction Between Core Driven Fan Stage and High Pressure Compressor
- Effect of Variable Geometry Guide-Vane with Cylindrical Endwalls on Turbine Stage Performance