Abstract
Load spectra of aero-engines reflect the process of operating aircrafts as well as the changes of parameters of aircrafts. According to flight hours and speed cycle numbers of the aero-engines, the relationship between load spectra and the fatigue life of main components of the aero-engines is obtained. Based on distribution function and a generalized stress–strength interference model, the cumulative fatigue damage of aero-engines is then calculated. After applying the analysis of load spectra and the cumulative fatigue damage theory, the fatigue life of the first-stage turbine disks of the aero-engines is evaluated by using the S–N curve and Miner’s rule in this paper.
1 Introduction
Load spectra of aero-engines usually consist of a variety of load parameter matrices. Each of the load parameter matrices corresponds to certain fatigue damage. The load parameter matrices are often obtained by mixing profile load parameter matrices. When the load parameter matrices are obtained by processing the flight profile in an environmental task, they are called environmental mission profile of the load parameter matrices [1]. The collection of various environmental mission profile load parameter matrices is the environmental task load parameter matrices. The environmental task load parameter matrices include cyclic matrix, distribution matrix and correlation matrix. For the cyclic matrix, it includes power cyclic matrix, speed cyclic matrix, torque cyclic matrix, pressure cyclic matrix, overload cyclic matrix, etc. [2]. Cyclic matrix profile parameters represent load cycles, which are used to calculate the low cycle fatigue damage of aero-engines. Measured data used in this paper are the speed cyclic matrix. By extracting peak values, counting parameter cycles and removing invalid cyclic amplitudes of the flight profile, an environmental task parameter cyclic matrix is obtained.
The remainder of this paper is structured as follows. Section 2 reviews several deterministic fatigue life prediction methods that would be used in the following sections and then introduces the procedure of the fatigue life analysis. In Section 3, by analyzing the measured speed cyclic matrix of an aero-engine, the number of the main work cycles of the aero-engine is obtained. In Section 4, based on the cracks in turbine disk mainly caused by low cycle fatigue failures, the loading stress of the turbine disk is analyzed. In Section 5, by fitting the material S–N curve, the S–N curve of the turbine disk is obtained. In Section 6, by using the S–N curve of the turbine disk and Miner’s rule, the life of the turbine disk is predicted. In the last section, the conclusions are drawn.
2 Fatigue life prediction methods
According to the irreversibility and randomness of fatigue damages, fatigue life prediction methods can be classified into two groups: deterministic fatigue life prediction methods and probabilistic fatigue life prediction methods [3, 10–12]. In this section, the most commonly used deterministic fatigue life prediction methods are reviewed.
2.1 Stress-based fatigue life prediction methods
Stress-based fatigue life prediction method is one of the earliest developed methods used for fatigue life prediction. The S–N curve life prediction is a classic example [4, 9]. Basquin formula is a common fatigue formula used in engineering, which can be expressed as follows [3]:
where
Due to the stress concentration, the stress-based fatigue life prediction method can be further divided into nominal stress method, hot spot stress method and notch stress method.
In this paper, the nominal stress method is used to calculate the low cycle fatigue life of the aero-engines. Material S–N curves are derived from material data and determined by the stress concentration factors. Also, it should be noted that different stress concentration factors correspond to different S–N curves [5].
2.2 Strain-based fatigue life prediction methods
For a heavy service load, during the operation of a component, it is better to use strain–life curve to predict the life of the component. In the 1950s, a second common and more recent approach based on a local strain was established. Manson–Coffin’s formula is one of the most commonly used fatigue life prediction methods in engineering. Manson–Coffin’s formula describes a relationship between the plastic strain and the fatigue life as follows:
where
Mason and Hirschberg [6] put forward an improved formula to express the fatigue life by considering the total strain range:
where
2.3 Miner’s rule
Suppose that there are L levels of stress in the load spectra [7, 8]. They are denoted as
where L is the number of stress levels,
A procedure of the fatigue life analysis used in this paper is shown in Figure 1.

A procedure for the fatigue life analysis of the turbine disk.
First, the S–N curve of the structure should be known. In this paper, the S–N curve of the structure is obtained by fitting the material data. Second, based on the structure analysis, the nominal stress of each cycle can be represented by
3 Analysis of speed cyclic matrix data
The measured speed cyclic matrix of an aero-engine of an aircraft is shown in Table 1. The main work cycles can be calculated by analyzing the data in Table 1. Because the data are counted in 2,000 hours many times through the same flight mission, the number of cycles may not be integer. From Table 1, the number of speed cycles of the engines is obtained. Peaks can be defined as four states: take off (>97%), rated take off (94.5–97%), valleys are zero and the ground idle. The numbers of cycles of “0-take off-0,” “ground idle-take off-ground idle,” “0-rated take off-0” and “ground idle-rated take off-ground idle” are 500.1, 304.8, 221.2 and 420.4. The total number of cycles “0-97%” and “94.5-97%-0” is 721.3, which reflects the flight subjects starting from switch off to take off. The number of cycles of “ground idle-take off state-ground idle” is 725.2, which reflects the flight subjects of landing (but not switching off) to take off again. The number of cycles of “flight idle-take off state-flight idle” is high, which reflects the low frequency using this cycle. Then, the number of the main work cycles of the aero-engine can be obtained and are shown in Table 2.
N2 cyclic matrix (times, standardization to 2,000 hours).
| Peak (%) | 97–100 | 94.5–97 | 92.5–94.5 | 91–92.5 | 87.5–91 | 85.5–87.5 | 81–85.5 | 75–81 | 70–75 | 60–70 |
| Valley (%) | ||||||||||
| 0–30 | 500.1 | 221.2 | 62.1 | 41.7 | 84.0 | 30.7 | 12.5 | 11.4 | 13.7 | 38.0 |
| 30–70 | 304.8 | 420.4 | 399.6 | 322.7 | 1,713.6 | 1,680.2 | 2,034.2 | 873.8 | 571.2 | 93.7 |
| 70–75 | 29.0 | 34.3 | 44.2 | 76.4 | 346.5 | 507.0 | 1,039.1 | 371.9 | ||
| 75–81 | 24.4 | 122.2 | 199.6 | 166.9 | 1,027.5 | 1,291.8 | 2,192.8 | |||
| 81–85.5 | 9.0 | 55.8 | 88.2 | 76.9 | 240.0 | 79.1 | ||||
| 85.5–87.5 | 3.1 | 42.6 | 87.8 | 49.0 | 10.7 | |||||
| 87.5–91 | 2.7 | 62.0 | 66.2 | |||||||
| 91–92.5 | 2.1 | 3.1 | ||||||||
| 92.5–94.5 | 2.1 |
The number of main work cycles.
| Peak | Take off (>97%) | Rated take off (94.5–97%) | ||
| Valley | 0 | Ground idle | 0 | Ground idle |
| N2 cycle number (times) | 500.1 | 304.8 | 221.2 | 420.4 |
4 Analysis of turbine disk’s loading stress
In this section, the first-stage turbine disk is regarded as objects and their fatigue life is estimated. According to actual turbine disk fracture and related metallographic analysis, the cracks in turbine disk are mainly caused by low cycle fatigue failures.
As shown in Table 1, the centrifugal forces are the main load, which are considered in this paper.
Assuming that the blade’s centrifugal forces are evenly distributed on the contact surface of the mortises of the turbine disk, the centrifugal forces are expressed as follows:
where
5 The fitting of S–N curve of the first-stage turbine disk
In this paper, the material S–N curve is used to estimate the low cycle fatigue life of the turbine disk for a rough calculation to verify the feasibility of this method. The material used in the test is GH4698 super alloy. The mechanical and fatigue properties of the tested material under the room temperature are listed in Tables 3 and 4, respectively. Considering the influence of stress concentration on turbine disk, the notched fatigue specimen and notched radius are chosen as follows:
Mechanical properties of a GH4698 super alloy.
| 878 | 667 | 15.0 | 18.0 |
Fatigue strength of vacuum smelting plus vacuum arc remelting forging.
| Heat treatment | ||||||
| Standard heat treatment | 750 | 981 | 520 | 471 | 118 | – |
According to the material’s fatigue limit
The S–N curve is shown in Figure 2 [13].

The S–N curve of a turbine disk.
6 Fatigue life estimation of the first-stage turbine disk
6.1 Estimation of cyclic stress
The high-pressure rotor speed (
where k is the conversion factor. Based on the above assumption, the cyclic stress S is shown in Table 5.
6.2 Estimation of symmetric cyclic stress
After getting the cyclic stress, from the cyclic matrix we can obtain the cyclic stress amplitude
where
6.3 Estimation of cumulative damage
The life curve is usually described by the following equation, which is called Goodman diagram:
where
The stress cycles of each level can be represented by
Then S–N curve and eq. (10) are used to calculate the fatigue life which corresponds to
If
Substituting parameters into eq. (12) with
The corresponding cyclic life by eq. (13) is shown in Table 5.
Then by using the Miner’s rule, we substitute parameters into eq. (12)
Cyclic life
Fatigue limit and damage based on the rotor speeds of aero-engines.
| Speed cycle | Stress cycle | Stress amplitude | Mean stress | Symmetrical cyclic stress amplitude | Fatigue cycle life corresponding | Number of stress cycles | Equivalent damage corresponding |
| 0–98.5 | 0–97.0225 | 48.51125 | 48.51125 | 69.85929 | 40,455 | 500.1 | 0.013178 |
| 60–98.5 | 36–97.0225 | 30.51125 | 66.51125 | 52.51266 | 393,220 | 304.8 | 0.000691 |
| 72.5–98.5 | 52.5625–97.0225 | 22.23 | 74.7925 | 42.03376 | 3,230,106 | 29.0 | 5.88E-06 |
| 78–98.75 | 60.84–97.0225 | 18.09125 | 78.93125 | 35.98176 | 19,116,698 | 24.4 | 1.80E-06 |
| 83.25–98.75 | 69.30563–97.0225 | 13.85844 | 83.16406 | 29.10668 | > | 9.0 | 0 |
| 86.5–98.75 | 74.8225–97.0225 | 11.1 | 85.9225 | 24.19621 | > | 3.1 | 0 |
| 89.25–98.75 | 79.65563–97.0225 | 8.683438 | 88.33906 | 19.57815 | > | 2.7 | 0 |
| 91.75–98.75 | 84.18063–97.0225 | 6.420937 | 90.60156 | 14.95764 | > | 2.1 | 0 |
| 93.5–98.75 | 87.4225–97.0225 | 4.8 | 92.2225 | 11.4541 | > | 2.1 | 0 |
| 0–95.75 | 0–91.68063 | 45.84031 | 45.84031 | 64.45137 | 74,266 | 221.2 | 0.003248 |
| 60–95.75 | 36–91.68063 | 27.84031 | 63.84031 | 46.56727 | 1,166,887 | 420.4 | 0.000343 |
| 72.5–95.75 | 52.5625–91.68063 | 19.55906 | 72.12156 | 35.8431 | 20,074,850 | 34.3 | 1.21E-06 |
| 78–95.75 | 60.84–91.68063 | 15.42031 | 76.26031 | 29.67645 | > | 122.2 | 0 |
| 83.25–95.75 | 69.30563–91.68063 | 11.1875 | 80.49313 | 22.69497 | > | 55.8 | 0 |
| 86.5–95.75 | 74.8225–91.68063 | 8.429063 | 83.25156 | 17.72396 | > | 42.6 | 0 |
| 89.25–95.75 | 79.65563–91.68063 | 6.0125 | 85.66813 | 13.06066 | > | 62.0 | 0 |
| 91.75–95.75 | 84.18063–91.68063 | 3.75 | 87.93063 | 8.406192 | > | 3.1 | 0 |
| 0–93.5 | 0–87.4225 | 43.71125 | 43.71125 | 60.32048 | 124,639 | 62.1 | 0.000458 |
| 60–93.5 | 36–87.4225 | 25.71125 | 61.71125 | 42.06249 | 3,207,156 | 399.6 | 0.000126 |
| 72.5–93.5 | 52.5625–87.4225 | 17.43 | 69.9925 | 31.17526 | > | 44.2 | 0 |
| 78–93.5 | 60.84–87.4225 | 13.29125 | 74.13125 | 24.93546 | > | 199.6 | 0 |
| 83.25–93.5 | 69.30563–87.4225 | 9.058438 | 78.36406 | 17.88924 | > | 88.2 | 0 |
| 86.5–93.5 | 74.8225–87.4225 | 6.3 | 81.1225 | 12.8838 | > | 87.8 | 0 |
| 89.25–93.5 | 79.65563–87.4225 | 3.883438 | 83.53906 | 8.196997 | > | 66.2 | 0 |
| 0–91.75 | 0–84.18063 | 42.09031 | 42.09031 | 57.27656 | 189,305 | 41.7 | 0.000115 |
| 60–91.75 | 36–84.18063 | 24.09031 | 60.09031 | 38.76319 | 7,820,072 | 322.7 | 4.38E-05 |
| 72.5–91.75 | 52.5625–84.18063 | 15.80906 | 68.37156 | 27.76891 | > | 76.4 | 0 |
| 78–91.75 | 60.84–84.18063 | 11.67031 | 72.51031 | 21.48292 | > | 166.9 | 0 |
| 83.25–91.75 | 69.30563–84.18063 | 7.4375 | 76.74313 | 14.39777 | > | 76.9 | 0 |
| 86.5–91.75 | 74.8225–84.18063 | 4.679063 | 79.50156 | 9.373181 | > | 49.0 | 0 |
| 0–89.25 | 0–79.65563 | 39.82781 | 39.82781 | 53.16662 | 353,418 | 84.0 | 0.000181 |
| 60–89.25 | 36–79.65563 | 21.82781 | 57.82781 | 34.33525 | 35,291,322 | 1713.6 | 4.91E-05 |
| 72.5–89.25 | 52.5625–79.65563 | 13.54656 | 66.10906 | 23.21366 | > | 346.5 | 0 |
| 78–89.25 | 60.84–79.65563 | 9.407813 | 70.24781 | 16.87534 | > | 1027.5 | 0 |
| 83.25–89.25 | 69.30563–79.65563 | 5.175 | 74.48063 | 9.748973 | > | 240.0 | 0 |
| 86.5–89.25 | 74.8225–79.65563 | 2.416563 | 77.23906 | 4.706529 | > | 10.7 | 0 |
| 0–86.5 | 0–74.8225 | 37.41125 | 37.41125 | 48.94609 | 734,302 | 30.7 | 1.73E-05 |
| 60–86.5 | 36–74.8225 | 19.41125 | 55.41125 | 29.81994 | > | 1680.2 | 0 |
| 72.5–86.5 | 52.5625–74.8225 | 11.13 | 63.6925 | 18.58771 | > | 507.0 | 0 |
| 78–86.5 | 60.84–74.8225 | 6.99125 | 67.83125 | 12.20728 | > | 1291.8 | 0 |
| 83.25–86.5 | 69.30563–74.8225 | 2.758438 | 72.06406 | 5.051641 | > | 79.1 | 0 |
| 0–83.25 | 0–69.30563 | 34.65281 | 34.65281 | 44.32939 | 1,881,000 | 12.5 | 5.05E-06 |
| 60–83.25 | 36–69.30563 | 16.65281 | 52.65281 | 24.91724 | > | 2034.2 | 0 |
| 72.5–83.25 | 52.5625–69.30563 | 8.371563 | 60.93406 | 13.5867 | > | 1039.1 | 0 |
| 78–83.25 | 60.84–69.30563 | 4.232813 | 65.07281 | 7.173193 | > | 2192.8 | 0 |
| 0–78 | 0–60.84 | 30.42 | 30.42 | 37.63102 | 11,045,325 | 11.4 | 6.70E-07 |
| 60–78 | 36–60.84 | 12.42 | 48.42 | 17.8708 | > | 873.8 | 0 |
| 72.5–78 | 52.5625–60.84 | 4.13875 | 56.70125 | 6.438402 | > | 371.9 | 0 |
| 0–72.5 | 0–52.5625 | 26.28125 | 26.28125 | 31.49541 | > | 13.7 | 0 |
| 60–72.5 | 36–52.5625 | 8.28125 | 44.28125 | 11.48483 | > | 571.2 | 0 |
| 0–65 | 0–42.25 | 21.125 | 21.125 | 24.36766 | > | 38.0 | 0 |
| 60–65 | 36–42.25 | 3.125 | 39.125 | 4.14709 | > | 93.7 | 0 |
According to the calculation, the cumulative fatigue damage is 0.018471 after 2,000 flight hours. It indicates that although the main failure mechanisms of the turbine disc are low cycle fatigue, the total damage of the turbine disk is small which is caused by the centrifugal forces in 2,000 flight hours. It should be noted that, in the operation of the turbine disk, it also endures high thermal stresses. But because of the lack of experimental data, in this paper, only the centrifugal forces are used to estimate the life of the turbine disk. So we will do further study about the life of the turbine disk in the future.
7 Conclusions
In this paper, based on the actual measured load spectra speed cyclic matrix, the fatigue life of the first-stage turbine disk was estimated. The experimental results demonstrated that the centrifugal forces are the main load of the turbine disk. Also, it is clear that the S–N curve and Miner’s rule can be used to estimate the fatigue life of the turbine disk. Similarly, this method can be used to estimate the fatigue life of the other components of the aero-engine. But it should be noted that, when just considering the centrifugal forces of the loading stress, the total damage of the turbine disk is small. In order to have a high precision of fatigue life estimation of the turbine disk, more experimental data about the loading stress are need. Also, the life estimation method can be further improved if there are more accurate parameters.
Funding statement: Funding: The authors would like to acknowledge the partial support provided by the National Natural Science Foundation of China under contract number 11272082 and the Fundamental Research Funds for the Central Universities under contract number E022050205.
References
1. Su QY. Guide of determining life of aviation turbojet, turbofan engine main parts. Beijing: Aviation Industry Press, 2004.Search in Google Scholar
2. Raiher VL. Some consequences from the two parameters model of durability scatter. Uchenve Zapiski CAHI 1982;13:130–3.Search in Google Scholar
3. Zhu SP. Research on hybrid probabilistic physics of failure modeling and fatigue life estimation of high-temperature structures. Ph.D. Dissertation, University of Electronic Science and Technology of China, 2011.Search in Google Scholar
4. Cui W. A state-of-the-art review on fatigue life prediction methods for metal structures. J Mar Sci Technol 2002;7:43–56.10.1007/s007730200012Search in Google Scholar
5. Yao WX. The fatigue life analysis of structure. Beijing: National Defense Industry Press, 2003.Search in Google Scholar
6. Mason SS, Hirschberg MH. Fatigue: an interdisciplinary approach. Syracuse, NY: Syracuse University Press, 1964.Search in Google Scholar
7. Miner MA. Cumulative damage in fatigue. J Appl Mech 1945;12:159–64.10.1115/1.4009458Search in Google Scholar
8. Hashin Z, Rotem A. A cumulative damage theory of fatigue failure. Mater Sci Eng 1978;34:147–60.10.21236/ADA041984Search in Google Scholar
9. Wirsching PH. Fatigue reliability for offshore structures. J Struct Eng 1984;100:2340–56.10.1061/(ASCE)0733-9445(1984)110:10(2340)Search in Google Scholar
10. Zhu SP, Huang HZ, Wang ZL. Fatigue life estimation considering damaging and strengthening of low amplitude loads under different load sequences using fuzzy sets approach. Int J Damage Mech 2011;20:876–99.10.1177/1056789510397077Search in Google Scholar
11. Zhu SP, Huang HZ, Ontiveros V, He LP, Modarres M. Probabilistic low cycle fatigue life prediction using an energy-based damage parameter and accounting for model uncertainty. Int J Damage Mech 2012;21:1128–53.10.1115/DETC2011-47296Search in Google Scholar
12. Zhu SP, Huang HZ, He LP, Liu Y, Wang Z. A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys. Eng Fract Mech 2012;90:89–100.10.1016/j.engfracmech.2012.04.021Search in Google Scholar
13. Fu N. An aircraft engine turbine disk and blade strength analysis and calculation of life. M.D. Dissertation, Northwestern polytechnic University, 2006.Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Design and Optimization Method of a Two-Disk Rotor System
- Numerical Study of the Effect of Secondary Vortex on Three-Dimensional Corner Separation in a Compressor Cascade
- Investigation of Thrust Augmentation and Acoustic Performance by Ejectors on PDE
- Fatigue Life Analysis of Turbine Disks Based on Load Spectra of Aero-engines
- Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor
- Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model
- Law of Torsional Vibration and Discussion on Vibration Suppression Based on Helicopter/Engine System
- Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow
- Understanding Blowout Phenomena to the Induced Angle of V-Gutter-Stabilized Flames
Articles in the same Issue
- Frontmatter
- Design and Optimization Method of a Two-Disk Rotor System
- Numerical Study of the Effect of Secondary Vortex on Three-Dimensional Corner Separation in a Compressor Cascade
- Investigation of Thrust Augmentation and Acoustic Performance by Ejectors on PDE
- Fatigue Life Analysis of Turbine Disks Based on Load Spectra of Aero-engines
- Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor
- Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model
- Law of Torsional Vibration and Discussion on Vibration Suppression Based on Helicopter/Engine System
- Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow
- Understanding Blowout Phenomena to the Induced Angle of V-Gutter-Stabilized Flames