Home Technology Pressure measurement stocking for prevention and therapy support for diabetic foot ulcers
Article
Licensed
Unlicensed Requires Authentication

Pressure measurement stocking for prevention and therapy support for diabetic foot ulcers

  • Bernhard Brunner

    1984 – 1995 Studies and doctorate in physics at the University of Regensburg in the field of high-temperature superconductor layers. 1997 – 1999 Scientific employee at the Natural and Medical Sciences Institute (NMI) in Reutlingen in the field of thin-film technology and microstructure technology for implants. 1999 – 2000 product technology engineer for chip cards at Infineon Technologies AG, Regensburg. Since 2000 scientific employee at Fraunhofer ISC, Würzburg: Project manager in the field of sensor technology for e-textiles.

    EMAIL logo
    , Gottfried Betz , Manfred Fischer , Dominik Urbaniak , Martin Bach , Norman Pfeiffer and Stefan Sesselmann
Published/Copyright: March 20, 2025

Abstract

Around 8 million people in Germany suffer from type 2 diabetes. One of the secondary and accompanying diseases is diabetic foot syndrome, which currently affects 250,000 patients. Therapeutic and preventive measures are designed to reduce the risk of foot wounds (ulcers). These include the detection of increased pressure values in the entire foot area. A pressure-measuring stocking can be used to continuously record pressure loads during activities of daily living. It is important to use skin-friendly, heat- and moisture-regulating textiles with very thin and soft sensors that do not create pressure points and are very comfortable to put on, take off and wear. Machine washing should be possible for daily cleaning. And the manufacturing costs must be low. The solution presented is the use of thin (1 mm) capacitive dielectric elastomer pressure sensors based on skin-compatible silicones, which are bonded at any position on the smart wool sock. The signal cables are knitted in elastically during stocking production and are connected to a removable radio electronics unit at the end of the stocking. The measurement data from up to 16 pressure sensors on the entire foot can thus be sent wirelessly to a mobile receiving device (e.g. smartphone) to warn patients of excessive pressure and inform the doctors treating them.

Zusammenfassung

Rund 8 Millionen Menschen in Deutschland leiden an Typ-2-Diabetes. Eine der Folge- und Begleiterkrankungen ist das diabetische Fußsyndrom, von dem derzeit 250.000 Patienten betroffen sind. Therapeutische und präventive Maßnahmen sollen das Risiko von Fußwunden (Ulcera) reduzieren. Dazu gehört das Erkennen von erhöhten Druckwerten im gesamten Fußbereich. Mit einem Druckmessstrumpf kann die Druckbelastung bei Aktivitäten des täglichen Lebens kontinuierlich erfasst werden. Wichtig ist die Verwendung von hautfreundlichen, wärme- und feuchtigkeitsregulierenden Textilien mit sehr dünnen und weichen Sensoren, die keine Druckstellen erzeugen und einen hohen An- und Ausziehkomfort bieten. Für die tägliche Reinigung sollte eine Maschinenwäsche möglich sein und die Herstellungskosten müssen niedrig sein. Die vorgestellte Lösung ist die Verwendung von dünnen (1 mm) kapazitiven dielektrischen Elastomer-Drucksensoren auf der Basis von hautverträglichen Silikonen, die an beliebiger Stelle auf die intelligente Socke appliziert werden können. Die Signalkabel werden bei der Strumpfherstellung elastisch eingestrickt und sind am Ende des Strumpfes mit einer abnehmbaren Funkelektronik verbunden. Die Messdaten von bis zu 16 Drucksensoren am gesamten Fuß können so drahtlos an ein mobiles Empfangsgerät (z. B. Smartphone) gesendet werden, um Patienten vor zu hohen Druckbelastungen zu warnen und den behandelnden Ärzten Informationen bereit zu stellen.


Corresponding author: Bernhard Brunner, Fraunhofer ISC, Neunerplatz 2, D-97082 Würzburg, Germany, E-mail: 

About the author

Bernhard Brunner

1984 – 1995 Studies and doctorate in physics at the University of Regensburg in the field of high-temperature superconductor layers. 1997 – 1999 Scientific employee at the Natural and Medical Sciences Institute (NMI) in Reutlingen in the field of thin-film technology and microstructure technology for implants. 1999 – 2000 product technology engineer for chip cards at Infineon Technologies AG, Regensburg. Since 2000 scientific employee at Fraunhofer ISC, Würzburg: Project manager in the field of sensor technology for e-textiles.

Acknowledgments

Thanks for funding by the German Federal Ministry for Economic Affairs and Climate Action “Zentrales Innovationsprogramm Mittelstand, ZIM”.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Deepl to improve language.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: German Federal Ministry for Economic Affairs and Climate Action “Zentrales Innovationsprogramm Mittelstand, ZIM”.

  7. Data availability: Not applicable.

References

[1] Deutsche Diabetes Gesellschaft, Diabetes DE (Hrsg.), Deutscher Gesundheitsbericht Diabetes 2021, Mainz, Kirchheim, 2020.Search in Google Scholar

[2] K. Bakker, J. Apelqvist, and N. C. Schaper, “Practical guidelines on the management and prevention of the diabetic foot 2011,” Diabetes/Metab. Res. Rev., vol. 28, no. 1, pp. 225–231, 2012. https://doi.org/10.1002/dmrr.2253.Search in Google Scholar PubMed

[3] T. Mittlmeier, K. Klaue, P. Haar, and M. Beck, “Charcot Fuß. Eine Standortbestimmung und Perspektiven,” Unfallchirurg, vol. 111, no. 4, pp. 218–231, 2008. https://doi.org/10.1007/s00113-008-1431-y.Search in Google Scholar PubMed

[4] L. Poll and E. Chantelau, “Charcot-Fuss: Auf die frühe Diagnose kommt es an,” Deutsches Ärzteblatt, vol. 107, pp. 272–274, 2010.Search in Google Scholar

[5] J. Mayfield, et al.., “Preventive foot care in diabetes,” Diabetes Care, vol. 27, no. 1, pp. 63–64, 2004. https://doi.org/10.2337/diacare.27.2007.s63.Search in Google Scholar PubMed

[6] Available at: https://ieeexplore.ieee.org/abstract/document/8707391.Search in Google Scholar

[7] Available at: https://novel.de/.Search in Google Scholar

[8] Available at: https://www.sensoriahealth.com/.Search in Google Scholar

[9] S. S. Siren, [Online]. Available at: https://www.siren.care.Search in Google Scholar

[10] S. Eder, “Diabetisches Fußsyndrom,” Gefässchirurgie, vol. 28, pp. 31–36, 2023. https://doi.org/10.1007/s00772-023-00972-y.Search in Google Scholar

[11] P. Jones, et al.., “Prediction of diabetic foot ulceration: the value of using microclimate sensor arrays,” J. Diabetes Sci. Technol., vol. 14, no. 1, pp. 55–64, 2019. https://doi.org/10.1177/1932296819877194.Search in Google Scholar PubMed PubMed Central

[12] A. M. Wijlens, S. Holloway, S. A. Bus, and J. J. van Netten, “An explorative study on the validityof various definitions of a 2.2∘C temperature threshold as warning signal for impending diabetic foot ulceration,” Int. Wound J., vol. 14, no. 6, pp. 1346–1351, 2017. https://doi.org/10.1111/iwj.12811.Search in Google Scholar PubMed PubMed Central

[13] B. Brunner, J. Ziegler, and V. Hagenguth, “Textilmaterial mit eingearbeiteten Elastomersensoren,” Patent DE 10-2015-105 004.Search in Google Scholar

[14] B. Brunner, “Wenn der Schuh drückt – Textilsensoren für orthopädische Anwendungen,” Orthopädie Technik, vol. 11, pp. 40–41, 2016.Search in Google Scholar

[15] F. Reverter, “The art of directly interfacing sensors to microcontrollers,” J. Low Power Electron. Appl., vol. 2, no. 4, pp. 265–281, 2012. https://doi.org/10.3390/jlpea2040265.Search in Google Scholar

[16] J. E. Gaitan-Pitre, R. Pallas-Areny, and M. Gasulla, “Direct interface for capacitive sensors based on the charge transfer method,” in 2007 IEEE Instrum. Meas. Technol. Conf., Warsaw, Poland, IEEE, 2007, pp. 1–5, 2007.10.1109/IMTC.2007.379227Search in Google Scholar

[17] I. Leher, et al.., “Druckmessstrumpf zur Prävention und Therapieunterstützung bei diabetischen Fußulzera,” Ortopädieschuhtechnik, pp. 38–41, 2022.Search in Google Scholar

Received: 2024-11-04
Accepted: 2025-02-13
Published Online: 2025-03-20
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2024-0105/html
Scroll to top button