Home Spatial detection and localisation of multiple laser beams in optical measuring systems
Article
Licensed
Unlicensed Requires Authentication

Spatial detection and localisation of multiple laser beams in optical measuring systems

  • Jasmin Ruprecht

    Jasmin Ruprecht graduated in 2024 in the field of Measurement and Sensor Technologies at the Technische Universität Ilmenau. Now she is a research and development engineer at LAYERTEC GmbH and works on the development of optical measuring systems.

    EMAIL logo
    , Mingshuai Su

    Mingshuai Su graduated in 2021 in the field of laser measurement technology at the Technische Universität Ilmenau. Now he is scientific staff at the Friedrich-Alexander-Universität, chair of Fertigungsmesstechnik and works on a turnable AFM sensor there.

    , Maximilian Hoffmann

    Maximilian Hoffmann graduated from Technische Universität Ilmenau in 2024 with a degree in mechanical engineering, specialising in mechanical design. He is now a research associate at the Department of Mechanical Engineering, Research Training Group NanoFab at the Technische Universität Ilmenau, working on length and force measurement.

    and Ingo Ortlepp

    Ingo Ortlepp completed his his doctorate in 2020 in the field of standing wave interferometry at the Technische Universität Ilmenau. Now he is a postdoc at the Institute of Process Measurement and Sensor Technology, working on Nanopositioning and Nanomeasuring Machines.

    ORCID logo
Published/Copyright: January 3, 2025

Abstract

Optical instruments are used in a broad range of applications in different fields of research and industry like microscopy, material science, metrology and fabrication. There, the optical adjustment of laser beams, optical rays and optical axes to a certain position is crucial for the correct function of the overall system. Often, multiple axes have to be adjusted, which requires the monitoring of multiple rays, preferably simultaneously. In this paper, a method for the spatial localisation of multiple laser beams is presented and demonstrated for an application in precision dimensional metrology. There, the position of seven spatially distributed laser beams can be detected with an uncertainty of <10 μm, enhancing the accuracy of the overall system. The underlying method is flexible in its approach and can be adapted to other optical systems.

Zusammenfassung

Optische Geräte finden breite Anwendung in verschiedenen Bereichen in Forschung und Industrie, wie Mikroskopie, Materialwissenschaft, Metrologie und Fertigung. Oft ist dort die optische Justage von Laserstrahlen, optischen Strahlen und optischen Achsen auf eine bestimmte Position entscheidend für die korrekte Funktion und die Leistungsfähigkeit des gesamten Systems. Typischerweise sind in diesen Systemen mehrere optische Achsen zu justieren, was die Beobachtung mehrerer Strahlen, vorzugsweise gleichzeitig, erforderlich macht. In diesem Beitrag wird ein Verfahren zur räumlichen Lagedetektion mehrerer Laserstrahlen vorgestellt und dessen Umsetzung an einer Anwendung in der Präzisionsmesstechnik praktisch gezeigt. Dort konnte die Position von sieben räumlich verteilten Laserstrahlen mit einer Unsicherheit <10 μm detektiert werden, wodurch die Genauigkeit des Gesamtsystems erhöht werden konnte. Die zugrunde liegende Methode ist in ihrem Ansatz flexibel und kann daher an andere optische Systeme angepasst werden.


Corresponding author: Jasmin Ruprecht, Institute of Process Measurement and Sensor Technology, Technische Universität Ilmenau, 98693 Ilmenau, Germany, E-mail: 

About the authors

Jasmin Ruprecht

Jasmin Ruprecht graduated in 2024 in the field of Measurement and Sensor Technologies at the Technische Universität Ilmenau. Now she is a research and development engineer at LAYERTEC GmbH and works on the development of optical measuring systems.

Mingshuai Su

Mingshuai Su graduated in 2021 in the field of laser measurement technology at the Technische Universität Ilmenau. Now he is scientific staff at the Friedrich-Alexander-Universität, chair of Fertigungsmesstechnik and works on a turnable AFM sensor there.

Maximilian Hoffmann

Maximilian Hoffmann graduated from Technische Universität Ilmenau in 2024 with a degree in mechanical engineering, specialising in mechanical design. He is now a research associate at the Department of Mechanical Engineering, Research Training Group NanoFab at the Technische Universität Ilmenau, working on length and force measurement.

Ingo Ortlepp

Ingo Ortlepp completed his his doctorate in 2020 in the field of standing wave interferometry at the Technische Universität Ilmenau. Now he is a postdoc at the Institute of Process Measurement and Sensor Technology, working on Nanopositioning and Nanomeasuring Machines.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. JR: theory, experiment, data evaluation, writing. MS: theory, experiment preparation. MH: experiment preparation, visualization. IO: concept, supervision, proofreading.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was supported by the German Research Foundation in the scope of the Research Training Group on Tip- and laser-based 3D-Nanofabrication in extended macroscopic working areas (GRK2182 NanoFab), project number 274711337.

  7. Data availability: Not applicable.

References

[1] I. Rakhmatulin, et al.., “A review of automation of laser optics alignment with a focus on machine learning applications,” Optics Lasers Eng., Bd. 173, s. 107923, 2024, https://doi.org/10.1016/j.optlaseng.2023.107923.Search in Google Scholar

[2] S. Mishra und V. Yadava, “Laser Beam MicroMachining (LBMM) – a review,” Optics Lasers Eng., Bd. 73, ss. 89–122, 2015, https://doi.org/10.1016/j.optlaseng.2015.03.017.Search in Google Scholar

[3] A. Balena, et al.., “Recent advances on high-speed and holographic two-photon direct laser writing,” Adv. Funct. Mater., Bd. 33, no. 39, 2023, https://doi.org/10.1002/adfm.202211773.Search in Google Scholar

[4] M. Hofmann, et al.., “Mix-and-match lithography and cryogenic etching for NIL template fabrication,” Microelectron. Eng., Bd. 224, s. 111234, 2020, https://doi.org/10.1016/j.mee.2020.111234.Search in Google Scholar

[5] M. Haefner, C. Pruss, und W. Osten, “Laser direct writing of rotationally symmetric high-resolution structures,” Appl. Opt., Bd. 50, no. 31, s. 5983, 2011, https://doi.org/10.1364/ao.50.005983.Search in Google Scholar

[6] R. Zhang und F. G. Shi, “A novel algorithm for fiber-optic alignment automation,” IEEE Trans. Adv. Packag., Bd. 27, no. 1, ss. 173–178, 2004, https://doi.org/10.1109/TADVP.2004.825434.Search in Google Scholar

[7] Z. Tang, R. Zhang, und F. G. Shi, “Effects of angular misalignments on fiber-optic alignment automation,” Opt. Commun., Bd. 196, nos. 1-6, ss. 173–180, 2001, https://doi.org/10.1016/S0030-4018(01)01404-3.Search in Google Scholar

[8] F. Schaal, et al.., “Optically addressed modulator for tunable spatial polarization control,” Opt. Express, Bd. 26, no. 21, s. 28119, 2018, https://doi.org/10.1364/oe.26.028119.Search in Google Scholar PubMed

[9] C. Pruss, et al.., “Measuring aspheres quickly: tilted wave interferometry,” Optical Eng., Bd. 56, no. 11, s. 111713, 2017, https://doi.org/10.1117/1.oe.56.11.111713.Search in Google Scholar

[10] A. Bauch, “Zeitmessung mit Fontänen: Atomuhren,” Physik in unserer Zeit, Bd. 32, no. 6, ss. 268–273, 2001, https://doi.org/10.1002/1521-3943(200111)32:6268::AID-PIUZ2683.0.CO;2-N.10.1002/1521-3943(200111)32:6<268::AID-PIUZ268>3.0.CO;2-NSearch in Google Scholar

[11] R. Wynands und S. Weyers, “Atomic fountain clocks,” Metrologia, Bd. 42, no. 3, ss. S64–S79, 2005, https://doi.org/10.1088/0026-1394/42/3/s08.Search in Google Scholar

[12] S. Chu, et al.., “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett., Bd. 55, no. 1, ss. 48–51, 1985, https://doi.org/10.1103/PhysRevLett.55.48.Search in Google Scholar PubMed

[13] Laser Spectroscopy: Proceedings of the Second International Conference, Megève, June 23–27,1975. Hrsg. von S. Haroche, J.-C. Pebay-Péroula, und T. W. Hänsch. Bd. 43. Lecture Notes in Physics. Springer-Verlag and Springer e-books, 1975.Search in Google Scholar

[14] J. Meinen, et al.., “Technical Note: using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS,” Atmos. Chem. Phys., Bd. 10, no. 8, ss. 3901–3914, 2010, https://doi.org/10.5194/acp-10-3901-2010.Search in Google Scholar

[15] G. L. Galiñanes, et al.., “Optical alignment device for two-photon microscopy,” Biomed. Optics Express, Bd. 9, no. 8, ss. 3624–3639, 2018, https://doi.org/10.1364/BOE.9.003624.Search in Google Scholar PubMed PubMed Central

[16] J. H. Burge, et al.., “Use of a commercial laser tracker for optical alignment,” in Optical System Alignment and Tolerancing, Bd. 6676, 2007, s. 66760E, https://doi.org/10.1117/12.736705.Search in Google Scholar

[17] R. Kumar, et al.., “Laser processing of graphene and related materials for energy storage: state of the art and future prospects,” Prog. Energy Combust. Sci., Bd. 91, s. 100981, 2022, https://doi.org/10.1016/j.pecs.2021.100981.Search in Google Scholar

[18] C. Wei, et al.., “An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales,” Int. J. Extreme Manuf., Bd. 3, no. 1, s. 012003, 2021, https://doi.org/10.1088/2631-7990/abce04.Search in Google Scholar

[19] C. R. Ocier, et al.., “Direct laser writing of volumetric gradient index lenses and waveguides,” Light, Sci. Appl., Bd. 9, no. 1, s. 196, 2020, https://doi.org/10.1038/s41377-020-00431-3.Search in Google Scholar PubMed PubMed Central

[20] M. Del Pozo, et al.., “Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist,” ACS Nano, Bd. 14, no. 8, ss. 9832–9839, 2020, https://doi.org/10.1021/acsnano.0c02481.Search in Google Scholar PubMed PubMed Central

[21] G. Jäger, et al.., “Nanomessmaschine zur abbefehlerfreien Koordinatenmessung (Nano Measuring Machine for Zero Abbe Offset Coordinate-measuring),” tm – Technisches Messen, Bd. 67, nos. 7-8, ss. 319–323, 2000, https://doi.org/10.1524/teme.2000.67.7-8.319.Search in Google Scholar

[22] F. Balzer, „Entwicklung und Untersuchungen zur 3-D-Nanopositioniertechnik in großen Bewegungsbereichen“, Ilmenau, Techn. Univ., Diss., 2014, Univ.-Verl, 2015.Search in Google Scholar

[23] T. Hausotte, Nanopositionier- und Nanomessmaschinen: Geräte für hochpräzise makro- bis nanoskalige Oberflächen- und Koordinatenmessungen, Zugl, Ilmenau, Techn. Univ., Habil.-Schr., 2011, 1. Aufl. Pro Business, 2011.Search in Google Scholar

[24] I. Rahneberg, „Untersuchungen zu optischen Mehrkomponentenmesssystemen“, PhD thesis, Technische Universität Ilmenau, 2014, https://www.db-thueringen.de/receive/dbt_mods_00023376.Search in Google Scholar

[25] F. J. Schuda, “High-precision, wide-range, dual-axis, angle monitoring system,” Rev. Sci. Instrum., Bd. 54, no. 12, ss. 1648–1652, 1983, https://doi.org/10.1063/1.1137303.Search in Google Scholar

[26] K. Tono, et al.., “Single-shot beam-position monitor for x-ray free electron laser,” Rev. Sci. Instrum., Bd. 82, no. 2, s. 023108, 2011, https://doi.org/10.1063/1.3549133.Search in Google Scholar PubMed

[27] R. Bansevicius, et al.., “Multi-DOF ultrasonic actuators for laser beam positioning,” Shock Vibration, Bd. 2019, ss. 1–13, 2019, https://doi.org/10.1155/2019/4919505.Search in Google Scholar

[28] S. Grafström, et al.., “Fast laser beam position control with submicroradian precision,” Opt. Commun., Bd. 65, no. 2, ss. 121–126, 1988, https://doi.org/10.1016/0030-4018(88)90282-9.Search in Google Scholar

[29] G. Jäger, et al.., “Nanopositioning and nanomeasuring machine NPMM-200—a new powerful tool for large-range micro- and nanotechnology,” Surf. Topogr.:Metrol. Prop., Bd. 4, no. 3, s. 034004, 2016, https://doi.org/10.1088/2051-672X/4/3/034004.Search in Google Scholar

[30] E. K. Abbe, “Meßapparate für Physiker,” Zeitschrift für Instrumentenkunde, Bd. 10, ss. 446–448, 1890.Search in Google Scholar

[31] J. B. Bryan, “The Abbé principle revisited: an updated interpretation,” Precision Engineering, Bd. 1, no. 3, ss. 129–132, 1979, https://doi.org/10.1016/0141-6359(79)90037-0.Search in Google Scholar

[32] A. Meister, „Ein Beitrag zur Modellbildung und Steuerung der Nanopositionier- und Nanomessmaschine 200“, Dissertation, 2020.Search in Google Scholar

[33] DIN Deutsches Institut für Normung e. V, Laser und Laseranlagen – Prüfverfahren für Laserstrahlabmessungen, Divergenzwinkel und Beugungsmaßzahlen: Teil 1: Stigmatische und einfach astigmatische Strahlen.Search in Google Scholar

[34] R. Füßl, R. Grünwald, und P. Kreutzer, “Uncertainty consideration of the mirror-interferometer system in nanopositioning and nanomeasuring machines,” in Interferometry XIV: Applications, Bd. 7064, 2008, s. 70640L, https://doi.org/10.1117/12.797058.Search in Google Scholar

[35] BIPM, et al.., “Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology,” JCGM, Bd. 100, s. 2008, 2008, https://www.bipm.org/documents/20126/2071204/JCGMTTT5C_100TTT5C_2008TTT5C_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6.Search in Google Scholar

Received: 2024-10-22
Accepted: 2024-11-16
Published Online: 2025-01-03
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2024-0103/html?lang=en
Scroll to top button