Home Proof of concept and new developments on a Kibble extension
Article
Licensed
Unlicensed Requires Authentication

Proof of concept and new developments on a Kibble extension

  • Markus Pabst

    Dr.-Ing. Markus Pabst is a postdoc in the Process Measurement Technology Group at the Department of Mechanical Engineering at Technische Universität Ilmenau.

    ORCID logo EMAIL logo
    , Falko Hilbrunner

    Dr.-Ing. Falko Hilbrunner works in research and development in the field of mass comparators at Sartorius Lab Instruments GmbH & Co. KG.

    and Thomas Fröhlich

    Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich is the head of the Process Measurement Technology Group at the Department of Mechanical Engineering at Technische Universität Ilmenau.

    ORCID logo
Published/Copyright: August 7, 2024

Abstract

This article describes the proof of concept of a Kibble extension for vacuum mass comparators and its further development. A Kibble extension is a technical extension for vacuum mass comparators to connect to the new definition of the International System of Units (SI) of 2019. A commercially available high-vacuum prototype mass comparator from Sartorius serves as the basis. It is used to compare kilogram prototypes, such as the international prototype kilogram ( K ) , directly with other kilogram mass standards in order to realize a calibration chain. According to the new definition of the SI in 2019, the kilogram is defined by the Planck constant (h), therefore the Kibble extension is designed to enable high-vacuum mass comparators to be converted by technical modifications to allow mass to be realized according to the new definition. The aim is to realize kilogram prototypes and mass standards in the range from 1 mg to 1 kg according to the E1 standard of OIML R111-1 (2004). Initial measurement results with a prototype of the Kibble extension are presented and evaluated. Based on the experience gained, a lightweight magnet system developed with the use of simulation methods is presented. This is intended to contribute to the further development of the Kibble extension.

Zusammenfassung

Dieser Artikel beschreibt den Konzeptnachweis einer Kibble-Erweiterung für Vakuum-Massekomparatoren und ihre weitere Entwicklung. Eine Kibble-Erweiterung ist eine technische Erweiterung für Vakuum-Massekomparatoren zum Anschluss an die neue Definition des Internationalen Einheitensystems (SI) aus dem Jahr 2019. Als Grundlage dient ein kommerziell erhältlicher Hochvakuum-Prototyp-Massekomparator von Sartorius. Damit lassen sich Kilogrammprototypen, wie der internationale Prototyp des Kilogramms ( K ) , direkt mit anderen Kilogrammmassenormalen vergleichen, um eine Kalibrierkette zu realisieren. Nach der Neudefinition des SI im Jahr 2019 wird das Kilogramm durch die Planck-Konstante (h) definiert, daher ist die Kibble-Erweiterung so konzipiert, dass Hochvakuum-Massekomparatoren durch technische Modifikationen so umgerüstet werden können, dass die Masse nach der neuen Definition realisiert werden kann. Ziel ist es, Kilogrammprototypen und Massennormale im Bereich von 1 mg bis 1 kg nach dem E1-Standard der OIML R111-1 (2004) zu realisieren. Erste Messergebnisse mit einem Prototyp der Kibble-Erweiterung werden vorgestellt und ausgewertet. Basierend auf den gewonnenen Erfahrungen wird ein mit Hilfe von Simulationsmethoden entwickeltes Leichtbau-Magnetsystem vorgestellt. Damit soll ein Beitrag zur Weiterentwicklung der Kibble-Erweiterung geleistet werden.


Corresponding author: Markus Pabst, Department of Mechanical Engineering, Institute of Process Measurement and Sensor Technology, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 1, 98693 Ilmenau, Germany, E-mail:

About the authors

Markus Pabst

Dr.-Ing. Markus Pabst is a postdoc in the Process Measurement Technology Group at the Department of Mechanical Engineering at Technische Universität Ilmenau.

Falko Hilbrunner

Dr.-Ing. Falko Hilbrunner works in research and development in the field of mass comparators at Sartorius Lab Instruments GmbH & Co. KG.

Thomas Fröhlich

Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich is the head of the Process Measurement Technology Group at the Department of Mechanical Engineering at Technische Universität Ilmenau.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] M. Stock, R. S. Davis, E. de Mirandés, and M. J. T. Milton, “The revision of the SI—the result of three decades of progress in metrology,” Metrologia, vol. 56, no. 2, p. 022001, 2019. https://doi.org/10.1088/1681-7575/ab0013.Search in Google Scholar

[2] I. A. Robinson and S. Schlamminger, “The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass,” Metrologia, vol. 53, no. 5, pp. A46–A74, 2016. https://doi.org/10.1088/0026-1394/53/5/a46.Search in Google Scholar PubMed PubMed Central

[3] S. Schlamminger, et al.., “A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST,” Metrologia, vol. 52, no. 2, pp. L5–L8, 2015. https://doi.org/10.1088/0026-1394/52/2/l5.Search in Google Scholar

[4] R. L. Steiner, E. R. Williams, D. B. Newell, and R. Liu, “Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass,” Metrologia, vol. 42, no. 5, pp. 431–441, 2005. https://doi.org/10.1088/0026-1394/42/5/014.Search in Google Scholar

[5] I. A. Robinson, “Towards the redefinition of the kilogram: a measurement of the Planck constant using the NPL Mark II watt balance,” Metrologia, vol. 49, no. 1, pp. 113–156, 2011. https://doi.org/10.1088/0026-1394/49/1/016.Search in Google Scholar

[6] K. Fujii, et al.., “Realization of the kilogram by the XRCD method,” Metrologia, vol. 53, no. 5, pp. A19–A45, 2016. https://doi.org/10.1088/0026-1394/53/5/a19.Search in Google Scholar

[7] A. Picard, P. Barat, M. Borys, M. Firlus, and S. Mizushima, “State-of-the-art mass determination of 28Si spheres for the Avogadro project,” Metrologia, vol. 48, no. 2, pp. S112–S119, 2011. https://doi.org/10.1088/0026-1394/48/2/s14.Search in Google Scholar

[8] C. Rothleitner, et al.., “The Planck-Balance—using a fixed value of the Planck constant to calibrate E1/E2-weights,” Measurement Science and Technology, vol. 29, no. 7, p. 074003, 2018. https://doi.org/10.1088/1361-6501/aabc9e.Search in Google Scholar

[9] S. Vasilyan, et al.., “The progress in development of the Planck-Balance 2 (PB2): A tabletop Kibble balance for the mass calibration of E2 class weights,” tm - Technisches Messen, vol. 88, no. 12, pp. 731–756, 2021. https://doi.org/10.1515/teme-2021-0101.Search in Google Scholar

[10] A. Eichenberger, et al.., “First realisation of the kilogram with the METAS Kibble balance,” Metrologia, vol. 59, no. 2, p. 025008, 2022. https://doi.org/10.1088/1681-7575/ac566f.Search in Google Scholar

[11] H. Baumann, et al.., “Design of the new METAS watt balance experiment Mark II,” Metrologia, vol. 50, no. 3, pp. 235–242, 2013. https://doi.org/10.1088/0026-1394/50/3/235.Search in Google Scholar

[12] H. Fang, F. Bielsa, S. Li, A. Kiss, and M. Stock, “The BIPM Kibble balance for realizing the kilogram definition,” Metrologia, vol. 57, no. 4, p. 045009, 2020. https://doi.org/10.1088/1681-7575/ab860c.Search in Google Scholar

[13] D. Kim, et al.., “Realization of the kilogram using the KRISS Kibble balance,” Metrologia, vol. 57, no. 5, p. 055006, 2020. https://doi.org/10.1088/1681-7575/ab92e0.Search in Google Scholar

[14] F. Hilbrunner, I. Rahneberg, and T. Fröhlich, “Wattwaage mit Hebelübersetzung auf Basis eines kommerziellen EMK-Wägesystems,” tm - Technisches Messen, vol. 85, no. 11, pp. 658–679, 2017. https://doi.org/10.1515/teme-2017-0065.Search in Google Scholar

[15] National Institute of Standards and Technology, Kilogram: Introduction, NIST, 2018. Available at: https://www.nist.gov/si-redefinition/kilogram Accessed: May 31, 2023.Search in Google Scholar

[16] B. M. Wood and S. Solve, “A review of Josephson comparison results,” Metrologia, vol. 46, no. 6, pp. R13–R20, 2009. https://doi.org/10.1088/0026-1394/46/6/r01.Search in Google Scholar

[17] J. Frühauf and A. Sorger, “Parallelfedern als Führungsmechanik für Tastsysteme,” tm - Technisches Messen, vol. 86, no. 5, pp. 258–266, 2019. https://doi.org/10.1515/teme-2018-0075.Search in Google Scholar

[18] Physik Instrumente (PI) GmbH & Co. KG, PiezoMike Linear Actuator, PI, 2020. Available at: https://www.physikinstrumente.de/fileadmin/user_upload/physik_instrumente/files/datasheets/N-470-Datasheet.pdf Accessed: May 15, 2022.Search in Google Scholar

[19] C. Diethold, T. Fröhlich, F. Hilbrunner, and G. Jäger, “High precision optical position sensor for electromagnetic force compensated balances,” in Proceedings of the IMEKO, vol. 11, IMEKO, 2010.Search in Google Scholar

[20] S. Li, F. Bielsa, M. Stock, A. Kiss, and H. Fang, “Coil-current effect in Kibble balances: analysis, measurement, and optimization,” Metrologia, vol. 55, no. 1, pp. 75–83, 2017. https://doi.org/10.1088/1681-7575/aa9a8e.Search in Google Scholar

[21] B. Pesch, Bestimmung der Messunsicherheit nach GUM. Grundlagen der Metrologie. Books on Demand, Norderstedt, Bernd Pesch, 2003.Search in Google Scholar

[22] W. Geiger, Die Abweichungsfortpflanzung (“Fehlerfortpflanzungsgesetz”) Abgestufte Grenzwerte (“Statistische Tolerierung”), Wiesbaden, Vieweg+Teubner Verlag, 1986, pp. 146–162.10.1007/978-3-322-91748-5_8Search in Google Scholar

Received: 2024-03-20
Accepted: 2024-07-16
Published Online: 2024-08-07
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2024-0035/html
Scroll to top button