Estimators of tissue absorption parameters power-law prefactor and power-law exponent from medical ultrasonic images
-
Dinah Maria Brandner
and Bernhard G. Zagar
Abstract
Ultrasound is a mechanical wave propagating in tissue which is influenced in its propagation behavior by the locally prevailing acousto-mechanical conditions. By suitable processing of the back-scattered signals received by the ultrasound transducer, tissue parameters such as local bulk modulus, mass density, speed of sound, isotropic scattering coefficient, and also the locally acting tissue absorption can be inferred. A discipline that has received increasing attention in the medical ultrasonic imaging discipline and its scientific publications in recent years is quantitative ultrasound (QUS) which tries to estimate with great accuracy these local acting tissue parameters. In this paper we analyze different algorithms for estimation of high spatial resolution tissue absorption parameters. On the one hand, there is a simple absorption estimator based on the evaluation of the quotient of the power density spectra calculated for different depth regions (spectral-log-difference estimator), which, however, assumes a linearly with frequency increasing absorption, this is contrasted with an estimator which also allows to estimate a polynomial increase of the absorption with frequency (method-of-moments estimator). Since a closed-form solution cannot be given for this, a maximum-likelihood estimator for which there is always an estimate that can be computed numerically efficiently is developed. The results, tissue attenuation, are presented as a color-coded overlay on conventional B-mode ultrasound images showing only morphology.
Zusammenfassung
Ultraschall ist eine mechanische Welle, die sich im Gewebe ausbreitet und in ihrem Ausbreitungsverhalten von den lokal vorherrschenden akustisch-mechanischen Bedingungen beeinflusst wird. Durch geeignete Verarbeitung der vom Ultraschallwandler empfangenen, rückgestreuten Signale können Gewebeparameter wie lokaler Volumenmodul, Massendichte, Schallgeschwindigkeit, isotroper Streukoeffizient und auch die lokal wirkende Gewebeabsorption abgeleitet werden. Eine Disziplin, die in der medizinischen Ultraschallbildgebung und ihren wissenschaftlichen Veröffentlichungen in den letzten Jahren zunehmend Beachtung gefunden hat, ist der quantitative Ultraschall (QUS), der versucht diese lokal wirkenden Gewebeparameter mit großer Genauigkeit abzuschätzen. In diesem Beitrag analysieren wir verschiedene Algorithmen zur Schätzung räumlich hoch aufgelöster Gewebeabsorptionsparameter. Einerseits ist das ein einfacher Absorptionsschätzer, der auf der Auswertung des Quotienten der Leistungsdichtespektren, berechnet für verschieden tief gelegene Bereiche, basiert (spectral-log-difference estimator), der jedoch eine streng linear mit der Frequenz steigende Absorption voraussetzt, dem wird ein Schätzer gegenübergestellt, der auch eine polynomiale Zunahme der Absorption mit der Frequenz zu schätzen erlaubt (method-of-moments estimator). Da für diesen eine geschlossene Lösung nicht angegeben werden kann, wird ein maximum-likelihood estimator, für den es immer eine numerisch effizient berechenbare Schätzung gibt, entwickelt. Das Ergebnis, die Gewebedämpfung, wird als farbcodierte Überlagerung über konventionelle B-Mode-Ultraschallbilder, die nur die Morphologie zeigen, dargestellt.
Funding source: Österreichische Forschungsförderungsgesellschaft
Award Identifier / Grant number: 861570
About the authors

Dinah Maria Brandner received her BSc degree in Mechatronics in 2019 and her MSc degree also in Mechatronics in 2022, both from the Johannes Kepler University Linz, Austria. She is specializing in Measurement Technology and Signal Processing. Her master’s thesis with the title ‘Sound Field Simulation in Breast Cancer Research’ was partly finished during a research stay as a Visiting Student Researcher at the Ferrara Lab as part of the Radiology Department of Stanford University, Palo Alto, USA, where she was working on Quantitative Ultrasound (QUS) imaging using numerical simulations and experimental studies.

Bernhard G. Zagar received the diploma degree in EE from the Technical University Graz, Austria, in 1983, an MSc degree in computer science from the University of California at Davis, Davis, CA, USA, in 1988, and the Ph.D. degree in electrical engineering from Technical University Graz, in 1988. There he joined the Department of Electrical Engineering, where he was an associate professor in Instrumentation and Measurement until 1998. From 1986 to 1987 he was a research assistant and in 1994 a research associate with the Department of Electrical Engineering and Computer Science, University of California at Davis. He was a full professor with the Albert-Ludwigs-University, Freiburg, Germany, Department of Microsystem Engineering until 2000. From 2001 until his retirement in 2022, he was a full professor and head of the Institute for Measurement Technology, Johannes Kepler University Linz, Linz, Austria specializing in instrumentation and measurement, digital signal and image processing, sensors, laser-optical systems and magnetic tomography. In 2022 he joined the Montanuniversitaet Leoben, Austria as a full professor for electrical engineering.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work has been supported by the LCM K2-Center within the framework of the Austrian COMET-K2 Programme and the Austrian Research Promotion Agency under grant 861570.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] T. Shiina, K. R. Nightingale, M. L. Palmeri, et al.., “Guidlines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology,” Ultrasound Med. Biol., vol. 41, no. 5, pp. 1126–1147, 2015. https://doi.org/10.1016/j.ultrasmedbio.2015.03.009.Search in Google Scholar PubMed
[2] S. Johannesmann, L. Claes, and B. Henning, “Lamb wave based approach to the determination of elastic and viscoelastic material parameters,” TM – Tech. Mess., vol. 88, no. S1, pp. S28–S33, 2021. https://doi.org/10.1515/teme-2021-0070.Search in Google Scholar
[3] G. Ghoshal and M. L. Oelze, “Improved scatterer property estimates from ultrasound backscatter using gate-edge correction and a Pseudo–Welch technique,” IEEE Trans. UFFC, vol. 57, no. 12, pp. 2828–2832, 2010. https://doi.org/10.1109/tuffc.2010.1756.Search in Google Scholar PubMed PubMed Central
[4] M. L. Oelze and J. Mamou, “Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control, vol. 63, no. 2, pp. 336–351, 2016. https://doi.org/10.1109/tuffc.2015.2513958.Search in Google Scholar PubMed PubMed Central
[5] K. Nam, J. A. Zagzebski, and T. J. Hall, “Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter,” Ultrason. Imag., vol. 35, no. 2, pp. 146–161, 2013. https://doi.org/10.1177/0161734613480281.Search in Google Scholar PubMed PubMed Central
[6] L. Claes, L. M. Hülskämper, E. Baumhögger, et al.., “Acoustic absorption measurement for the determination of the volume viscosity of pure fluids,” TM - Tech. Mess., vol. 86, no. S1, pp. S2–S6, 2019. https://doi.org/10.1515/teme-2019-0038.Search in Google Scholar
[7] L. Claes, S. Johannesmann, E. Baumhögger, and B. Henning, “Quantification of frequency-dependent absorption phenomena,” in Proceedings Acoustical Society of America, 2019 [Online]. Available at: https://asa.scitation.org/toc/pma/38/1.10.1121/2.0001043Search in Google Scholar
[8] D. M. Brandner, X. Cai, J. Foiret, K. W. Ferrara, and B. G. Zagar, “Estimation of tissue attenuation from ultrasonic B-Mode images spectral-log-difference and method-of-moments algorithms compared,” Sensors, vol. 21, no. 7, p. 2548, 2021. https://doi.org/10.3390/s21072548.Search in Google Scholar PubMed PubMed Central
[9] R. Urick, Principles of Underwater Sound, 3rd ed., New York, McGraw-Hill, 1983.Search in Google Scholar
[10] D. Brandner, “Sound field simulation in breast cancer research,” Master’s thesis, Johannes Kepler University Linz, Austria, 2020. Available at: https://epub.jku.at/obvulihs/content/titleinfo/5341564.Search in Google Scholar
[11] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, 2nd ed., Elsevier, 2014. Available at: https://www.sciencedirect.com/book/9780123964878/diagnostic-ultrasound-imaging-inside-out.Search in Google Scholar
[12] H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Med., vol. 34, pp. 2007–2016, 2015. https://doi.org/10.7863/ultra.14.07039.Search in Google Scholar PubMed PubMed Central
[13] K. J. Opielińskia, P. Pruchnickia, P. Szymanowskibc, et al.., “Multimodal ultrasound computer-assisted tomography: an approach to the recognition of breast lesions,” Comput. Med. Imaging Graph, vol. 65, pp. 102–114, 2018. https://doi.org/10.1016/j.compmedimag.2017.06.009.Search in Google Scholar PubMed
[14] R. Lerch, G. Sessler, and D. Wolf, Technische Akustik — Grundlagen und Anwendungen, Heidelberg, Berlin, Springer, 2009.10.1007/978-3-540-49833-9Search in Google Scholar
[15] A. L. Coila and R. Lavarello, “Regularized spectral-log-difference technique for ultrasonic attenuation imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control, vol. 65, no. 3, pp. 378–389, 2018. https://doi.org/10.1109/tuffc.2017.2719962.Search in Google Scholar PubMed
[16] A. D. Pawlicki and W. D. O’BrianJr., “Method for estimating total attenuation from a spatial map of attenuation slope for quantitative ultrasound imaging,” Ultrason. Imag., vol. 35, no. 2, pp. 162–172, 2013. https://doi.org/10.1177/0161734613478695.Search in Google Scholar PubMed PubMed Central
[17] R. Kuc and M. Schwartz, “Estimating the acoustic attenuation coefficient slope for liver from reflected ultrasound signals,” IEEE Trans. Son. Ultrason., vol. SU26, no. 5, pp. 353–362, 1979. https://doi.org/10.1109/t-su.1979.31116.Search in Google Scholar
[18] S. M. Kay, Fundamentals of Statistical Signal Processing — Estimation Theory, Englewood Cliffs, Prentice Hall, 1993.Search in Google Scholar
[19] D. M. Brandner and B. G. Zagar, “Ultrasonic attenuation imaging – comparison of algorithms,” in 2021 International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (ICECCME), 2021, pp. 1–6.10.1109/ICECCME52200.2021.9591147Search in Google Scholar
[20] W. A. Gardner, Introduction to Random Processes with Applications to Signals and Systems, 2nd ed., New York, McGraw-Hill, 1990.Search in Google Scholar
[21] D. M. Brandner and B. G. Zagar, “Maximum-likelihood estimation of power-law prefactor and exponent from ultrasonic images,” in Proc. 8th International Conference on Sensors and Electronic Instrumentation Advances (SEIA’ 2022), 2022, pp. 232–236.Search in Google Scholar
[22] B. E. Treeby, B. T. Cox, and J. Jaros, “k-Wave a MATLAB toolbox for the time domain simulation of acoustic wave fields,” User Manual, Ver. 1.1, 2022. Available at: http://www.k-wave.org/manual/k-wave_user_manual.Search in Google Scholar
[23] B. Treeby, k-Wave— “A MATLAB toolbox for the time domain simulation of acoustic wave fields,” User Manual Version 1.1, 2016. Available at: http://www.k-wave.org/.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Experimental investigation of liquid metal droplet flow affected by a time-dependent magnetic field
- Synthetic data generation of vibration signals at different speed and load conditions of transmissions utilizing generative adversarial networks
- Quantifizierung der Klassifikationsleistung von Oberflächeninspektionssystemen in der Flachstahlproduktion
- A reinforced corrosion assessment method based on a new magnetic sensor and improved adaptive filtering
- Estimators of tissue absorption parameters power-law prefactor and power-law exponent from medical ultrasonic images
- Linearity test of triangular waveform generators
Articles in the same Issue
- Frontmatter
- Research Articles
- Experimental investigation of liquid metal droplet flow affected by a time-dependent magnetic field
- Synthetic data generation of vibration signals at different speed and load conditions of transmissions utilizing generative adversarial networks
- Quantifizierung der Klassifikationsleistung von Oberflächeninspektionssystemen in der Flachstahlproduktion
- A reinforced corrosion assessment method based on a new magnetic sensor and improved adaptive filtering
- Estimators of tissue absorption parameters power-law prefactor and power-law exponent from medical ultrasonic images
- Linearity test of triangular waveform generators