Home Modular Direct Laser Writing setup for high precision nanostructuring
Article
Licensed
Unlicensed Requires Authentication

Modular Direct Laser Writing setup for high precision nanostructuring

  • Annika-Verena Häcker

    Annika-Verena Häcker obtained the B. Sc. in Mechatronics in 2016 and the M. Sc. in Mechatronics in 2019 at the Technische Universität Ilmenau. Since 2020 she is a member of the DFG Research Training Group “Nano-Fab” (2182) (Tip- and laser-based 3D nanofabrication in extended, macroscopic workspaces). Her research interest is in the development of a 2-photon based direct laser writing setup for micro- and nanofabrication.

    ORCID logo EMAIL logo
    , Jaqueline Stauffenberg

    Jaqueline Stauffenberg studied at Technische Universität Ilmenau from 2012–2017 in the Bachelor’s programme Technical Physics. In 2019, she completed her Master’s degree in Micro- and Nanotechnologies. From 2019–2020, she worked as a research assistant at the Institute for Process Measurement and Sensor Technology. Since 2020, she has been working in the Research Training Group (RTG) on Tip- and Laser-based 3D-Nanofabrication in extended macroscopic working areas (NanoFab). Her research focus lies on the combination of nanometrology and tip-based nanofabrication on a planar nanopositioning machine.

    , Johannes Leineweber

    Johannes Leineweber obtained the B. Sc. in Automotive Engineering in 2015 and the M. Sc. in Mechanical Engineering in 2019 at the Technische Universität Ilmenau. Since 2020 he is a member of the DFG Research Training Group “Nano-Fab” (2182) (Tip- and laser-based 3D nanofabrication in extended, macroscopic workspaces). His research field is the development of a nanomeasuring, nanopositioning and nanofabrication machine with increased degrees of freedom.

    , Ingo Ortlepp

    Dr.-Ing. I. Ortlepp works at the Institute of Process Measurement and Sensor Technology at the Technische Universität Ilmenau. His research topics include nanopositioning and nanomeasuring technology, optical interferometry and metrology.

    ORCID logo
    , Maximilian Hoffmann

    Maximilian Hoffmann obtained his B. Sc. in Mechanical Engineering in 2019 at Technische Universität Ilmenau and the M. Sc. also in Mechanical Engineering in 2023 at the Technische Universität Ilmenau. Since 2023 he is a member of the DFG Research Training Group "Nano-Fab" (2183) (Tip- and laser-based 3D nanofabrication in extended, macroscopic workspaces).

    and Eberhard Manske

    Prof. Dr.-Ing. habil. Eberhard Manske is head of department at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: laserinterferometric measurement and sensor technology, nanopositioning and nanomeasuring.

Published/Copyright: August 14, 2023

Abstract

The increasing demand for micro- and nanofabrication and in parallel the increasing requirements on feature size and resolution is leading to an enormous growth in the field of multi-photon three-dimensional fabrication. To enable new and diverse investigations in this field and to enable high precision for nanofabrication on large areas, a high precision positioning system is combined with an ultra-short pulse laser system. The aim is a modular setup with constant adherence to the Abbe-comparator principle in order to achieve systematic improvements in the area of Direct Laser Writing. For a high-quality identification of the microstructures a measurement tool based on atomic force microscopy is used. To enable the fabrication of continuous micro- and nanostructures on large area, an extremely high positioning precision is used, where no further stitching methods are necessary. Therefore as base of the Direct Laser Writing system the nanopositioning and nanomeasuring machine (NMM-1) is used, which was developed at Technische Universität Ilmenau together with SIOS Meßtechnik GmbH, with a positioning volume of 25 mm × 25 mm × 5 mm and a positioning resolution in the sub-nanometer range. First investigations already confirmed that microfabrication with a Femtosecond Laser and the NMM-1 could be realized and showed the possibility of further developments in the field of Direct Laser Writing. Now the modular structure as a research platform is designed in such a way that the various extensions and measurement setups for large-scale investigations can always be implemented in a metrologically traceable manner. The presented work shows the development of a modular functional setup of an exposure system and NMM-1, which enables micro- and nanofabrication and an improvement in the structure size over large areas.

Zusammenfassung

Die steigende Nachfrage nach Mikro- und Nanofabrikation und die gleichzeitig steigenden Anforderungen an die Strukturgröße und Auflösung führen zu einem enormen Wachstum im Bereich der dreidimensionalen Multi-Photonen-Fabrikation. Um neue und vielfältige Untersuchungen auf diesem Gebiet zu ermöglichen und eine hohe Präzision für die Nanofabrikation auf großen Flächen zu erreichen, wurde ein hochpräzises Positioniersystem mit einem Ultrakurzpuls-Lasersystem kombiniert. Ziel ist ein moduler Aufbau unter konsequenter Einhaltung des Abbe-Komparator-Prinzips, um systematische Verbesserungen im Bereich des direkten Laserschreibens zu erreichen. Für eine qualitativ hochwertige Erfassung der Mikrostrukturen werden Messwerkzeuge auf der Basis der Rasterkraftmikroskopie eingesetzt. Um kontinuierliche Mikro- und Nanostrukturen auf großer Fläche zu ermöglichen, wird eine extrem hohe Positioniergenauigkeit verwendet, bei der keine weiteren Stitching-Methoden notwendig sind. Dafür wurde als Basis des Laserdirektschreibsystems, die an der Technischen Universität Ilmenau gemeinsam mit der SIOS Meßtechnik GmbH entwickelte Nanopositionier- und Nanomessmaschine (NMM-1) mit einem Positioniervolumen von 25 mm × 25 mm × 5 mm und einer Positionierauflösung im Sub-Nanometerbereich, genutzt. Erste Untersuchungen bestätigten bereits, dass die Mikrofabrikation mit einem Femtosekundenlaser und dem NMM-1 realisierbar ist und eröffneten die Möglichkeit auf weitere Entwicklungen im Bereich des direkten Laserschreibens. Der modulare Aufbau als Forschungsplattform ist nun so konzipiert, dass die verschiedenen Erweiterungen und Messaufbauten für groß angelegte Untersuchungen stets metrologisch rückführbar realisiert werden können. Der Schwerpunkt der vorgestellten Arbeit zeigt die Entwicklung einer multimodularen Funktionseinheit aus Beleuchtungssystem und NMM-1, die eine Mikrofabrikation und eine deutliche Verbesserung der Strukturgröße über große Flächen ermöglicht.


Corresponding author: Annika-Verena Häcker, Institute of Process Measurement and Sensor Technology, Production and Precision, Measurement Technology Group, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 1, 98693 Ilmenau, Thuringia, Germany, E-mail:

Award Identifier / Grant number: GRK 2182

About the authors

Annika-Verena Häcker

Annika-Verena Häcker obtained the B. Sc. in Mechatronics in 2016 and the M. Sc. in Mechatronics in 2019 at the Technische Universität Ilmenau. Since 2020 she is a member of the DFG Research Training Group “Nano-Fab” (2182) (Tip- and laser-based 3D nanofabrication in extended, macroscopic workspaces). Her research interest is in the development of a 2-photon based direct laser writing setup for micro- and nanofabrication.

Jaqueline Stauffenberg

Jaqueline Stauffenberg studied at Technische Universität Ilmenau from 2012–2017 in the Bachelor’s programme Technical Physics. In 2019, she completed her Master’s degree in Micro- and Nanotechnologies. From 2019–2020, she worked as a research assistant at the Institute for Process Measurement and Sensor Technology. Since 2020, she has been working in the Research Training Group (RTG) on Tip- and Laser-based 3D-Nanofabrication in extended macroscopic working areas (NanoFab). Her research focus lies on the combination of nanometrology and tip-based nanofabrication on a planar nanopositioning machine.

Johannes Leineweber

Johannes Leineweber obtained the B. Sc. in Automotive Engineering in 2015 and the M. Sc. in Mechanical Engineering in 2019 at the Technische Universität Ilmenau. Since 2020 he is a member of the DFG Research Training Group “Nano-Fab” (2182) (Tip- and laser-based 3D nanofabrication in extended, macroscopic workspaces). His research field is the development of a nanomeasuring, nanopositioning and nanofabrication machine with increased degrees of freedom.

Ingo Ortlepp

Dr.-Ing. I. Ortlepp works at the Institute of Process Measurement and Sensor Technology at the Technische Universität Ilmenau. His research topics include nanopositioning and nanomeasuring technology, optical interferometry and metrology.

Maximilian Hoffmann

Maximilian Hoffmann obtained his B. Sc. in Mechanical Engineering in 2019 at Technische Universität Ilmenau and the M. Sc. also in Mechanical Engineering in 2023 at the Technische Universität Ilmenau. Since 2023 he is a member of the DFG Research Training Group "Nano-Fab" (2183) (Tip- and laser-based 3D nanofabrication in extended, macroscopic workspaces).

Eberhard Manske

Prof. Dr.-Ing. habil. Eberhard Manske is head of department at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: laserinterferometric measurement and sensor technology, nanopositioning and nanomeasuring.

Acknowledgment

The authors gratefully acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) within the Research Training Group “Tip- and laser-based 3D-Nanofabrication in extended macroscopic working areas (NanoFab)” (GRK 2182) at the Technische Universität Ilmenau, Germany.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] F. Jin, J. Liu, Y.-Y. Zhao, X.-Z. Dong, M.-L. Zheng, and X.-M. Duan, “λ/30 inorganic features achieved by multi-photon 3D lithography,” Nat. Commun., vol. 13, no. 1, p. 1357, 2022, https://doi.org/10.1038/s41467-022-29036-7.Search in Google Scholar PubMed PubMed Central

[2] X.-J. Wang, H.-H. Fang, F.-W. Sun, and H.-B. Sun, “Laser writing of color centers,” Laser Photon. Rev., vol. 16, no. 1, p. 2100029, 2022, https://doi.org/10.1002/lpor.202100029.Search in Google Scholar

[3] E. Sharma, R. Rathi, J. Misharwal, et al.., “Evolution in Lithography Techniques: microlithography to Nanolithography,” Nanomaterials, vol. 12, no. 16, p. 2754, 2022, https://doi.org/10.3390/nano12162754.Search in Google Scholar PubMed PubMed Central

[4] H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett., vol. 74, pp. 786–788, 1999, https://doi.org/10.1063/1.123367.Search in Google Scholar

[5] T. Hausotte, Nanopositionier- und Nanomessmaschinen - Geräte für hochpräzise makro- bis nanoskalige Oberflächen- und Koordinatenmessungen. Habilitation, 2010, p. S. 272.Search in Google Scholar

[6] D. Zhu, L. Xu, C. Ding, et al.., “Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography,” Adv. Photonics, vol. 4, no. 6, p. 066002, 2022, https://doi.org/10.1117/1.ap.4.6.066002.Search in Google Scholar

[7] M. Cui, W. Yang, Y. Guan, and Z. Zhang, “Fabrication of high precision grating patterns with a compliant nanomanipulator-based femtosecond laser direct writing system,” Precis. Eng., vol. 78, pp. 60–69, 2022, https://doi.org/10.1016/j.precisioneng.2022.07.007.Search in Google Scholar

[8] B. W. Pearre, C. Michas, J.-M. Tsang, T. J. Gardner, and T. M. Otchy, “Fast micron-scale 3D printing with a resonant-scanning two-photon microscope,” Addit. Manuf., vol. 30, p. 100887, 2019, https://doi.org/10.1016/j.addma.2019.100887.Search in Google Scholar PubMed PubMed Central

[9] T. Baghdasaryan, K. Vanmol, H. Thienpont, F. Berghmans, T. Geernaert, and J. Van Erps, “Design and two-photon direct laser writing of low-loss waveguides, tapers and S-bends,” J. Phys.: Photonics, vol. 3, no. 4, p. 045001, 2021, https://doi.org/10.1088/2515-7647/ac1b7d.Search in Google Scholar

[10] M. He, Z. Zhang, C. Cao, et al.., “Single-color peripheral photoinhibition lithography of nanophotonic structures,” PhotoniX, vol. 3, no. 1, p. 25, 2022, https://doi.org/10.1186/s43074-022-00072-2.Search in Google Scholar

[11] M. Charconnet, C. Kuttner, J. Plou, et al.., “Mechanically tunable lattice-plasmon resonances by templated self-assembled superlattices for multi-wavelength surface-enhanced Raman spectroscopy,” Small Methods, vol. 5, no. 10, p. 2100453, 2021, https://doi.org/10.1002/smtd.202100453.Search in Google Scholar PubMed

[12] S. Ni, J. Leemann, H. Wolf, and L. Isa, “Insights into mechanisms of capillary assembly,” Faraday Discuss., vol. 181, pp. 225–242, 2015, https://doi.org/10.1039/C4FD00250D.Search in Google Scholar

[13] L. Mohr-Weidenfeller, M. Hofmann, O. Birli, A.-V. Häcker, C. Reinhardt, and E. Manske, “Direktes Laserschreiben auf Basis von Zwei-Photonen-Absorption mit metrologisch rückführbarer Positionierung,” TM - Tech. Mess., vol. 88, no. s1, pp. s22–s27, 2021, https://doi.org/10.1515/teme-2021-0052.Search in Google Scholar

[14] A.-V. Häcker and E. Manske, “Erweiterungen zum Aufbau eines zwei Photonen basierten direkten Laserschreibers zur großflächigen, hochpäzisen Nanostrukturierung,” TM - Tech. Mess., vol. 89, no. s1, pp. 55–60, 2022, https://doi.org/10.1515/teme-2022-0058.Search in Google Scholar

[15] J. Stauffenberg, I. Ortlepp, U. Blumröder, et al.., “Investigations on the positioning accuracy of the nano fabrication machine (NFM-100),” TM - Tech. Mess., vol. 88, no. 9, pp. 581–589, 2021, https://doi.org/10.1515/teme-2021-0079.Search in Google Scholar

[16] E. Manske, R. Füßl, R. Mastylo, N. Vorbringer-Dorozhovets, O. Birli, and G. Jäger, “Ongoing trends in precision metrology, particularly in nanopositioning and nanomeasuring technology,” TM - Tech. Mess., vol. 82, nos. 7–8, pp. 359–366, 2015, https://doi.org/10.1515/teme-2015-0011.Search in Google Scholar

[17] E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol., vol. 23, p. 074001, 2012, https://doi.org/10.1088/0957-0233/23/7/074001.Search in Google Scholar

[18] E. Manske, G. Jäger, and T. Hausotte, “A multi-sensor approach for complex and large-area applications in micro and nanometrology,” J. Meas. Sci., vol. 7, pp. 44–50, 2016, https://doi.org/10.1080/19315775.2012.11721597.Search in Google Scholar

[19] A.-V. Häcker, L. Mohr-Weidenfeller, C. F. L. Stolzenberg, C. Reinhardt, and E. Manske, “Modifications to a high-precision direct laser writing setup to improve its laser microfabrication,” in Laser-Based Micro- and Nanoprocessing XVI, R. Kling and A. Watanabe, Eds., San Francisco, United States, SPIE, 2022, p. S. 48.10.1117/12.2609417Search in Google Scholar

[20] R. Mastylo, “Optische und Taktile Nanosensoren auf der Grundlage des Fokusverfahrens für die Anwendung in Nanopositionier- und Nanomessmaschinen,” PhD thesis, Technische Universität Ilmenau, 2012.Search in Google Scholar

[21] J. Stauffenberg, I. Ortlepp, J. Belkner, et al.., “Measurement precision of a planar nanopositioning machine with a range of motion of Ø100 mm,” Appl. Sci., vol. 12, no. 15, p. 7843, 2022, https://doi.org/10.3390/app12157843.Search in Google Scholar

[22] L. Weidenfeller, J. Kirchner, M. Hofmann, et al.., “Laser-microfabrication with accurate positioning and metrological traceability,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XII, Band 10930, International Society for Optics and Photonics, 2019, p. S. 109300L.10.1117/12.2508248Search in Google Scholar

Received: 2023-02-25
Accepted: 2023-07-10
Published Online: 2023-08-14
Published in Print: 2023-11-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2023-0025/html
Scroll to top button