Home Heat flow thermography for non-destructive testing of composites and natural materials – An application-oriented overview
Article
Licensed
Unlicensed Requires Authentication

Heat flow thermography for non-destructive testing of composites and natural materials – An application-oriented overview

  • Jochen Aderhold

    Jochen Aderhold studied physics at the Leibniz-Universität Hannover and obtained his PhD in the Department of Electrical Engineering at the Laboratory for Information Technology, also at the Leibniz-Universität. In 2003, he moved to the WKI, where he works on image processing in the infrared spectral range and on hyperspectral imaging.

    EMAIL logo
    , Peter Meinlschmidt

    Peter Meinlschmidt earned his diploma in physics at the Carl-von-Ossietzky-Universität in Oldenburg and worked there for five years as a research assistant. For over twenty years he has been supervising research projects in the field of optical metrology and thermography at the WKI.

    and Friedrich Schlüter

    Friedrich Schlüter studied physics at the Carl-von-Ossietzky-Universität in Oldenburg and has been working at the WKI since 2001. His work focuses on non-destructive testing, in particular by means of thermography, as well as on 3D measuring technology and deformation measurement technology.

Published/Copyright: March 4, 2020

Abstract

Heat flow thermography is a non-destructive testing method that offers a number of advantages. These include the relatively quick inspection of larger areas, the ease of interpretation of the results and the absence of potential hazards such as ionizing radiation. The disadvantage is, depending on the application, its limited penetration depth. The present article explains the physical principles of the process and provides examples of concrete realizations, mainly in the field of composites and natural materials. One focus is on the evaluation of the acquired thermal images and image series, since they often contain more information than is visible at first glance, and a suitable post-processing of the data is the key to a successful application.

Zusammenfassung

Die Wärmefluss-Thermographie ist ein zerstörungsfreies Prüfverfahren, das eine Reihe von Vorteilen bietet. Dazu gehören die relativ schnelle Inspektion größerer Bereiche, die einfache Interpretation der Ergebnisse und das Fehlen potenzieller Gefahren wie ionisierender Strahlung. Nachteilig ist je nach Anwendung die begrenzte Eindringtiefe. Der vorliegende Artikel erklärt die physikalischen Prinzipien des Prozesses und liefert Beispiele für konkrete Umsetzungen, hauptsächlich im Bereich von Verbundwerkstoffen und Naturmaterialien. Ein Schwerpunkt liegt auf der Auswertung der aufgenommenen Wärmebilder und Bildserien, da diese oft mehr Informationen enthalten, als auf den ersten Blick erkennbar ist. Eine geeignete Nachbearbeitung der Daten ist der Schlüssel für eine erfolgreiche Anwendung.

About the authors

Jochen Aderhold

Jochen Aderhold studied physics at the Leibniz-Universität Hannover and obtained his PhD in the Department of Electrical Engineering at the Laboratory for Information Technology, also at the Leibniz-Universität. In 2003, he moved to the WKI, where he works on image processing in the infrared spectral range and on hyperspectral imaging.

Peter Meinlschmidt

Peter Meinlschmidt earned his diploma in physics at the Carl-von-Ossietzky-Universität in Oldenburg and worked there for five years as a research assistant. For over twenty years he has been supervising research projects in the field of optical metrology and thermography at the WKI.

Friedrich Schlüter

Friedrich Schlüter studied physics at the Carl-von-Ossietzky-Universität in Oldenburg and has been working at the WKI since 2001. His work focuses on non-destructive testing, in particular by means of thermography, as well as on 3D measuring technology and deformation measurement technology.

References

1. DIN 54192. Zerstörungsfreie Prüfung – Aktive Thermografie.Search in Google Scholar

2. International Standards Organisation (ISO). TC 135/SC 8: BS ISO 10880:2017 Non-Destructive Testing-Infrared Thermographic Testing-General Principles; International Standards Organisation (ISO): Geneva, Switzerland, 2017.Search in Google Scholar

3. Maldague, X. P. (2012): Nondestructive evaluation of materials by infrared thermography, Springer Science & Business Media.Search in Google Scholar

4. Rusli, N. S.; Abidin, I. Z.; Aziz, S. A. (2016): A review on eddy current thermography technique for non-destructive testing application. Jurnal Teknologi 78(11): 127–132. DOI: 10.11113/.v78.7656.Search in Google Scholar

5. Vavilov, V. P.; Burleigh, D. D. (2015): Review of pulsed thermal NDT: Physical principles, theory and data processing. NDT and E International 73: 28–52. DOI: 10.1016/j.ndteint.2015.03.003.Search in Google Scholar

6. Vrana, J.; Goldammer, M. (2018): Induction and conduction thermography: From the basics to automated testing taking into account low and high residual stresses. Materialpruefung/Materials Testing 60(5): 458–466. DOI: 10.3139/120.111173.Search in Google Scholar

7. Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. (2018): Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors (Switzerland) 18(2). DOI: 10.3390/s18020609.Search in Google Scholar PubMed PubMed Central

8. Kurpiński, M.; Fidali, M. (2017): Non-destructive testing of adhesive bonded structures. Diagnostyka 18(2): 95–103.Search in Google Scholar

9. Milovanović, B.; Pečur, I. B. (2016): Review of active IR thermography for detection and characterization of defects in reinforced concrete. Journal of Imaging 2(2). DOI: 10.3390/jimaging2020011.Search in Google Scholar

10. Sirca, G. F.; Adeli, H. (2018): Infrared thermography for detecting defects in concrete structures. Journal of Civil Engineering and Management 24(7): 508–515. DOI: 10.3846/jcem.2018.6186.Search in Google Scholar

11. Planck, M. (1900): Über eine Verbesserung der Wien’schen Spektralgleichung. In: Verhandlungen der Deutschen Physikalischen Gesellschaft 2, S. 202.Search in Google Scholar

12. Vollmer, M.; Möllmann, K.-P. (2017): Infrared thermal imaging: fundamentals, research and applications, John Wiley & Sons.10.1002/9783527693306Search in Google Scholar

13. Kirchhoff, G. (1860): Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Poggendorfs Annalen der Physik und Chemie 109, S. 275.10.1002/andp.18601850205Search in Google Scholar

14. Meinlschmidt, Peter; Märgner, Volker (2009): Advantages and Disadvantages of Various Techniques for the Visualization of Watermarks. Restaurator 30(3): 222–243.10.1515/rest.014Search in Google Scholar

15. Meinlschmidt, P.; Märgner, V. (2003): Thermographic techniques and adapted algorithms for automatic detection of foreign bodies in food. Proc. SPIE – International Society of Optical Engineers 5073: 168.10.1117/12.488701Search in Google Scholar

16. Ginesu, G.; Giusto, D. D., et al. (2004): Detection of foreign bodies in food by thermal image processing. IEEE Transactions on Industrial Electronics 51(2): 480–490.10.1109/TIE.2004.825286Search in Google Scholar

17. Meinlschmidt, P.; Aderhold, J. (2006): Thermographic inspection of rotor blades. Proceedings of the 9th European Conference on NDT.Search in Google Scholar

18. Meinlschmidt, P. (2005): Thermographic detection of defects in wood and wood-based materials. 14th International Symposium of Nondestructive Testing of Wood, Hannover, Germany.Search in Google Scholar

19. Pahlberg, T.; Thurley, M., et al. (2018): Crack detection in oak flooring lamellae using ultrasound-excited thermography. Infrared Physics & Technology 88: 57–69.10.1016/j.infrared.2017.11.007Search in Google Scholar

20. Meinlschmidt, P.; Märgner, V., et al. (2011): Qualitätssicherung bei der Hochfrequenzverklebung von Brettschichtholz. Gemeinsame Forschung in der Klebtechnik: 11. Kolloquium. Frankfurt/M., Dechema.Search in Google Scholar

21. Zuiderveld, K. (1994): Contrast limited adaptive histogram equalization. In: Graphics gems IV, Academic Press Professional, Inc.10.1016/B978-0-12-336156-1.50061-6Search in Google Scholar

22. Reza, A. (2004): Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. Journal of VLSI signal processing systems for signal, image and video technology 38(1): 35–44.10.1023/B:VLSI.0000028532.53893.82Search in Google Scholar

23. Bergman, T. L.; Incropera, F. P., et al. (2011): Fundamentals of heat and mass transfer, John Wiley & Sons.Search in Google Scholar

24. Almond, D. P.; Patel, P., et al. (1996): Photothermal science and techniques, Springer Science & Business Media.Search in Google Scholar

25. Maldague, X.; Marinetti, S. (1996): Pulse phase infrared thermography. Journal of applied physics 79(5): 2694–2698.10.1063/1.362662Search in Google Scholar

26. Wu, D.; Busse, G. (1998): Lock-in thermography for nondestructive evaluation of materials. Revue générale de thermique 37(8): 693–703.10.1016/S0035-3159(98)80047-0Search in Google Scholar

27. Breitenstein, O.; Langenkamp, M. (2003): Lock-in thermography. In: Advanced Microelectronics, Springer, Berlin.10.1007/978-3-662-08396-3Search in Google Scholar

28. Marinetti, S.; Grinzato, E.; Bison, P. G.; Bozzi, E.; Chimenti, M.; Pieri, G.; Salvetti, O. (2004): Statistical analysis of IR thermographic sequences by PCA. Infrared Physics & Technology 46: 85–91.10.1016/j.infrared.2004.03.012Search in Google Scholar

29. Bro, R. (1997): PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 38(2): 149–171.10.1016/S0169-7439(97)00032-4Search in Google Scholar

30. Otsu, N. 1979: A Threshold Selection Method from Grey-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9: 1.10.1109/TSMC.1979.4310076Search in Google Scholar

31. Jähne, B. (2013): Digitale Bildverarbeitung, Springer-Verlag.10.1007/978-3-642-04952-1Search in Google Scholar

32. Zamperoni, P. (1988): Feature extraction by rank-order filtering for image segmentation. International Journal of Pattern Recognition and Artificial Intelligence 2: 301–319.10.1142/S0218001488000194Search in Google Scholar

Received: 2019-06-28
Accepted: 2020-02-20
Published Online: 2020-03-04
Published in Print: 2020-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2019-0096/html
Scroll to top button