Home Classification of journal bearing friction states based on acoustic emission signals
Article
Licensed
Unlicensed Requires Authentication

Classification of journal bearing friction states based on acoustic emission signals

  • Noushin Mokhtari

    M. Sc. Noushin Mokhtari studied mechanical engineering at the Leibniz University of Hanover and aerospace engineering at the Technical University of Braunschweig. Since 2015 she works as a research assistant at the Chair Electronic Measurement and Diagnostic Technology of the Technical University of Berlin. Her areas of expertise include the model and data based diagnosis and the lifetime prediction of hydrodynamic journal bearings, as well as signal processing, pattern recognition and classification of acoustic emission signals.

    EMAIL logo
    and Clemens Gühmann

    Prof. Dr.-Ing. Clemens Gühmann studied electrical engineering and has been head of the Chair Electronic Measurement and Diagnostic Technology since 2003 at the Technische Universität Berlin. His areas of expertise include the measurement technology and data processing as well as the diagnosis, modeling, simulation and automatic control of mechatronic systems.

Published/Copyright: May 10, 2018

Abstract

For diagnosis and predictive maintenance of mechatronic systems, monitoring of bearings is essential. An important building block for this is the determination of the bearing friction condition. This paper deals with the possibility of monitoring different journal bearing friction states, such as mixed and fluid friction, and examines a new approach to distinguish between different friction intensities under several speed and load combinations based on feature extraction and feature selection methods applied on acoustic emission (AE) signals. The aim of this work is to identify separation effective features of AE signals to subsequently classify the journal bearing friction states. Furthermore, the acquired features give information about the mixed friction intensity, which is significant for remaining useful lifetime (RUL) prediction. Time domain features as well as features in the frequency domain have been investigated in this work. To increase the sensitivity of the extracted features the AE signals were transformed to the frequency-time-domain using continuous wavelet transform (CWT). Significant frequency bands are determined to separate different friction states more effective. A support vector machine (SVM) is used to classify the signals into three different friction classes. In the end the idea for an RUL prediction method by using the already determined information is given and explained.

Zusammenfassung

Für die Diagnose und der zustandsorientierten Instandhaltung mechatronischer Systeme ist die Überwachung von Lagerungen essentiell. Ein wichtiger Baustein dafür ist die Bestimmung des Lagerreibzustandes. Diese Publikation behandelt die Möglichkeit der Überwachung verschiedener Gleitlagerreibungszustände, wie Misch- und Flüssigkeitsreibung, und untersucht dabei eine neue Methode zur Unterscheidung dieser Reibzustände bei verschiedenen Drehzahl- und Lastkombinationen anhand von Merkmalsextraktions- und Merkmalsselektionsmethoden, welche auf Körperschallsignale angewendet werden. Das Ziel dieser Arbeit ist es, trennungswirksame Merkmale der Körperschallsignale zu identifizieren, um anschließend die Gleitlagerreibungszustände zu klassifizieren. Des Weiteren liefern die aufgenommenen Merkmale Informationen über die Mischreibungsintensität, welche für die Vorhersage der verbleibenden Restlebensdauer signifikant ist. Sowohl zeitbasierte Merkmale als auch Merkmale im Frequenzbereich wurden in dieser Arbeit untersucht. Um die Sensitivität der Merkmale zu erhöhen, wurden die Körperschallsignale unter Verwendung der kontinuierlichen Wavelettransformation in den Frequenz-Zeit-Bereich überführt. Signifikante Frequenzbänder wurden ermittelt, um die Reibungszustände noch effektiver unterscheiden zu können. Eine Support-Vektor-Maschine wurde verwendet, um die Signale in drei verschiedene Reibungszustände zu klassifizieren. Zuletzt wird die Idee zur Vorhersage der verbleibenden Restlebensdauer unter Verwendung der bisher ermittelten Informationen gegeben und erläutert.

Award Identifier / Grant number: 20T1510

Funding statement: The project was funded by the Federal Ministry for Economic Affairs and Energy (20T1510).

About the authors

Noushin Mokhtari

M. Sc. Noushin Mokhtari studied mechanical engineering at the Leibniz University of Hanover and aerospace engineering at the Technical University of Braunschweig. Since 2015 she works as a research assistant at the Chair Electronic Measurement and Diagnostic Technology of the Technical University of Berlin. Her areas of expertise include the model and data based diagnosis and the lifetime prediction of hydrodynamic journal bearings, as well as signal processing, pattern recognition and classification of acoustic emission signals.

Clemens Gühmann

Prof. Dr.-Ing. Clemens Gühmann studied electrical engineering and has been head of the Chair Electronic Measurement and Diagnostic Technology since 2003 at the Technische Universität Berlin. His areas of expertise include the measurement technology and data processing as well as the diagnosis, modeling, simulation and automatic control of mechatronic systems.

Acknowledgment

The content of this paper was derived from the research project LAROS (20T1510). This project is embedded in the national civil aviation research program. The aim of this project is to develop new bearing technologies for aircraft engines.

References

1. J. Deckers. Entwicklung einer Low-Cost Körperschallsensorik zur Überwachung des Verschleißverhaltens von wälz- oder gleitgelagerten Kreiselpumpen kleiner Leistung. PhD thesis, Gerhard-Mercator-Universität Duisburg, 2001.Search in Google Scholar

2. P. Raharjo. An Investigation of Surface Vibration, Airborne Sound and Acoustic Emission Characteristics of a Journal Bearing for Early Fault Detection and Diagnosis. PhD thesis, University of Huddersfield, Mai 2013.Search in Google Scholar

3. M. Fritz, A. Burger, A. Albers. Schadensfrüherkennung an geschmierten Gleitkontakten mittels Schallemissionsanalyse. Institut für Maschinen konstruktionslehre und Kraftfahrzeugbau, Universität Karlsruhe, 2001.Search in Google Scholar

4. A. Albers, M. Dickerhof. Simultaneous Monitoring of Rolling-Element and Journal Bearings Using Analysis of Structure-Born Ultrasound Acoustic Emissions. International Mechanical Engineering Congress & Exposition, Vancouver, British Columbia, Canada, 1–9, 2010.10.1115/IMECE2010-39814Search in Google Scholar

5. N. Mokhtari, M. Grzeszkowski, C. Gühmann. Vibration Signal Analysis for the Lifetime-Prediction and Failure Detection of Future Turbofan Components. Internationale Tagung Schwingungen in rotierenden Maschinen, Graz, Austria, 2017.Search in Google Scholar

6. A. Albers, W. Burger, R. Scovino, M. Dickerhof. Monitoring Lubrication Regimes in Sliding Bearings Using Acoustic Emission Analysis. Practicing Oil Analysis, 9(3):8–12, 2006.Search in Google Scholar

7. B. Ziegler, A. Miszczak, H.-J. Schwalbe. Nachweis des Reibzustandes in Gleitlagern mit Hilfe der Schallemission. 16. Kolloquium Schallemission, 1–9, 2007.Search in Google Scholar

8. A. Hase, H. Mishina, M. Wada. Fundamental study on early detection of seizure in journal bearing by using acoustic emission technique. Wear, 346–347:132–139, 2016.10.1016/j.wear.2015.11.012Search in Google Scholar

9. M. Dickerhof, A. Albers. Überwachung von Gleitkontakten mittels Ultraschallemissionsanalyse. Zeitschrift für Produktentwicklung und Ingenieur-Werkstoffe, 10:69, 2008.Search in Google Scholar

10. W. Steinhilper, B. Sauer. Konstruktionselemente des Maschinenbaus 2. Berlin Heidelberg: Springer. 5. Auflage, 2006.10.1007/3-540-29630-1Search in Google Scholar

11. Q. Huang, L.-P. Li, H.-D. Rao, F.-H. Jin, Y.-Q. Tang. The AE Law of Sliding Bearings in Rotating Machinery and its Application in Fault Diagnosis. International Conference on Power Engineering, Hangzhou, China, 541–546, 2007.10.1007/978-3-540-76694-0_100Search in Google Scholar

12. H. Niemann. Klassifikation von Mustern. Berlin, Heidelberg, New York, Tokyo: Springer Verlag. 1. Auflage, 1983.10.1007/978-3-642-47517-7Search in Google Scholar

Received: 2018-1-6
Accepted: 2018-4-24
Published Online: 2018-5-10
Published in Print: 2018-6-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2018-0004/html
Scroll to top button