Home Business & Economics Asymptotic properties of duration-based VaR backtests
Article
Licensed
Unlicensed Requires Authentication

Asymptotic properties of duration-based VaR backtests

  • Marta Malecka ORCID logo EMAIL logo
Published/Copyright: July 21, 2022
Become an author with De Gruyter Brill

Abstract

To increase the power of the VaR tests, it has been recently proposed to extend the duration-based test class with the geometric-VaR and Gini-coefficient-based tests. These tests, though exhibiting outstanding power properties, have not gained recognition in the industry. A potential reason is the absence of ready-to-use statistical distributions. To remedy this, we inquire into the limiting properties of these tests and derive relevant asymptotic distributions. We also provide a generalized geometric-VaR test and give its distribution. Through the Monte Carlo study, we show the accuracy of our asymptotic procedures in finite samples, and we find these procedures to be relevant for the current Basel standards. Our theoretical results are illustrated by the empirical study that includes data from the current COVID-19 crisis.

A Population Gini coefficient for the geometric distribution. Derivation from Gini’s own definition

In Appendix A, we show a way of deriving the population Gini coefficient for the geometric distribution directly from Gini’s own definition. Our way is an alternative to the method presented by Dorfmann [20], who, by means of Stieltjes integrals, derived the general representation of the Gini coefficient with the probability function. From this representation, as a special case, he derived the Gini value for the geometric distribution. We show that, for the geometric distribution, the same result may be achieved directly from Gini’s definition, through simple algebraic transformations. It omits the representation of the Gini coefficient with the probability function, attainable through the Stjeltjes or Lebesgue integrals.

Gini’s idea to quantify inequalities is based on differences between pairs of observations. Let us, therefore, assume that D ( 1 ) and D ( 2 ) is a pair of observations coming from the distribution of the variable 𝐷. Then Gini’s definition of the inequality coefficient is half the ratio of the average absolute difference between such pairs of observations to the mean of 𝐷, i.e.

(A.1) G = E | D ( 1 ) - D ( 2 ) | 2 E ( D ) .

Since

(A.2) | D ( 1 ) - D ( 2 ) | = 2 ( ( D ( 1 ) + D ( 2 ) 2 ) - min { D ( 1 ) , D ( 2 ) } ) ,

the average absolute difference between pairs of observations may be expressed as[13]

(A.3) E | D ( 1 ) - D ( 2 ) | = 2 E ( D ) - 2 E ( min { D ( 1 ) , D ( 2 ) } ) .

We, therefore, proceed to evaluate the expectation of the minimum E ( min { D ( 1 ) , D ( 2 ) } ) . Let us denote by F ( d ) the cumulative probability function of the variable 𝐷 at 𝑑, F ( d ) = P ( D d ) . Then

P ( min { D ( 1 ) , D ( 2 ) } d ) = P ( D ( 1 ) d D ( 2 ) d ) = 1 - P ( D ( 1 ) d D ( 2 ) d ) = 1 - P ( D ( 1 ) d ) P ( D ( 2 ) d ) = 1 - ( 1 - F ( d ) ) 2 .

For a discrete distribution, where d = 1 , 2 , , the probability of taking the single value 𝑑 is

P ( min { D ( 1 ) , D ( 2 ) } = d ) = 1 - ( 1 - F ( d ) ) 2 - ( 1 - ( 1 - F ( d - 1 ) ) 2 ) = ( 1 - F ( d - 1 ) ) 2 - ( 1 - F ( d ) ) 2 .

We now apply the probability function of the geometric distribution, where, for simplicity of notation, we use the parameter q = 1 - p instead of 𝑝, i.e. F ( d ) = 1 - q d ,

(A.4) P ( min { D ( 1 ) , D ( 2 ) } = d ) = ( 1 - ( 1 - q d - 1 ) ) 2 - ( 1 - ( 1 - q d ) ) 2 = ( q d - 1 ) 2 - ( q d ) 2 = q 2 d ( q - 2 - 1 ) .

Using probabilities (A.4), we have that the unknown expectation of the minimum can be expressed as

E ( min { D ( 1 ) , D ( 2 ) } ) = d = 1 d q 2 d ( q - 2 - 1 ) = ( q - 2 - 1 ) d = 1 d q 2 d .

To evaluate the sum d = 1 d q 2 d , we use the auxiliary expression A = d = 1 q 2 d . Since a power series can be differentiated term by term inside its circle of convergence, we obtain

(A.5) A = ( d = 1 q 2 d ) = d = 1 2 d q 2 d - 1 = 2 q d = 1 d q 2 d .

Changing the sequence of operations and evaluating the sum of the series first, we have

(A.6) A = ( d = 1 q 2 d ) = ( 1 1 - q 2 ) = - 1 ( 1 - q 2 ) 2 ( - 2 q ) = 2 q ( 1 - q 2 ) 2 .

The comparison of (A.5) and (A.6) gives

d = 1 d q 2 d = q 2 ( 1 - q 2 ) 2 ;

hence the unknown expectation of the minimum is

E ( min { D ( 1 ) , D ( 2 ) } ) = ( q - 2 - 1 ) q 2 ( 1 - q 2 ) 2 .

Substituting this result to equation (A.3) and using the fact that E ( D ) = 1 1 - q yields

E | D ( 1 ) - D ( 2 ) | = 2 1 - q - 2 ( q - 2 - 1 ) q 2 ( 1 - q 2 ) 2 = 2 1 - q - 2 1 - q 2 = 2 1 - q - 2 ( 1 - q ) ( 1 + q ) = 2 q 1 - q 2 .

Therefore, from definition (A.1), the Gini coefficient for the geometric distribution is

G 0 = 2 q ( 1 - q ) 2 ( 1 - q 2 ) = q ( 1 - q ) ( 1 - q t ) ( 1 + q ) = q 1 + q .

Using the parameter 𝑝, this is equivalent to

G 0 = 1 - p 2 - p ,

which was to be shown.

B Partial derivatives of loglikelihood function

In Appendix B, we treat the issue of validity of distributions in (3.1), (3.2), (3.4) and (3.5) in the geometric-VaR test. The sufficient condition for validity of these distributions is that the Fisher information matrix is diagonal, which requires that partial derivatives of relevant loglikelihood functions are zero. These partial derivatives for the loglikelihood log L ( { D 1 ( p ) , , D N ( p ) } | a , b , c ) are derived below.

The loglikelihood function that underlies the geometric-VaR test has the form

log L ( { D 1 ( p ) , , D N ( p ) } | a , b , c ) = C 1 ( p ) log S ( D 1 ( p ) ) + ( 1 - C 1 ( p ) ) log f ( D 1 ( p ) ) + i = 2 N - 1 log f ( D i ( p ) ) + C N ( p ) log S ( D N ( p ) ) + ( 1 - C N ( p ) ) log f ( D N ( p ) ) ,

hence the second derivatives are

(B.1) 2 log L ( { D 1 , , D N } | a , b , c ) θ 1 θ 2 = C 1 ( p ) 2 log S ( D 1 ( p ) ) θ 1 θ 2 + ( 1 - C 1 ( p ) ) 2 log f ( D 1 ( p ) ) θ 1 θ 2 + i = 2 N - 1 2 log f ( D i ( p ) ) θ 1 θ 2 + C N ( p ) 2 log S ( D N ( p ) ) θ 1 θ 2 + ( 1 - C N ( p ) ) 2 log f ( D N ( p ) ) θ 1 θ 2 ,

where θ 1 , θ 2 { a , b , c } and f ( D i ( p ) ) , S ( D i ( p ) ) , i = 1 , , N , are defined by equations (2.2), (2.3) and (2.5).

For simplicity, let us denote

D i = def D i ( p ) , V i d = def VaR t i - 1 + d .

The components of (B.1) are derived based on the first derivatives of f ( D i ) , S ( D i ) , i = 1 , , N . For f ( D i ) , the first-order derivatives are

log f ( D i ) a = j = 1 D i - 1 - j b - 1 e - c V i j 1 - a j b - 1 e - c V i j + N a ,
log f ( D i ) b = j = 1 D i - 1 [ - a j b - 1 e - c V i j log j 1 - a j b - 1 e - c V i j + log D i ] ,
log f ( D i ) c = j = 1 D i - 1 [ a j b - 1 e - c V i j V i j 1 - a j b - 1 e - c V i j - V i D i ] ,
log S ( D l ) a = ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ,
log S ( D l ) b = ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j log j 1 - λ j 1 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ,
log S ( D l ) c = ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j V 1 j 1 - λ j 1 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) .
The second-order derivatives are then
2 log f ( D i ) a 2 = j = 1 D i - 1 - j 2 ( b - 1 ) e - 2 c V i j ( 1 - a j b - 1 e - c V i j ) 2 - N a 2 ,
2 log f ( D i ) b 2 = j = 1 D i - 1 - a j b - 1 e - c V i j log j 2 ( 1 - a j b - 1 e - c V i j ) 2 ,
2 log f ( D i ) c 2 = j = 1 D i - 1 a j b - 1 e - c V i j V i j 2 ( 1 - a j b - 1 e - c V i j ) 2 ,
2 log f ( D i ) a b = i = 1 N j = 1 D i - 1 - j b - 1 e - c V i j log j ( 1 - a j b - 1 e - c V i j ) 2 ,
2 log f ( D i ) a c = i = 1 N j = 1 D i - 1 j b - 1 e - c V i j V i j ( 1 - a j b - 1 e - c V i j ) 2 ,
2 log f ( D i ) b c = i = 1 N j = 1 D i - 1 a j b - 1 e - c V i j V i j log j ( 1 - a j b - 1 e - c V i j ) 2 .
For S ( D i ) , the first- and second-order derivatives are
2 log S ( D l ) a 2 = ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 k = 1 , k j D l - 1 k b - 1 e - c V 1 k 1 - λ k 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - [ ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 ] 2 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 ,
2 log S ( D l ) b 2 = ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j log j 1 - λ j 1 k = 1 , k j D l - 1 a k b - 1 e - c V 1 k log k 1 - λ k 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j log 2 j 1 - λ j 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - [ ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j log j 1 - λ j 1 ] 2 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 ,
2 log S ( D l ) c 2 = ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j V 1 j 1 - λ j 1 k = 1 , k j D l - 1 a k b - 1 e - c V 1 j V 1 j 1 - λ k 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j V 1 j 2 1 - λ j 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - [ ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j V 1 j 1 - λ j 1 ] 2 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 ,
2 log S ( D l ) a b = ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 k = 1 , k j D l - 1 k b - 1 e - c V 1 k log ( k ) 1 - λ k 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 + ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j log ( j ) 1 - λ j 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - ( 1 - λ 1 1 ) 2 ( 1 - λ D l - 1 1 ) 2 [ j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 ] [ j = 1 D l - 1 j b - 1 e - c V 1 j log ( j ) 1 - λ j 1 ] ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 ,
2 log S ( D l ) a c = ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 k = 1 , k j D l - 1 k b - 1 e - c V 1 k V 1 k 1 - λ k 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 + ( ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) - 1 ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 j b - 1 e - c V 1 j V 1 j 1 - λ j 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 + ( 1 - λ 1 1 ) 2 ( 1 - λ D l - 1 1 ) 2 [ j = 1 D l - 1 j b - 1 e - c V 1 j 1 - λ j 1 ] [ j = 1 D l - 1 j b - 1 e - c V 1 j V 1 j 1 - λ j 1 ] ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 ,
2 log S ( D l ) b c = ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j log j 1 - λ j 1 k = 1 , k j D l - 1 a k b - 1 e - c V 1 k V 1 k 1 - λ k 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 - ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) j = 1 D l - 1 a j b - 1 e - c V 1 j log j V 1 j 1 - λ j 1 ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 + ( 1 - λ 1 1 ) 2 ( 1 - λ D l - 1 1 ) 2 [ j = 1 D l - 1 a j b - 1 e - c V 1 j log j 1 - λ j 1 ] [ j = 1 D l - 1 a j b - 1 e - c V 1 j V 1 j 1 - λ j 1 ] ( 1 - ( 1 - λ 1 1 ) ( 1 - λ D l - 1 1 ) ) 2 ,
where l { 1 , N } .

In general, these derivatives are not equal to zero. Hence, we proceed to find the approximation of the Fisher information matrix. With the partial derivatives, it can be expressed as

(B.2) I ( a , b , c ) = - E [ 2 log L ( { D 1 , , D N } | a , b , c ) θ 2 ] .

For evaluating the expectation in formula (B.2), we use the Monte Carlo study. Based on the realistic simulations designed in line with the experiments described in Section 4.1, we get the following result:

I ( a , b , c ) [ 5.1354368880 - 0.0000092771 - 0.0015797949 - 0.0000092771 3.3498002780 - 0.0275847868 - 0.0015797949 - 0.0275847868 532.1719528033 ] .

This result shows that, under the null, the partial derivatives are close to zero. This confirms the practical feasibility of the asymptotic distributions presented in Section 3.1. This conclusion is also in line with the MC size results presented in Section 4.1, where, under the realistic setting, we evidenced via simulations the good fit between the empirical test size in finite samples and the nominal size coming from the asymptotic mixture distributions. These arguments justify the use of the mixture distributions in practical applications.

References

[1] A. Arcagni and F. Porro, The graphical representation of inequality, Rev. Colombiana Estadíst. 37 (2014), 419–436. 10.15446/rce.v37n2spe.47947Search in Google Scholar

[2] A. A. Balkema and L. de Haan, Residual life time at great age, Ann. Probab. 2 (1974), no. 5, 792–804. 10.1214/aop/1176996548Search in Google Scholar

[3] G. Barone-Adesi, F. Burgoin and K. Giannopoulos, Don’t look back, Risk 11 (1998), 100–104. Search in Google Scholar

[4] G. F. Barrett and S. G. Donald, Statistical inference with generalized gini indices of inequality, poverty, and welfare, J. Bus. Econom. Statist. 27 (2009), 1–17. 10.1198/jbes.2009.0001Search in Google Scholar

[5] Basel Committee on Banking Supervision, Amendment to the capital accord to incorporate market risks, 1996. Search in Google Scholar

[6] Basel Committee on Banking Supervision, Minimum capital requirements for market risk, 2016. Search in Google Scholar

[7] Basel Committee on Banking Supervision, High-level summary of basel iii reforms, 2017. Search in Google Scholar

[8] Y. G. Berger, A note on the asymptotic equivalence of jackknife and linearization variance estimation for the Gini coefficient, J. Official Statist. 24 (2008), 541–555. Search in Google Scholar

[9] J. Berkowitz, P. Christoffersen and D. Pelletier, Evaluating value-at-risk models with desk-level data, Manag. Sci. 12 (2011), no. 57, 2213–2227. 10.1287/mnsc.1080.0964Search in Google Scholar

[10] D. Bhattacharya, Asymptotic inference from multistage samples, J. Econometrics 126 (2005), 145–71. 10.1016/j.jeconom.2004.01.002Search in Google Scholar

[11] D. A. Binder and M. S. Kovacevic, Estimating some measures of income inequality from survey data: An application of the estimating equations approach, Surv. Methodol. 21 (1995), 137–45. Search in Google Scholar

[12] J. A. Bishop, J. P. Formby and B. Zheng, Statistical index and the sen index of poverty, Internat. Econom. Rev. 38 (1997), 381–387. 10.2307/2527379Search in Google Scholar

[13] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986), no. 3, 307–327. 10.1016/0304-4076(86)90063-1Search in Google Scholar

[14] B. Candelon, G. Colletaz, C. Hurlin and S. Tokpavi, Backtesting value-at-risk: A gmm duration-based test, J. Financ. Econom. 9 (2011), no. 2, 314–343. 10.1093/jjfinec/nbq025Search in Google Scholar

[15] P. Christoffersen, Evaluating interval forecasts, Internat. Econom. Rev. 39 (1998), no. 4, 841–862. 10.2307/2527341Search in Google Scholar

[16] P. Christoffersen and D. Pelletier, Backtesting value-at-risk: A duration-based approach, J. Financ. Econom. 2 (2004), no. 1, 84–108. 10.1093/jjfinec/nbh004Search in Google Scholar

[17] G. Colletaz, C. Hurlin and C. Perignon, The risk map: A new tool for risk management, J. Banking Financ. 37 (2013), no. 10, 3843–3854. 10.1016/j.jbankfin.2013.06.006Search in Google Scholar

[18] D. R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B. 34 (1972), 187–220. 10.1007/978-1-4612-4380-9_37Search in Google Scholar

[19] R. Davidson, Reliable inference for the Gini index, J. Econometrics 150 (2009), 30–40. 10.1016/j.jeconom.2008.11.004Search in Google Scholar

[20] R. Dorfmann, A formula for the Gini-coefficient, Rev. Econ. Stat. 61 (1979), 146–49. 10.2307/1924845Search in Google Scholar

[21] R. F. Engle and A. Manganelli, Caviar: Conditional autoregressive value-at-risk by regression quantiles, J. Bus. Econom. Statist. 22 (2004), 367–381. 10.1198/073500104000000370Search in Google Scholar

[22] J. C. Escanciano and J. Olmo, Backtesting parametric value-at-risk with estimation risk, J. Bus. Econom. Statist. 28 (2010), 36–51. 10.1198/jbes.2009.07063Search in Google Scholar

[23] J. C. Escanciano and J. Olmo, Robust backtesting tests for value-at-risk models, J. Financ. Econom. 9 (2011), 132–161. 10.1093/jjfinec/nbq021Search in Google Scholar

[24] J. L. Gastwirth, A general definition of the Lorenz curve, Econometrica 39 (1971), 1037–39. 10.2307/1909675Search in Google Scholar

[25] D. E. Giles, Calculating a standard error for the Gini coefficient: Some further results, Oxford Bull. Econ. Stat. 66 (2004), 425–33. 10.1111/j.1468-0084.2004.00086.xSearch in Google Scholar

[26] D. E. Giles, A cautionary note on estimating the standard error of the Gini index of inequality: Comment, Oxford Bull. Econ. Stat. 68 (2006), 395–96. 10.1111/j.1468-0084.2006.00169.xSearch in Google Scholar

[27] L. Glosten, R. Jagannathan and D. Runkle, On the relation between the expected value and the volatility of the nominal excess return on stocks, J. Financ. 48 (1993), no. 5, 1779–1801. 10.1111/j.1540-6261.1993.tb05128.xSearch in Google Scholar

[28] M. B. Gordy and A. J. McNeil, Spectral backtests of forecast distributions with application to risk management, J. Banking Financ. 116 (2020), Article ID 105817. 10.1016/j.jbankfin.2020.105817Search in Google Scholar

[29] M. Haas, Improved duration-based backtesting of value-at-risk, J. Risk, 8 (2006), no. 2, 17–38. 10.21314/JOR.2006.128Search in Google Scholar

[30] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Stat. 19 (1948), 293–325. 10.1214/aoms/1177730196Search in Google Scholar

[31] A. A. Hoque and J. A. Clarke, On variance estimation for a Gini coefficient estimator obtained from complex survey data, Comm. Statist. Case Stud. Data Anal. Appl. 1 (2015), 39–58. 10.1080/23737484.2015.1044050Search in Google Scholar

[32] C. Hurlin and S. Tokpavi, Backtesting value-at-risk accuracy: A simple new test, J. Risk 9 (2007), no. 2, 19–37. 10.21314/JOR.2007.148Search in Google Scholar

[33] W. Kramer and D. Wied, A simple and focused backtest of value at risk, Econom. Lett. 137 (2015), 29–31. 10.1016/j.econlet.2015.10.028Search in Google Scholar

[34] M. Kratz, Y. H. Lok and A. J. McNeil, Multinomial var backtests: A simple implicit approach to backtesting expected shortfall, J. Banking Financ. 88 (2018), 393–407. 10.1016/j.jbankfin.2018.01.002Search in Google Scholar

[35] M. Langel and Y. Tillé, Variance estimation of the Gini index: Revisiting a result several times published, J. R. Stat. Soc. Ser. A 176 (2013), 521–40. 10.1111/j.1467-985X.2012.01048.xSearch in Google Scholar

[36] A. Leccadito, S. Boffelli and G. Urga, Evaluating the accuracy of value-at-risk forecasts: New multilevel tests, Int. J. Forecasting 30 (2014), no. 2, 206–216. 10.1016/j.ijforecast.2013.07.014Search in Google Scholar

[37] R. I. Lerman and S. Yitzhaki, A note on the calculation and interpretation of the Gini index, Econom. Lett. de Estadistica 15 (1984), 363–68. 10.1016/0165-1765(84)90126-5Search in Google Scholar

[38] J. A. McNeil and F. Frey, Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, J. Empirical Financ. 7 (2000), 271–300. 10.1016/S0927-5398(00)00012-8Search in Google Scholar

[39] S. Mirzaei, G. R. M. Borzadaran and M. Amini, A comparative study of the Gini coefficient estimators based on the linearization and u-statistics methods, Rev. Colombiana Estadíst. 40 (2017), 205–21. 10.15446/rce.v40n2.53399Search in Google Scholar

[40] R. Modarres and J. Gastwirth, A cautionary note on estimating the standard error of the Gini index of inequality, Oxford Bull. Econ. Stat. 68 (2006), 385–90. 10.1111/j.1468-0084.2006.00167.xSearch in Google Scholar

[41] T. Ogwang, A convenient method of computing the Gini index and its standard error, Oxford Bull. Econ. Stat. 62 (2000), 123–28. 10.1111/1468-0084.00164Search in Google Scholar

[42] T. Pajhede, Backtesting value-at-risk: A generalized Markov test, J. Forecasting 36 (2017), no. 5, 597–613. 10.1002/for.2456Search in Google Scholar

[43] D. Pelletier and W. Wei, The geometric-var backtesting method, J. Financ. Econom. 14 (2016), no. 4, 725–745. 10.1093/jjfinec/nbv015Search in Google Scholar

[44] J. Pickands, Statistical inference using extreme order statistics, Ann. Statist. 3 (1975), no. 1, 119–131. 10.1214/aos/1176343003Search in Google Scholar

[45] S. F. Self and K. Y. Liang, Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Amer. Statist. Assoc. 82 (1987), 605–610. 10.1080/01621459.1987.10478472Search in Google Scholar

[46] H. Shalit, Calculating the gini index of inequality for individual data, Oxford Bull. Econ. Stat. 47 (1985), 185–89. 10.1111/j.1468-0084.1985.mp47002006.xSearch in Google Scholar

[47] D. Wied, G. N. F. Weiß and D. Ziggel, Evaluating value-at-risk forecasts: A new set of multivariate backtests, J. Banking. Financ. 72 (2016), 121–132. 10.1016/j.jbankfin.2016.07.014Search in Google Scholar

[48] D. Wolfe and R. Randles, Introduction to the Theory of Nonparametric Statistics, Wiley, New York, 1973. Search in Google Scholar

[49] K. Xu, U-statistics and their asymptotic results for some inequality and poverty measures, Econometric Rev. 26 (2007), 567–77. 10.1080/07474930701512170Search in Google Scholar

[50] D. Ziggel, T. Berens, G. N. F. Weiß and D. Wied, A new set of improved value-at-risk backtests, J. Banking. Financ. 48 (2014), 29–41. 10.1016/j.jbankfin.2014.07.005Search in Google Scholar

Received: 2021-06-20
Revised: 2022-04-11
Accepted: 2022-06-09
Published Online: 2022-07-21
Published in Print: 2022-11-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/strm-2021-0019/html
Scroll to top button