Home Human Capital Externalities, Migration, and Wage Inequality
Article
Licensed
Unlicensed Requires Authentication

Human Capital Externalities, Migration, and Wage Inequality

  • Jiancai Pi EMAIL logo , Shumin Yu , Ping Xu and Yanwei Fan
Published/Copyright: August 22, 2025
Become an author with De Gruyter Brill

Abstract

This paper explores the impacts of human capital externalities on rural-urban migration and skilled-unskilled wage inequality. In the basic model with full employment, an increase in the intensity of human capital externalities will increase migration, and reduce wage inequality if the skilled sector is more capital intensive than the unskilled sector. The results of the basic model remain robust under various conditions, which include the incorporation of human capital externalities in the rural sector into the model, the use of the average human capital level to represent human capital externalities in the urban area. When there is an urban minimum wage in the economy (irrespective of whether an informal sector exists or not), wage inequality will be conditionally decreased, but the impact on migration remains unchanged. This also applies when human capital externalities affect skilled and unskilled sectors differently. In the case of a partially open capital market in the economy, migration will still be encouraged, yet wage inequality will be widened.

JEL Classification: J24; J31; J61

Corresponding author: Jiancai Pi, Department of Economics, School of Business, Nanjing University, 22, Hankou Road, Nanjing, 210093, China, E-mail: 

Appendix A: Dynamic Adjustment Process of Equation (9)

Following Beladi et al. (2008), we build the excess demand functions through the dynamic adjustment process. Then, the differential equations can be expressed as follows:

(A1) X ˙ = d 1 p X a S X w S a K X r ,

(A2) Y ˙ = d 2 p Y a U Y w U a K Y r ,

(A3) Z ˙ = d 3 1 a U Z w U a T Z τ ,

(A4) w S ˙ = d 4 a S X X L ̄ S ,

(A5) w U ˙ = d 5 a U Y Y + a U Z Z L ̄ U ,

(A6) r ˙ = d 6 a K X X + a K Y Y K ̄ ,

(A7) τ ˙ = d 7 a T Z Z T ̄ ,

(A8) H ˙ = d 8 H ̄ L U Z H U H ,

where d i > 0 (i = 1, 2, …, 8) represents the speed of adjustment. The notation “·” represents the differentiation with respect to time   . The determinant of the Jacobi matrix of Equations (A1)(A8) are given by:

J = Q 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y λ K X λ K Y 0 λ K X σ X θ S X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X θ S X 0 α 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H = Q Δ ̃ 1 ,

where Q = i = 1 8 d i p X p Y L ¯ S L ¯ U K ¯ T ¯ H ¯ X Y Z H w S w U r τ > 0 , and

Δ ̃ 1 = 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y λ K X λ K Y 0 λ K X σ X θ S X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X θ S X 0 α 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H .

We assume the economic system is stable. Then, according to the Routh-Hurwitz theorem, ensuring the stability of the economic system require the Jacobi matrix of the adjustment system to be negative definite. Based on the judgement of a negative definite matrix (its odd order principal sub-equations are negative and even order principal sub-equations are positive), a necessary condition for the Jacobian matrix to be negative definite is that the sign of |J| is (−1) n , where n describes the row of the Jacobian matrix. In our situation, n = 8, hence, |J| > 0. Since Q > 0, we obtain that the sign of Δ ̃ 1 is positive. And Δ1 can be obtained from Δ ̃ 1 by a series of primary transformations. The specific transformation process is as follows:

Δ ̃ 1 = 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y λ K X λ K Y 0 λ K X σ X θ S X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X θ S X 0 α 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H .

Making the sixth line subtract λ KX times the fourth line in Δ ̃ 1 , we have:

Δ ̃ 1 = 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y 0 λ K Y 0 λ K X σ X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X 0 α λ K Y 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H = 1 × 1 5 × 0 0 θ S X 0 θ K X 0 α 0 0 0 θ U Y θ K Y 0 α 0 0 0 θ U Z 0 θ T Z 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y λ K Y 0 λ K X σ X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X 0 α λ K Y 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H .

Then, let the fourth line subtract λ UZ times the sixth line, and the seventh line subtract λ ZH times the sixth line, and we obtain:

Δ ̃ 1 = 1 × 1 5 × 0 0 θ S X 0 θ K X 0 α 0 0 0 θ U Y θ K Y 0 α 0 0 0 θ U Z 0 θ T Z 0 λ U Y 0 0 λ U Y σ Y θ K Y λ U Z σ Z λ U Y σ Y θ K Y λ U Z σ Z α λ U Y λ K Y 0 λ K X σ X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X 0 α λ K Y 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 0 λ Z H σ Z 0 λ Z H σ Z 1 λ Z H = 1 × 1 5 × 1 8 × 0 θ S X 0 θ K X 0 α 0 0 θ U Y θ K Y 0 α 0 0 θ U Z 0 θ T Z 0 λ U Y 0 λ U Y σ Y θ K Y λ U Z σ Z λ U Y σ Y θ K Y λ U Z σ Z α λ U Y λ K Y λ K X σ X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X 0 α λ K Y 0 0 λ Z H σ Z 0 λ Z H σ Z 1 λ Z H .

After that, we carry out a series of exchange for the columns in the gained determinant, and then we have:

Δ ̃ 1 = θ S X 0 θ K X 0 0 α 0 θ U Y θ K Y 0 0 α 0 θ U Z 0 θ T Z 0 0 0 λ U Y σ Y θ K Y λ U Z σ Z λ U Y σ Y θ K Y λ U Z σ Z λ U Y α λ U Y λ K X σ X λ K Y σ Y θ U Y B 0 λ K Y α λ K Y 0 λ Z H σ Z 0 λ Z H σ Z 0 1 λ Z H = Δ 1 .

We have known that Δ ̃ 1 > 0 . Hence, it is easy to obtain Δ1 < 0.

Appendix B: Dynamic Adjustment Process of Equation (13)

Using the above method, we replace Equations (A2) and (A5) with the following equations:

(B1) Y ˙ = d 2 p Y a U Y w ̄ U a K Y r ,

(B2) w ˙ U = d 5 w U ̄ w U a U Y Y + a U Z Z L ̄ U .

The determinant of the Jacobian matrix of Equations (A1)(A3)(A4)(A6)(A8)(B1), and (B2) is given by:

J = Q 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 0 θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 1 + λ λ U Y λ U Z 0 1 + λ λ U Y λ U Z σ Z θ T Z 1 + λ λ U Y σ Y θ K Y λ U Z σ Z θ T Z α 1 + λ λ U Y λ K X λ K Y 0 λ K X σ X θ S X 0 λ K Y σ Y θ U Y λ K X σ X θ S X 0 α 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H = Q Δ ̃ 2 ,

where Δ ̃ 2 = 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 0 θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 1 + λ λ U Y λ U Z 0 1 + λ λ U Y λ U Z σ Z θ T Z 1 + λ λ U Y σ Y θ K Y λ U Z σ Z θ T Z α 1 + λ λ U Y λ K X λ K Y 0 λ K X σ X θ S X 0 λ K Y σ Y θ U Y λ K X σ X θ S X 0 α 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H .

After the same transformation process as in Appendix A, we have:

Δ ̃ 2 = θ S X 0 θ K X 0 0 α 0 0 θ K Y 0 0 α 0 θ U Z 0 θ T Z 0 0 0 C 1 + λ λ U Y σ Y θ K Y λ U Z σ Z 1 + λ λ U Y α 1 + λ λ U Y λ K X σ X 0 B 0 λ K Y α λ K Y 0 λ Z H σ Z 0 λ Z H σ Z 0 1 λ Z H = Δ 2 .

Similar to Appendix A, the sign of |J| is the same as that of (−1)8 according to the Routh-Hurwitz theorem, which means |J| = −QΔ2 > 0. Thus, we have Δ2 < 0.

Appendix C: Dynamic Adjustment Process of Equation (17)

Using the above method, we replace Equations (A1) and (A6) with the following equations:

(C1) X ˙ = d 1 p X a S X w S a K X r ̄ ,

(C2) r ˙ = d 6 a K Y Y K ¯ Y ,

(C3) K ˙ X = d 9 a K X X K X .

The determinant of the Jacobian matrix of Equations (A2)(A5)(A7)(A8), and (C1)(C3) is given by:

J = N 0 0 0 θ S X 0 0 0 0 α 0 0 0 0 θ U Y 0 θ K Y 0 α 0 0 0 0 θ U Z 0 0 θ T Z 0 1 0 0 θ K X σ X 0 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y 1 0 0 θ S X σ X 0 1 0 0 α 0 1 0 0 σ Y θ U Y 0 σ Y θ U Y 0 α 0 0 1 0 θ U Z σ Z 0 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 0 λ Z H σ Z θ T Z 1 λ Z H = N Δ ̃ 3 ,

where N = i = 1 9 d i p X p Y L ̄ S L ̄ U K ̄ Y T ̄ H ̄ X Y Z H w S w U r τ > 0 , and

Δ ̃ 3 = 0 0 0 θ S X 0 0 0 0 α 0 0 0 0 θ U Y 0 θ K Y 0 α 0 0 0 0 θ U Z 0 0 θ T Z 0 1 0 0 θ K X σ X 0 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y 1 0 0 θ S X σ X 0 1 0 0 α 0 1 0 0 σ Y θ U Y 0 σ Y θ U Y 0 α 0 0 1 0 θ U Z σ Z 0 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 0 λ Z H σ Z θ T Z 1 λ Z H .

After a series of transformation steps, we obtain:

Δ ̃ 3 = θ S X 0 0 0 0 α 0 θ U Y θ K Y 0 0 α 0 θ U Z 0 θ T Z 0 0 0 λ U Y σ Y θ K Y λ U Z σ Z λ U Y σ Y θ K Y λ U Z σ Z λ U Y α λ U Y 0 σ Y θ U Y σ Y θ U Y 0 1 α 0 λ Z H σ Z 0 λ Z H σ Z 0 1 λ Z H = Δ 3 .

The sign of |J| is the same as that of (−1)9 according to the Routh-Hurwitz theorem, which means |J| = NΔ3 < 0. Thus, we have Δ3 < 0.

Appendix D: Dynamic Adjustment Process of Equation (21)

Using the above method, we replace Equation (A8) with the following equation:

(D1) H ˙ a = d 8 H ¯ L ¯ L U Z H a L U Z H U .

The determinant of the Jacobian matrix of Equations (A1)(A7), and (D1) is given by:

J = Q 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α λ U Y λ K X λ K Y 0 λ K X σ X θ S X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X θ S X 0 α 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 F 0 F σ Z θ T Z 0 F σ Z θ T Z D .

Following the same transformation process outlined in Appendix A, we obtain:

J = Q θ S X 0 θ K X 0 0 α 0 θ U Y θ K Y 0 0 α 0 θ U Z 0 θ T Z 0 0 0 A λ U Y σ Y θ K Y λ U Z σ Z λ U Y α λ U Y λ K X σ X λ K Y σ Y θ U Y B 0 λ K Y α λ K Y 0 F σ Z 0 F σ Z 0 D = Q Δ 5 .

Similar to Appendix A, the sign of |J| is the same as that of (−1)8 according to the Routh-Hurwitz theorem, which means |J| = −QΔ5 > 0. Thus, we have Δ5 < 0.

Appendix E: Dynamic Adjustment Process of Equation (25)

Using the above method, the dynamic adjustment functions for the informal sector are given by:

(E1) R ˙ = d 9 p R a U R w U a K R r ,

(E2) w ˙ U = d 5 w ̄ U w U a U Y Y + a U R R + a U Z Z L ̄ U .

We replace Equation (A6) with the following equation:

(E3) r ˙ = d 6 a K X X + a K Y Y + a K R R K ̄ .

The determinant of the Jacobian matrix of Equations (A1)(A3)(A4)(A7)(A8)(B1), and (E1)(E3) is given by:

J = S 0 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 0 0 θ K Y 0 α 0 0 0 0 0 θ U R θ K R 0 α 0 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 0 θ K X σ X 0 θ K X σ X 0 α 0 1 + λ λ U Y λ U R λ U Z 0 1 + λ λ U Y λ U Z σ Z θ T Z 1 + λ λ U Y σ Y θ K Y λ U Z σ Z θ T Z α 1 + λ λ U Y λ U R σ R θ K R + λ U R σ R θ K R α λ U R λ K X λ K Y λ K R 0 λ K X σ X θ S X λ K R σ R θ U R λ K Y σ Y θ U Y λ K R σ R θ U R 0 α λ K X σ X θ S X 0 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H = S Δ ̃ 6 ,

where S = i = 1 9 d i p X p Y p R L ̄ S L ̄ U K ̄ T ̄ H ̄ X Y Z R H w S w U r τ < 0 , and

Δ ̃ 6 = 0 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 0 0 θ K Y 0 α 0 0 0 0 0 θ U R θ K R 0 α 0 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 0 θ K X σ X 0 θ K X σ X 0 α 0 1 + λ λ U Y λ U R λ U Z 0 1 + λ λ U Y λ U Z σ Z θ T Z 1 + λ λ U Y σ Y θ K Y λ U Z σ Z θ T Z α 1 + λ λ U Y λ U R σ R θ K R + λ U R σ R θ K R α λ U R λ K X λ K Y λ K R 0 λ K X σ X θ S X λ K R σ R θ U R λ K Y σ Y θ U Y λ K R σ R θ U R 0 α λ K X σ X θ S X 0 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H .

After a series of transformation steps, we obtain:

Δ ̃ 6 = θ S X 0 θ K X 0 0 0 α 0 0 θ K Y 0 0 0 α 0 θ U R θ K R 0 0 0 α 0 θ U Z 0 θ T Z 0 0 0 0 L W λ U Z σ Z 1 + λ λ U Y λ U R α 1 + λ λ U Y α λ U R λ K X σ X λ K R σ R θ U R T 0 λ K Y λ K R α 1 λ K X 0 λ Z H σ Z 0 λ Z H σ Z 0 0 1 λ Z H = Δ 6 .

Similar to Appendix A, the sign of |J| is the same as that of (−1)9 according to the Routh-Hurwitz theorem, which means |J| = SΔ6 < 0. Thus, we have Δ6 > 0.

Appendix F: Dynamic Adjustment Process of Equation (26)

After the production function of the urban unskilled sector is changed to Y = H δα F 2(L UY , K Y ), the determinant of the Jacobian matrix of Equations (A1)(A8) is given by:

J = Q 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α δ 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α δ λ U Y λ K X λ K Y 0 λ K X σ X θ S X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X θ S X 0 α δ λ K Y + λ K X 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H = Q Δ ̃ 7 ,

where Q = i = 1 8 d i p X p Y L ̄ S L ̄ U K ̄ T ̄ H ̄ X Y Z H w S w U r τ > 0 , and

Δ ̃ 7 = 0 0 0 θ S X 0 θ K X 0 α 0 0 0 0 θ U Y θ K Y 0 α δ 0 0 0 0 θ U Z 0 θ T Z 0 1 0 0 θ K X σ X 0 θ K X σ X 0 α 0 λ U Y λ U Z 0 λ U Y σ Y θ K Y λ U Z σ Z θ T Z λ U Y σ Y θ K Y λ U Z σ Z θ T Z α δ λ U Y λ K X λ K Y 0 λ K X σ X θ S X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X θ S X 0 α δ λ K Y + λ K X 0 0 1 0 θ U Z σ Z 0 θ U Z σ Z 0 0 0 λ Z H 0 λ Z H σ Z θ T Z 0 λ Z H σ Z θ T Z 1 λ Z H .

After the same transformation process as in Appendix A, we have:

Δ ̃ 7 = θ S X 0 θ K X 0 0 α 0 θ U Y θ K Y 0 0 α δ 0 θ U Z 0 θ T Z 0 0 0 λ U Y σ Y θ K Y λ U Z σ Z λ U Y σ Y θ K Y λ U Z σ Z λ U Y α δ λ U Y λ K X σ X λ K Y σ Y θ U Y λ K Y σ Y θ U Y λ K X σ X 0 λ K Y α δ λ K Y 0 λ Z H σ Z 0 λ Z H σ Z 0 1 λ Z H = Δ 7 .

Similar to Appendix A, the sign of |J| is the same as that of (−1)8 according to the Routh-Hurwitz theorem, which means |J| = −QΔ7 > 0. Thus, we have Δ7 < 0.

Appendix G: Sensitivity Test for Numerical Simulation

According to the 2020 China Family Panel Studies (CFPS), the estimated average annual wage of skilled labor is about two times that of unskilled labor. Hence, we adjust the ratio of human capital per unit of skilled labor to unskilled labor to 2. Specifically, we reset parameter H S to 2 and keep the values of other parameters unchanged. Based on the new parameter configuration, a single numerical simulation is performed using the same methodology and the results obtained are shown in Figure A1.

Figure A1: 
The sensitivity test for numerical simulation when H

S
 = 2.
Figure A1:

The sensitivity test for numerical simulation when H S = 2.

Then, we also change the value of the parameter of the land endowment and then carry out the sensitivity test. The results are shown in Figure A2.

Figure A2: 
The sensitivity test for numerical simulation when 




T
̄

=
300



$\bar{T}=300$



.
Figure A2:

The sensitivity test for numerical simulation when T ̄ = 300 .

At last, we change the product prices in the urban skilled and unskilled sectors relative to the agricultural sector. Specifically, we reset p X and p Y as 2 and 1, respectively. Other parameters’ values remain unchanged. Then, we conduct numerical simulation with the same methods and the results are shown in Figure A3.

Figure A3: 
The sensitivity test for numerical simulation when p

X
 = 2 and p

Y
 = 1.
Figure A3:

The sensitivity test for numerical simulation when p X = 2 and p Y = 1.

References

Acemoglu, D., and J. Angrist. 2000. “How Large are Human-Capital Externalities? Evidence from Compulsory Schooling Laws.” NBER Macroeconomics Annual 15 (1): 9–59. https://doi.org/10.1086/654403.Search in Google Scholar

Anwar, S., and S. Sun. 2015. “Taxation of Labour Income and the Skilled-Unskilled Wage Inequality.” Economic Modelling 47: 18–22. https://doi.org/10.1016/j.econmod.2014.12.037.Search in Google Scholar

Azariadis, C., and A. Drazen. 1990. “Threshold Externalities in Economic Development.” Quarterly Journal of Economics 105 (2): 501–26. https://doi.org/10.2307/2937797.Search in Google Scholar

Baranano, I. 2001. “On Human Capital Externalities and Aggregate Fluctuations.” Journal of Economics and Business 53 (5): 459–72. https://doi.org/10.1016/S0148-6195(01)00043-1.Search in Google Scholar

Becker, G. S. 1964. Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education, 2nd ed. New York: Columbia University Press. https://www.nber.org/books-and-chapters/human-capital-theoretical-and-empirical-analysis-special-reference-education-second-edition (accessed August 3, 2025).Search in Google Scholar

Beladi, H., A. Chakrabarti, and S. Marjit. 2010. “Skilled-Unskilled Wage Inequality and Urban Unemployment.” Economic Inquiry 48 (4): 997–1007. https://doi.org/10.1111/j.1465-7295.2009.00247.x.Search in Google Scholar

Beladi, H., S. Chaudhuri, and S. Yabuuchi. 2008. “Can International Factor Mobility Reduce Wage Inequality in a Dual Economy?” Review of International Economics 16 (5): 893–903. https://doi.org/10.1111/j.1467-9396.2008.00751.x.Search in Google Scholar

Benabou, R. 1996. “Equity and Efficiency in Human Capital Investment: The Local Connection.” The Review of Economic Studies 63 (2): 237–64. https://doi.org/10.2307/2297851.Search in Google Scholar

Black, D., and V. Henderson. 1999. “A Theory of Urban Growth.” Journal of Political Economy 107 (2): 252–84. https://doi.org/10.1086/250060.Search in Google Scholar

Broersma, L., A. Edzes, and J. V. Dijk. 2016. “Human Capital Externalities: Effects for Low-Educated Workers and Low-Skilled Jobs.” Regional Studies 50 (10): 1675–87. https://doi.org/10.1080/00343404.2015.1053446.Search in Google Scholar

Chao, C., and E. S. H. Yu. 1995. “International Capital Mobility, Urban Unemployment and Welfare.” Southern Economic Journal 62 (2): 486–92. https://doi.org/10.2307/1060700.Search in Google Scholar

Chaudhuri, S., A. Ghosh, and D. Banerjee. 2018. “Can Public Subsidy on Education Necessarily Improve Wage Inequality?” International Review of Economics & Finance 54: 165–77. https://doi.org/10.1016/j.iref.2017.08.005.Search in Google Scholar

Ciccone, A., and G. Peri. 2006. “Identifying Human-Capital Externalities: Theory with Applications.” The Review of Economic Studies 73 (2): 381–412. https://doi.org/10.1111/j.1467-937X.2006.00380.x.Search in Google Scholar

Conley, T. G., F. Flyer, and G. R. Tsiang. 2003. “Spillovers from Local Market Human Capital and the Spatial Distribution of Productivity in Malaysia.” The B.E. Journal of Economic Analysis & Policy 3 (1): 1–47. https://doi.org/10.2202/1538-0637.1229.Search in Google Scholar

Davis, M. A., J. Fisher, and T. M. Whited. 2014. “Macroeconomic Implications of Agglomeration.” Econometrica 82 (2): 731–64. https://doi.org/10.3982/ECTA9029.Search in Google Scholar

Einarsson, T., and M. H. Marquis. 1996. “Note on Human Capital Externalities.” Journal of Macroeconomics 18 (2): 341–51. https://doi.org/10.1016/S0164-0704(96)80073-5.Search in Google Scholar

Glaeser, E. L., and J. D. Gottlieb. 2009. “The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States.” Journal of Economic Literature 47 (4): 983–1028. https://doi.org/10.1257/jel.47.4.983.Search in Google Scholar

Guvenen, F., B. Kuruscu, and S. Ozkan. 2009. “Taxation of Human Capital and Wage Inequality: A Cross-Country Analysis.” The Review of Economic Studies 81 (2): 818–50. https://doi.org/10.1093/restud/rdt042.Search in Google Scholar

Harris, R., and M. Todaro. 1970. “Migration, Unemployment, and Development: A Two-Sector Analysis.” The American Economic Review 60 (1): 126–42. https://www.jstor.org/stable/1807860.Search in Google Scholar

Heckman, J. J. 2000. “Policies to Foster Human Capital.” Research in Economics 54 (1): 3–56. https://doi.org/10.1006/reec.1999.0225.Search in Google Scholar

Higa, K., R. Nonaka, T. Tsurumi, and S. Managi. 2019. “Migration and Human Capital: Evidence from Japan.” Journal of the Japanese and International Economies 54: 101051. https://doi.org/10.1016/j.jjie.2019.101051.Search in Google Scholar

Jones, R. W. 1965. “The Structure of Simple General Equilibrium Models.” Journal of Political Economy 73 (6): 557–72. https://doi.org/10.1086/259084.Search in Google Scholar

Juhn, C., K. M. Murphy, and B. Pierce. 1993. “Wage Inequality and the Rise in Returns to Skill.” Journal of Political Economy 101 (3): 410–42. https://doi.org/10.1086/261881.Search in Google Scholar

Katz, L. F., and K. M. Murphy. 1992. “Changes in Relative Wages, 1963–1987: Supply and Demand Factors.” Quarterly Journal of Economics 107 (1): 35–78. https://doi.org/10.2307/2118323.Search in Google Scholar

Liu, Z. 2008. “Human Capital Externalities and Rural-Urban Migration: Evidence from Rural China.” China Economic Review 19 (3): 521–35. https://doi.org/10.1016/j.chieco.2008.04.001.Search in Google Scholar

Liu, S., and X. Yang. 2021. “Human Capital Externalities or Consumption Spillovers? The Effect of High-Skill Human Capital across Low-Skill Labor Markets.” Regional Science and Urban Economics 87: 103620. https://doi.org/10.1016/j.regsciurbeco.2020.103620.Search in Google Scholar

Lucas, R. E. 1988. “On the Mechanisms of Economic Development.” Journal of Monetary Economics 22 (1): 3–42. https://doi.org/10.1016/0304-3932(88)90168-7.Search in Google Scholar

Mankiw, N. D., D. Romer, and D. N. Weil. 1992. “A Contribution to the Empirics of Economic Growth.” Quarterly Journal of Economics 107 (2): 407–37. https://doi.org/10.2307/2118477.Search in Google Scholar

Martins, P. S., and J. Jin. 2010. “Firm-Level Social Returns to Education.” Journal of Population Economics 23 (2): 539–58. https://doi.org/10.1007/s00148-008-0204-9.Search in Google Scholar

Meckl, J., and S. Zink. 2002. “Human-Capital Investment and the Wage Gap.” Economic Theory 19 (4): 853–9. https://doi.org/10.1007/s001990100181.Search in Google Scholar

Moretti, E. 2004a. “Estimating the Social Return to Higher Education: Evidence from Longitudinal and Repeated Cross-Sectional Data.” Journal of Econometrics 121(1–2): 175–212. https://doi.org/10.1016/j.jeconom.2003.10.015.Search in Google Scholar

Moretti, E. 2004b. “Human Capital Externalities in Cities.” In Handbook of Urban and Regional Economics, edited by V. Henderson, and J.-F. Thisse, 2243–91. Amsterdam: Elsevier.10.1016/S1574-0080(04)80008-7Search in Google Scholar

Muravyev, A. 2008. “Human Capital Externalities: Evidence from the Transition Economy of Russia.” The Economics of Transition 16 (3): 415–43. https://doi.org/10.1111/j.1468-0351.2008.00330.x.Search in Google Scholar

Pi, J., and S. Li. 2022. “Managerial Delegation and Wage Inequality.” Annals of Economics and Finance 23 (1): 141–57.Search in Google Scholar

Pi, J., and P. Zhang. 2016. “Hukou System Reforms and Skilled-Unskilled Wage Inequality in China.” China Economic Review 41: 90–103. https://doi.org/10.1016/j.chieco.2016.08.009.Search in Google Scholar

Pi, J., and P. Zhang. 2018. “Rural-Urban Human Capital Disparity and Skilled-Unskilled Wage Inequality in China.” Review of Development Economics 22 (2): 827–43. https://doi.org/10.1111/rode.12370.Search in Google Scholar

Pi, J., and Y. Zhou. 2015. “The Impacts of Corruption on Wage Inequality and Rural-Urban Migration in Developing Countries.” The Annals of Regional Science 54 (3): 753–68. https://doi.org/10.1007/s00168-015-0674-0.Search in Google Scholar

Popli, G. K. 2011. “Changes in Human Capital and Wage Inequality in Mexico.” Oxford Development Studies 39 (3): 369–87. https://doi.org/10.1080/13600818.2011.596276.Search in Google Scholar

Rauch, J. E. 1993. “Productivity Gains from Geographic Concentration of Human Capital: Evidence from the Cites.” Journal of Urban Economics 34 (3): 380–400. https://doi.org/10.1006/juec.1993.1042.Search in Google Scholar

Romer, P. M. 1986. “Increasing Returns and Long-Run Growth.” Journal of Political Economy 94 (5): 1002–37. https://doi.org/10.1086/261420.Search in Google Scholar

Romer, P. M. 1990. “Endogenous Technological Change.” Journal of Political Economy 98 (5): 71–102, https://doi.org/10.1086/261725.Search in Google Scholar

Schultz, T. W. 1961. “Investment in Human Capital.” The American Economic Review 51 (1): 1–17. https://www.jstor.org/stable/1818907.Search in Google Scholar

Stark, O., and Y. Wang. 2002. “Inducing Human Capital Formation: Migration as a Substitute for Subsidies.” Journal of Public Economics 86 (1): 29–46. https://doi.org/10.1016/S0047-2727(01)00104-9.Search in Google Scholar

Sun, S., and S. Anwar. 2015. “Taxation of Labour, Product Varieties and Skilled-Unskilled Wage Inequality: Short-Run Versus Long-Run.” International Review of Economics & Finance 38: 250–7. https://doi.org/10.1016/j.iref.2015.03.001.Search in Google Scholar

Sveikauskas, L. 1975. “The Productivity of Cities.” Quarterly Journal of Economics 89 (3): 393–413. https://doi.org/10.2307/1885259.Search in Google Scholar

Yabuuchi, S. 1993. “Urban Unemployment, International Capital Mobility and Development Policy.” Journal of Development Economics 41 (2): 399–403. https://doi.org/10.1016/0304-3878(93)90065-U.Search in Google Scholar

Yu, B., G. Niu, J. Ye, and W. Zhang. 2023. “Human Capital Agglomeration, Institutional Barriers, and Internal Migration in China.” Growth and Change 54 (1): 284–303. https://doi.org/10.1111/grow.12650.Search in Google Scholar

Received: 2025-02-03
Accepted: 2025-08-04
Published Online: 2025-08-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2025-0010/html
Scroll to top button