Home Trend Breaks and the Persistence of Closed-End Fund Discounts
Article
Licensed
Unlicensed Requires Authentication

Trend Breaks and the Persistence of Closed-End Fund Discounts

  • Nazif Durmaz , Hyeongwoo Kim , Hyejin Lee EMAIL logo and Yanfei Sun
Published/Copyright: September 5, 2025
Become an author with De Gruyter Brill

Abstract

Closed-end fund (CEF) prices often exhibit large and persistent deviations from their associated net asset values (NAVs). This occurrence is puzzling, given that NAVs are openly accessible to the public for CEFs, which essentially consist of repackaged financial assets. The persistence of these deviations is particularly notable when using linear models, suggesting the need for nonlinear models to comprehend this phenomenon known as the CEF discount puzzle. To unravel this puzzle, we employ the RALS-LM framework, enabling the identification of multiple endogenously chosen trend-breaks, and conduct an analysis utilizing data from 31 CEF discounts. Our findings reveal that CEF prices tend to fluctuate around time-varying trends, which aligns with the characteristics of regime switching models. Additionally, we demonstrate that incorporating non-normal errors through moment conditions enhances efficiency at the margin. Moreover, we establish that nonlinearity solely in the form of level shifts falls short in explaining the persistent nature of CEF discounts.

JEL Classification: C22; G12; G15

Corresponding author: Hyejin Lee, Department of Accounting, Economics & Finance, Tuskegee University, 1200 W Montgomery Rd, Tuskegee, AL 36088, USA, E-mail:

Appendix A: Derivation of h t in RALS(t ν ) test

Let y 1 , y 2 , , y T be i.i.d. observations from a generalized Student’s t-distribution with the following pdf:

f y t ; ν , μ , σ = Γ ν + 1 2 σ Γ ν 2 ν π 1 + y t μ 2 ν σ 2 1 2 ν + 1 ,

where μ is a location parameter, σ is a scale parameter, and ν denotes degrees of freedom. The log-likelihood function is the following.

ln L T ν , μ , σ = 1 T t = 1 T ln f y t ; ν , μ , σ

= 1 T t = 1 T ln Γ ν + 1 2 ln σ ln Γ ν 2 1 2 ln ν π ν + 1 2 ln 1 + y t μ 2 ν σ 2

= 1 T · T ln Γ ν + 1 2 ln σ ln Γ ν 2 1 2 ln ν π 1 T t = 1 T ν + 1 2 ln ν σ 2 + y t μ 2 ν σ 2

Differentiating ln L T · with respect to μ yields,

ln L T μ = 1 T t = 1 T ν + 1 2 ν σ 2 ν σ 2 + y t μ 2 2 y t μ 1 ν σ 2

= 1 T t = 1 T ν + 1 y t μ ν σ 2 + y t μ 2 = 1 T t = 1 T h y t

The first order condition is 1 T t = 1 T h y t = 0 . Replacing y t with e t μ = 0 , σ 2 = 1 , we obtain,

h e t = ν + 1 e t ν + e t 2

where ν is degrees of freedom. □

Appendix B: Additional tables

See Tables B1B3

Table B1:

RALS(t ν ) test results with alternative degrees of freedom.

Categories Fund τ RALS t 3 ρ ̂ t 3 2 τ RALS t 7 ρ ̂ t 7 2 k ̂
Core funds ADX −3.470a 0.753 −3.476a 0.792 8
CET −2.211 0.612 −2.009 0.646 5
CLM −1.878 0.865 −1.684 0.852 10
CRF −1.959 0.793 −1.825 0.681 0
FUND −2.426c 0.789 −2.688c 0.731 2
GAB −3.367b 0.852 −3.274b 0.817 0
GAM −3.395a 0.451 −3.220a 0.492 9
GRF −1.696 0.913 −1.804 0.820 10
RMT −1.713 0.819 −1.769 0.825 10
RVT −1.740 0.828 −1.846 0.811 7
SOR −1.601 0.585 −1.471 0.631 3
SPE −4.190a 0.615 −3.835a 0.681 1
TY −3.851a 0.385 −3.669a 0.410 6
USA −1.861 0.486 −1.914 0.530 1
Corp debt BBB ICB −4.419a 0.630 −4.354a 0.661 7
INSI −3.701a 0.780 −3.904a 0.756 5
MGF −3.027b 0.630 −3.050b 0.622 8
MIN −0.878 0.794 −0.766 0.802 5
PAI −3.356b 0.829 −3.266b 0.820 8
VBF −3.141b 0.847 −3.104b 0.842 3
General bond DUC −0.736 0.753 −0.830 0.752 1
JHI −2.145 0.874 −2.138 0.876 1
KMM −3.187b 0.676 −3.289a 0.681 7
KST −2.933b 0.631 −2.936b 0.624 10
MCI −2.848b 0.979 −2.817b 0.945 2
MCR −2.735c 0.831 −2.706c 0.825 1
MMT −3.372a 0.837 −3.486a 0.847 1
MPV −2.809b 0.777 −2.818b 0.722 8
PCM −1.749 0.956 −1.409 0.889 4
PIM −3.130b 0.594 −3.306a 0.587 8
PPT −1.496 0.684 −1.495 0.672 10
  1. Note: (a) τ RALS t v are the test statistics for the RALS( t v ) test. (b) ρ ̂ t v 2 indicates the ratio of the estimated error variances for the RALS( t v ). (c) We chose the optimal number of lags ( k ̂ ) based on the general-to-specific rule with a maximum 10 lags. (d) a, b and cdenote a 1 %, 5 % and 10 % rejection, respectively. (e) The critical values of RALS tests are dependent on ρ ̂ 2 and were obtained from Hansen (1995).

Table B2:

LM and RALS-LM test results with one level shift.

Categories Fund τ L M τ RALS‐LM 2 & 3 ρ ^ 2 & 3 2 τ RALS‐LM t 5 ρ ^ t 5 2 τ RALS‐LM t 3 ρ ^ t 3 2 τ RALS‐LM t 7 ρ ^ t 7 2 T ^ B k ^
Core funds ADX −1.952 −1.787 0.827 −1.741 0.723 −1.911 0.695 −1.649 0.740 2002:07 8
CET −3.531b −2.671 0.843 −2.806c 0.714 −3.012b 0.702 −2.874c 0.725 2008:10 8
CLM −2.357 −1.906 0.869 −2.831c 0.805 −1.954 0.850 −1.848 0.817 2008:08 0
CRF −1.803 −0.886 0.793 −2.123 0.712 −2.066 0.789 −2.124 0.679 2008:08 0
FUND −1.480 −1.204 0.861 −0.992 0.776 −0.717 0.829 −0.776 0.785 2007:10 3
GAB −2.312 −1.222 0.878 −1.562 0.830 −2.179 0.864 −2.075 0.856 2009:04 1
GAM −2.854c −2.580 0.720 −2.378 0.632 −2.371 0.635 −2.373 0.635 2008:10 9
GRF −2.315 −3.467b 0.827 −2.221 0.985 −2.144 0.994 −2.052 0.947 2003:06 9
RMT −1.273 −1.672 0.920 −1.401 0.844 −1.322 0.848 −1.463 0.843 2005:12 10
RVT −1.505 −1.699 0.914 −1.423 0.814 −1.336 0.832 −1.479 0.809 2009:04 7
SOR −2.567 −2.016 0.856 −2.481 0.615 −2.859b 0.589 −2.525 0.654 2008:10 6
SPE −1.911 −0.614 0.306 −1.211 0.200 −1.025 0.210 −0.843 0.201 2001:02 0
TY −3.671a −3.230b 0.617 −2.896b 0.433 −2.849b 0.415 −2.755b 0.444 2008:11 6
USA −2.564 −1.995 0.773 −2.180 0.590 −1.997 0.575 −1.992 0.605 2008:10 5
Corp debt ICB −2.769c −2.745c 0.843 −2.935b 0.741 −2.578 0.730 −2.478 0.755 2000:11 1
BBB INSI −2.481 −2.060 0.914 −1.698 0.876 −2.143 0.905 −2.128 0.876 2008:08 10
MGF −2.135 −2.660c 0.790 −3.094b 0.663 −3.004b 0.669 −3.128b 0.663 2008:08 8
MIN −2.004 −1.570 0.975 −1.466 0.916 −1.487 0.896 −1.462 0.927 2013:04 5
PAI −1.936 −1.888 0.922 −1.948 0.878 −1.681 0.875 −1.724 0.892 2009:09 9
VBF −3.210b −3.739a 0.893 −3.433b 0.832 −3.399b 0.833 −3.457b 0.835 2003:06 3
General DUC −2.202 −1.597 0.914 −1.211 0.781 −1.597 0.757 −1.683 0.778 2008:12 10
Bond JHI −2.178 −2.531 0.951 −2.429 0.873 −2.443 0.854 −2.434 0.881 2012:09 1
KMM −2.647 −2.503 0.906 −2.406 0.676 −2.383 0.661 −2.419 0.689 2008:10 7
KST −2.035 −1.746 0.713 −1.520 0.726 −1.419 0.777 −1.606 0.701 2000:12 10
MCI −2.546 −2.884c 0.927 −2.426 0.978 −2.448 0.977 −2.409 0.976 2009:04 2
MCR −2.836c −2.646 0.879 −2.258 0.847 −2.676 0.860 −2.612 0.839 2014:11 10
MMT −2.794c −2.541 0.950 −2.280 0.856 −2.247 0.836 −2.306 0.867 2008:08 1
MPV −2.734 −2.822c 0.824 −1.990 0.772 −2.125 0.834 −1.910 0.733 2006:12 8
PCM −3.078b −3.085b 0.820 −2.450 0.905 −2.059 0.924 −1.933 0.888 2008:08 8
PIM −3.546b −3.566a 0.794 −3.832a 0.614 −3.797a 0.617 −3.851a 0.617 2007:09 8
PPT −3.143b −3.059b 0.834 −3.335b 0.582 −3.434a 0.545 −3.274b 0.605 2007:10 10
  1. Note: (a) τ L M , τ RALS LM 2 & 3 , τ RALS LM t v are the test statistics for the LM, RALS-LM(2&3), and RALS-LM( t v ) tests, where v = 5, 3, 7, respectively. (b) ρ ̂ 2 & 3 2 and ρ ̂ t v 2 indicate the ratio of the estimated error variances for RALS-LM(2&3) and RALS-LM( t v ) tests, respectively. (c) k ̂ and T ̂ B denote the optimal number of lags and the estimated break point, respectively. Since the number of lags and the break date determined using max F statistic are used in both LM and RALS-LM unit root tests, we report them one time. (d) The critical values for LM and RALS-LM tests are reported in Table 11.1 of Meng et al. (2014). (e) a, b, and cdenote a 1 %, 5 %, and 10 % rejection, respectively.

Table B3:

LM and RALS-LM test results with two level shifts.

Categories Fund τ L M τ RALS‐LM 2 & 3 ρ ^ 2 & 3 2 τ RALS‐LM t 5 ρ ^ t 5 2 τ RALS‐LM t 3 ρ ^ t 3 2 τ RALS‐LM t 7 ρ ^ t 7 2 T ^ B k ^
Core ADX −1.780 −1.356 0.875 −1.499 0.772 −1.668 0.747 −1.410 0.787 2002:07 2007:11 8
Funds CET −3.180b −2.887c 0.839 −3.361b 0.684 −3.386b 0.668 −3.328b 0.696 2001:01 2008:10 5
CLM −2.163 −1.981 0.871 −2.598 0.825 −1.901 0.858 −1.764 0.842 2008:08 2010:01 0
CRF −2.118 −2.172 0.880 −2.788c 0.801 −2.682c 0.835 −2.840c 0.782 2002:09 2008:08 0
FUND −1.523 −1.081 0.893 −0.910 0.773 −0.342 0.814 −0.487 0.819 2007:10 2009:02 4
GAB −2.453 −1.654 0.857 −2.213 0.861 −3.021c 0.971 −2.923c 0.917 2008:11 2009:04 7
GAM −2.658 −3.289b 0.752 −3.341b 0.620 −3.402b 0.603 −3.291b 0.633 2008:10 2008:12 9
GRF −3.474b −3.897a 0.812 −3.895a 0.698 −2.732c 0.714 −2.807c 0.669 2003:05 2004:03 1
RMT −1.194 −0.699 0.949 −0.997 0.898 −0.938 0.882 −1.027 0.903 2008:12 2009:04 10
RVT −1.903 −2.112 0.932 −1.850 0.828 −1.767 0.834 −1.897 0.830 2008:08 2009:04 7
SOR −2.127 −1.960 0.858 −2.067 0.675 −2.210 0.670 −2.140 0.702 2008:10 2008:12 6
SPE −2.010 −0.851 0.289 −1.478 0.198 −1.331 0.206 −1.074 0.200 2001:02 2009:12 0
TY −2.024 −1.489 0.654 −0.297 0.464 −0.897 0.454 −1.272 0.480 2008:11 2009:02 10
USA −2.579 −2.367 0.813 −1.773 0.630 −1.291 0.610 −1.455 0.635 2004:04 2008:10 0
Corp debt ICB −2.982c −2.911c 0.858 −3.233b 0.736 −2.790c 0.720 −2.707c 0.746 2000:11 2008:11 1
BBB INSI −1.856 −1.384 0.937 −0.929 0.811 −0.985 0.812 −1.106 0.834 2008:08 2009:01 1
MGF −2.342 −2.826c 0.803 −3.508a 0.677 −3.465a 0.676 −3.523a 0.681 2008:08 2008:10 8
MIN −1.412 −1.033 0.981 −1.039 0.907 −1.072 0.889 −1.023 0.919 2010:11 2013:04 5
PAI −2.600 −2.880c 0.959 −2.909c 0.926 −2.417 0.955 −2.504 0.945 2008:12 2009:09 9
VBF −3.406b −3.665a 0.916 −3.719a 0.835 −3.199b 0.855 −3.257b 0.858 2003:06 2008:12 6
General DUC −3.173b −3.018b 0.905 −1.976 0.815 −1.811 0.791 −2.083 0.823 2006:02 2008:12 1
Bond JHI −2.309 −2.467 0.977 −2.286 0.918 −2.288 0.907 −2.293 0.923 2011:07 2012:09 1
KMM −2.540 −2.499 0.931 −2.647c 0.631 −2.742c 0.585 −2.595c 0.663 2000:11 2008:10 7
KST −2.289 −2.042 0.761 −2.110 0.791 −1.997 0.843 −2.189 0.762 2000:12 2001:07 10
MCI −2.673 −3.066b 0.939 −2.661 0.991 −2.654 0.997 −2.668 0.986 2008:09 2009:04 2
MCR −2.341 −1.723 0.886 −1.513 0.859 −1.752 0.871 −1.675 0.849 2008:08 2014:11 10
MMT −3.126b −3.239b 0.956 −3.078b 0.874 −3.034b 0.859 −3.101b 0.884 2008:08 2008:12 1
MPV −2.202 −1.971 0.872 −1.692 0.819 −1.948 0.834 −1.817 0.804 2003:11 2006:12 10
PCM −2.078 −2.044 0.888 −2.101 0.895 −2.050 0.928 −2.133 0.875 2007:02 2008:08 4
PIM −3.389b −3.222b 0.787 −3.455a 0.605 −3.408b 0.603 −3.484a 0.613 2007:09 2008:09 8
PPT −2.759 −2.275 0.827 −2.098 0.563 −2.176 0.510 −2.072 0.592 2007:10 2008:09 10
  1. Note: (a) τ L M , τ RALS LM 2 & 3 , τ RALS LM t v are the test statistics for the LM, RALS-LM (2&3), and RALS-LM ( t v ) tests, where v = 5, 3, 7, respectively. (b) ρ ̂ 2 & 3 2 and ρ ̂ t v 2 indicate the ratio of the estimated error variances for RALS-LM (2&3) and RALS-LM ( t v ) tests, respectively. (c) k ̂ and T ̂ B denote the optimal number of lags and the estimated break points, respectively. Since the number of lags and the break dates determined using max F statistic are used in both LM and RALS-LM unit root tests, we report them one time. (d) The critical values for LM and RALS-LM tests are reported in Table 11.1 of Meng et al. (2014). (e) a, b, and cdenote a 1 %, 5 %, and 10 % rejection, respectively.

References

Abraham, Abraham, Don Elan, and Alan J. Marcus. 1993. “Does Sentiment Explain Closed‐end Fund Discounts? Evidence from Bond Funds.” Financial Review 28 (4): 607–16. https://doi.org/10.1111/j.1540-6288.1993.tb01364.x.Search in Google Scholar

Ahmed, Ehsan, Roger Koppl, J. Barkley RosserJr., and Mark V. White. 1997. “Complex Bubble Persistence in Closed-End Country Funds.” Journal of Economic Behavior & Organization 32 (1): 19–37. https://doi.org/10.1016/S0167-2681(96)00017-0.Search in Google Scholar

Amsler, Christine, and Junsoo Lee. 1995. “An LM Test for a Unit Root in the Presence of a Structural Change.” Econometric Theory 11 (2): 359–68. https://doi.org/10.1017/S026646660000921X.Search in Google Scholar

Anderson, Seth, Thomas Randolph Beard, Hyeongwoo Kim, and Liliana V. Stern. 2013. “Fear and Closed-End Fund Discounts.” Applied Economics Letters 20 (10): 956–9. https://doi.org/10.1080/13504851.2013.767969.Search in Google Scholar

Anderson, Seth, T. Randolph Beard, Hyeongwoo Kim, and Liliana V. Stern. 2016. “The Short-Run Pricing Behavior of Closed-End Funds: Bond vs. Equity Funds.” Journal of Financial Services Research 50 (3): 363–86. https://doi.org/10.1007/s10693-015-0227-9.Search in Google Scholar

Andrews, Donald W. K. 1993. “Exactly Median-Unbiased Estimation of First Order Autoregressive/unit Root Models.” Econometrica 61: 139–65. https://doi.org/10.2307/2951781.Search in Google Scholar

Andrews, Donald W. K., and Hong-Yuan Chen. 1994. “Approximately Median-Unbiased Estimation of Autoregressive Models.” Journal of Business & Economic Statistics 12 (2): 187–204. https://doi.org/10.1080/07350015.1994.10510007.Search in Google Scholar

Bai, Jennie, Thomas Philippon, and Alexi Savov. 2016. “Have Financial Markets Become More Informative?” Journal of Financial Economics 122 (3): 625–54. https://doi.org/10.1016/j.jfineco.2016.08.005.Search in Google Scholar

Balvers, Ronald, Yangru Wu, and Erik Gilliland. 2000. “Mean Reversion across National Stock Markets and Parametric Contrarian Investment Strategies.” The Journal of Finance 55 (2): 745–72. https://doi.org/10.1111/0022-1082.00225.Search in Google Scholar

Berk, Jonathan B., and Richard Stanton. 2007. “Managerial Ability, Compensation, and the Closed‐end Fund Discount.” The Journal of Finance 62 (2): 529–56. https://doi.org/10.1111/j.1540-6261.2007.01216.x.Search in Google Scholar

Bradley, Michael, Alon Brav, Itay Goldstein, and Wei Jiang. 2010. “Activist Arbitrage: A Study of Open-Ending Attempts of Closed-End Funds.” Journal of Financial Economics 95 (1): 1–19. https://doi.org/10.1016/j.jfineco.2009.01.005.Search in Google Scholar

Breusch, Trevor, Hailong Qian, Peter Schmidt, and Donald Wyhowski. 1999. “Redundancy of Moment Conditions.” Journal of Econometrics 91 (1): 89–111. https://doi.org/10.1016/S0304-4076(98)00050-5.Search in Google Scholar

Brogaard, Jonathan, Thanh Huong Nguyen, Talis J. Putnins, and Eliza Wu. 2022. “What Moves Stock Prices? the Roles of News, Noise, and Information.” Review of Financial Studies 35 (9): 4341–86. https://doi.org/10.1093/rfs/hhab137.Search in Google Scholar

Campbell, John Y., and Robert J. Shiller. 1988a. “The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors.” Review of Financial Studies 1 (3): 195–228. https://doi.org/10.1093/rfs/1.3.195.Search in Google Scholar

Campbell, John Y., and Robert J. Shiller. 1988b. “Stock Prices, Earnings, and Expected Dividends.” The Journal of Finance 43 (3): 661–76. https://doi.org/10.1111/j.1540-6261.1988.tb04598.x.Search in Google Scholar

Chen, Long, and Xinlei Zhao. 2009. “Return Decomposition.” Review of Financial Studies 22 (12): 5213–49. https://doi.org/10.1093/rfs/hhp017.Search in Google Scholar

Chen, Long, Zhi Da, and Xinlei Zhao. 2013. “What Drives Stock Price Movements?” Review of Financial Studies 26 (4): 841–76. https://doi.org/10.1093/rfs/hht005.Search in Google Scholar

Chopra, Navin, Charles M. C. Lee, Andrei Shleifer, and Richard H. Thaler. 1993. “Yes, Discounts on Closed-End Funds Are a Sentiment Index.” The Journal of Finance 48 (2): 801–8. https://doi.org/10.2307/2328927.Search in Google Scholar

Day, Theodore E., George Z. Li, and Yexiao Xu. 2011. “Dividend Distributions and Closed-End Fund Discounts.” Journal of Financial Economics 100 (3): 579–93. https://doi.org/10.1016/j.jfineco.2011.01.004.Search in Google Scholar

De Long, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann. 1990. “Noise Trader Risk in Financial Markets.” Journal of Political Economy 98 (4): 703–38. https://doi.org/10.1086/261703.Search in Google Scholar

Deb, Partha, and Martin Sefton. 1996. “The Distribution of a Lagrange Multiplier Test of Normality.” Economics Letters 51 (2): 123–30. https://doi.org/10.1016/0165-1765(95)00784-9.Search in Google Scholar

Engle, Charles, and James D. Hamilton. 1990. “Long Swings in the Dollar: Are They in the Data and Do Markets Know it.” The American Economic Review 80 (4): 689–713. https://www.jstor.org/stable/2006703.Search in Google Scholar

Fama, Eugene F. 1970. “Efficient Capital Markets: A Review of Theory and Empirical Work.” The Journal of Finance 25 (2): 383–417. https://doi.org/10.2307/2325486.Search in Google Scholar

Fan, Zhenzhen, Alexander Paseka, Zhen Qi, and Zhang Qi. 2022. “Currency Carry Trade: The Decline in Performance After the 2008 Global Financial Crisis.” Journal of International Financial Markets, Institutions and Money 76: 101460. https://doi.org/10.1016/j.intfin.2021.101460.Search in Google Scholar

Farboodi, Maryam, Adrien Matray, Laura Veldkamp, and Venky Venkateswaran. 2022. “Where Has All the Data Gone?” Review of Financial Studies 35 (7): 3101–38. https://doi.org/10.1093/rfs/hhab110.Search in Google Scholar

Gemmill, Gordon, and Dylan C. Thomas. 2002. “Noise Trading, Costly Arbitrage, and Asset Prices: Evidence from Closed‐End Funds.” The Journal of Finance 57 (6): 2571–94. https://doi.org/10.1111/1540-6261.00506.Search in Google Scholar

Hamilton, James D. 1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” Econometrica 57 (2): 357–84. https://doi.org/10.2307/1912559.Search in Google Scholar

Hanley, Kathleen Weiss, Charles M. C. Lee, and Paul L. Seguin. 1996. “The Marketing of Closed-End Fund IPOs: Evidence from Transactions Data.” Journal of Financial Intermediation 5 (2): 127–59. https://doi.org/10.1006/jfin.1996.0008.Search in Google Scholar

Hansen, Bruce E. 1995. “Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power.” Econometric Theory 11 (5): 1148–71. https://doi.org/10.1017/S0266466600009993.Search in Google Scholar

Hansen, Bruce E. 1999. “The Grid Bootstrap and the Autoregressive Model.” The Review of Economics and Statistics 81 (4): 594–607. https://doi.org/10.1162/003465399558463.Search in Google Scholar

Hsu, Chih-Chiang, and Chung-Ming Kuan. 2001. “Distinguishing between Trend-Break Models: Method and Empirical Evidence.” The Econometrics Journal 4 (2): 171–90. https://doi.org/10.1111/1368-423X.00061.Search in Google Scholar

Hughen, J. Christopher, and Mark E. Wohar. 2006. “Identifying Regime Changes in Closed-End Fund Discounts.” Journal of Economics and Finance 30 (1): 115–32. https://doi.org/10.1007/BF02834279.Search in Google Scholar

Im, Kyung So, and Peter Schmidt. 2008. “More Efficient Estimation under Non-normality When Higher Moments Do Not Depend on the Regressors, Using Residual Augmented Least Squares.” Journal of Econometrics 144 (1): 219–33. https://doi.org/10.1016/j.jeconom.2008.01.003.Search in Google Scholar

Jarque, Carlos M., and Anil K. Bera. 1980. “Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals.” Economics Letters 6 (3): 255–9. https://doi.org/10.1016/0165-1765(80)90024-5.Search in Google Scholar

Jarque, Carlos M., and Anil K. Bera. 1987. “A Test for Normality of Observations and Regression Residuals.” International Statistical Review/Revue Internationale de Statistique 55 (2): 163–72. https://doi.org/10.2307/1403192.Search in Google Scholar

Jarrow, Robert, and Philip Protter. 2019. “A Rational Asset Pricing Model for Premiums and Discounts on Closed‐end Funds: The Bubble Theory.” Mathematical Finance 29 (4): 1157–70. https://doi.org/10.1111/mafi.12207.Search in Google Scholar

Kaminsky, Graciela. 1993. “Is There a Peso Problem? Evidence from the Dollar/Pound Exchange Rate, 1976–1987.” The American Economic Review 83 (3): 450–72. https://www.jstor.org/stable/2117528.Search in Google Scholar

Kendall, Maurice G. 1954. “Note on Bias in the Estimation of Autocorrelation.” Biometrika 41 (3–4): 403–4. https://doi.org/10.1093/biomet/41.3-4.403.Search in Google Scholar

Kim, Hyeongwoo. 2009. “On the Usefulness of the Contrarian Strategy across National Stock Markets: A Grid Bootstrap Analysis.” Journal of Empirical Finance 16 (5): 734–44. https://doi.org/10.1016/j.jempfin.2009.06.005.Search in Google Scholar

Lee, Hyejin, and Mansik Hur. 2021. “Non-normal Errors or Nonlinearity? Performance of Unit Root Tests.” Applied Economics 53 (52): 6094–103. https://doi.org/10.1080/00036846.2021.1937038.Search in Google Scholar

Lee, Junsoo, and Mark C. Strazicich. 2003. “Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks.” The Review of Economics and Statistics 85 (4): 1082–9. https://doi.org/10.1162/003465303772815961.Search in Google Scholar

Lee, Charles M. C., Andrei Shleifer, and Richard H. Thaler. 1990. “Anomalies: Closed-End Mutual Funds.” The Journal of Economic Perspectives 4 (4): 153–64. https://doi.org/10.1257/jep.4.4.153.Search in Google Scholar

Lee, Charles M. C., Andrei Shleifer, and Richard H. Thaler. 1991. “Investor Sentiment and the Closed‐End Fund Puzzle.” The Journal of Finance 46 (1): 75–109. https://doi.org/10.1111/j.1540-6261.1991.tb03746.x.Search in Google Scholar

Lee, Junsoo, Mark C. Strazicich, and Ming Meng. 2012. “Two-step LM Unit Root Tests with Trend-Breaks.” Journal of Statistical and Econometric Methods 1 (2): 81–107. https://www.scienpress.com/Upload/JSEM/Vol%201_2_8.pdf.Search in Google Scholar

Lee, Junsoo, and Margie Tieslau. 2019. “Panel LM unit root tests with level and trend shifts.” Economic Modelling 80: 1–10. https://doi.org/10.1016/j.econmod.2017.11.001.Search in Google Scholar

Malkiel, Burton G. 1977. “The Valuation of Closed‐end Investment‐Company Shares.” The Journal of Finance 32 (3): 847–59. https://doi.org/10.1111/j.1540-6261.1977.tb01993.x.Search in Google Scholar

Malkiel, Burton G. 1995. “Returns from Investing in Equity Mutual Funds 1971 to 1991.” The Journal of Finance 50 (2): 549–72. https://doi.org/10.1111/j.1540-6261.1995.tb04795.x.Search in Google Scholar

Meng, Ming, Kyung So Im, Junsoo Lee, and Margie A. Tieslau. 2014. “More Powerful LM Unit Root Tests with Non-normal Errors.” In Festschrift in Honor of Peter Schmidt, edited by R. Sickles, and W. Horrace. New York, NY: Springer.10.1007/978-1-4899-8008-3_11Search in Google Scholar

Meng, Ming, Junsoo Lee, and James E. Payne. 2017. “RALS-LM Unit Root Test with Trend Breaks and Non-normal Errors: Application to the Prebisch-Singer Hypothesis.” Studies in Nonlinear Dynamics & Econometrics 21 (1): 31–45. https://doi.org/10.1515/snde-2016-0050.Search in Google Scholar

Morck, Randall, Bernard Yeung, and Wayne Yu. 2000. “The Information Content of Stock Markets: Why Do Emerging Markets Have Synchronous Stock Price Movements?” Journal of Financial Economics 58 (1–2): 215–60. https://doi.org/10.1016/S0304-405X(00)00071-4.Search in Google Scholar

Nelson, Charles R., and Charles R. Plosser. 1982. “Trends and Random Walks in Macroeconmic Time Series: Some Evidence and Implications.” Journal of Monetary Economics 10 (2): 139–62. https://doi.org/10.1016/0304-3932(82)90012-5.Search in Google Scholar

Perron, Pierre. 1989. “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis.” Econometrica 57 (6): 1361–401. https://doi.org/10.2307/1913712.Search in Google Scholar

Perron, Pierre. 1997. “Further Evidence on Breaking Trend Functions in Macroeconomic Variables.” Journal of Econometrics 80 (2): 355–85. https://doi.org/10.1016/S0304-4076(97)00049-3.Search in Google Scholar

Pontiff, Jeffrey. 1995. “Closed-end Fund Premia and Returns Implications for Financial Market Equilibrium.” Journal of Financial Economics 37 (3): 341–70. https://doi.org/10.1016/0304-405X(94)00800-G.Search in Google Scholar

Pontiff, Jeffrey. 1996. “Costly Arbitrage: Evidence from Closed-End Funds.” Quarterly Journal of Economics 111 (4): 1135–51. https://doi.org/10.2307/2946710.Search in Google Scholar

Roll, Richard. 1988. “R2.” The Journal of Finance 43 (3): 541–66. https://doi.org/10.1111/j.1540-6261.1988.tb04591.x.Search in Google Scholar

Ross, Stephen A. 2002. A Neoclassical Look at Behavioral Finance: Closed-End Funds, Princeton Lectures in Finance III. Princeton: Princeton Univ. Press. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f133ab9137f897f80ff7860712bfbf80aa75cfd6.Search in Google Scholar

Schmidt, Peter, and Peter C. B. Phillips. 1992. “LM Tests for a Unit Root in the Presence of Deterministic Trends.” Oxford Bulletin of Economics & Statistics 54 (3): 257–87. https://doi.org/10.1111/j.1468-0084.1992.tb00002.x.Search in Google Scholar

Shaman, Paul, and Robert A. Stine. 1988. “The Bias of Autoregressive Coefficient Estimators.” Journal of the American Statistical Association 83 (403): 842–8. https://doi.org/10.1080/01621459.1988.10478672.Search in Google Scholar

So, Beong Soo, and Dong Wan Shin. 1999. “Recursive Mean Adjustment in Time-Series Inferences.” Statistics & Probability Letters 43 (1): 65–73. https://doi.org/10.1016/S0167-7152(98)00247-8.Search in Google Scholar

Thompson, Rex. 1978. “The Information Content of Discounts and Premiums on Closed-End Fund Shares.” Journal of Financial Economics 6 (2–3): 151–86. https://doi.org/10.1016/0304-405X(78)90028-4.Search in Google Scholar

Zivot, Eric, and Donald W. K. Andrews. 2002. “Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis.” Journal of Business & Economic Statistics 20 (1): 25–44. https://doi.org/10.1198/073500102753410372.Search in Google Scholar

Received: 2024-11-08
Accepted: 2025-08-08
Published Online: 2025-09-05

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2024-0123/html?lang=en
Scroll to top button