Abstract
In this paper, we investigate the ripple effects of the US-China tension on Asian emerging markets (India, Indonesia, South Korea, Malaysia, Philippines, Taiwan, and Thailand) and Asian frontier markets (Bangladesh, Sri Lanka, Pakistan, Bahrain, Kuwait, Vietnam, and Oman) for the period spanning from February 2013 to February 2024. The US-China Tension Index (UCTI) is a proxy variable for the US-China tension. Time-varying parameter vector autoregression, wavelet coherence, and hedging effectiveness techniques are employed for the empirical analysis. Findings show that the total connectedness between UCTI and Asian frontier markets is stronger than that of Asian emerging markets. Moreover, findings reveal that, in the case of Asian emerging markets, Indonesia, South Korea, Malaysia, Philippines, Taiwan, and Thailand are net transmitters of return spillovers, while India is a net receiver. In the case of Asian frontier markets, we find that Sri Lanka, Bahrain, Pakistan, Kuwait, and Oman are net transmitters. At the same time, Bangladesh and Vietnam are net receivers of return spillovers. In the frequency co-movement analysis, we report a positive correlation between UCTI and these markets at lower frequencies. In comparison, we report a negative correlation at the middle and higher frequencies. Furthermore, we report that hedging ratios highlight the significance of modifying portfolio weights in uncertain times when looking for investment opportunities in Asian emerging and frontier markets. Similarly, our findings highlight important implications for investors and portfolio managers to optimize their investments with risk-adjusted portfolios.
Funding source: University of Economics Ho Chi Minh City, Ho chi Minh city, Vietnam
Acknowledgement
OlaOluwa S. Yaya is a Research Fellow at the University of Economics Ho Chi Minh City, Vietnam. Comments of the Editor and the anonymous reviewers are greatly acknowledged.
-
Research funding: This research is partly funded by the University of Economics Ho Chi Minh City, Ho chi Minh city, Vietnam.
Appendix 1
Bivariate Portfolio Weights Hedge Ratio.
Mean | SD | 5 % | 95 % | HE | p-value | Mean | SD | 5 % | 95 % | HE | p-value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
India/Indonesia | 0.50 | 0.16 | 0.25 | 0.69 | 0.32 | 0.57 | India/Indonesia | 0.59 | 0.13 | 0.43 | 0.78 | 0.32 | 0.97 |
India/South Korea | 0.39 | 0.06 | 0.27 | 0.48 | 0.21 | 0.08 | India/South Korea | 0.57 | 0.04 | 0.52 | 0.65 | 0.29 | 0.81 |
India/Malaysia | 0.46 | 0.22 | 0.05 | 0.68 | 0.44 | 0.07 | India/Malaysia | 0.40 | 0.29 | 0.12 | 0.92 | 0.18 | 0.27 |
India/Philippine | 0.53 | 0.06 | 0.42 | 0.61 | 0.16 | 0.28 | India/Philippine | 0.60 | 0.07 | 0.51 | 0.70 | 0.45 | 0.80 |
India/Taiwan | 0.60 | 0.18 | 0.24 | 0.80 | 0.20 | 0.23 | India/Taiwan | 0.45 | 0.15 | 0.29 | 0.70 | 0.29 | 0.71 |
India/Thailand | 0.53 | 0.09 | 0.38 | 0.66 | 0.23 | 0.44 | India/Thailand | 0.53 | 0.09 | 0.42 | 0.69 | 0.35 | 0.74 |
India/Bangladesh | 0.47 | 0.05 | 0.41 | 0.53 | 0.45 | 0.00 | India/Bangladesh | 0.09 | 0.10 | −0.05 | 0.20 | −0.01 | 0.97 |
India/Sri Lanka | 0.58 | 0.05 | 0.48 | 0.65 | 0.22 | 0.00 | India/Sri Lanka | 0.14 | 0.05 | 0.06 | 0.20 | 0.06 | 0.77 |
India/Pakistan | 0.65 | 0.02 | 0.62 | 0.67 | 0.13 | 0.00 | India/Pakistan | 0.31 | 0.07 | 0.20 | 0.40 | 0.20 | 0.65 |
India/Bahrain | 0.38 | 0.09 | 0.16 | 0.50 | 0.56 | 0.80 | India/Bahrain | 0.42 | 0.15 | 0.22 | 0.64 | 0.10 | 0.76 |
India/Vietnam | 0.71 | 0.03 | 0.66 | 0.75 | 0.15 | 0.00 | India/Vietnam | 0.28 | 0.08 | 0.16 | 0.37 | 0.17 | 0.48 |
India/Kuwait | 0.98 | 0.01 | 0.97 | 0.99 | 0.02 | 0.00 | India/Kuwait | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.99 |
India/Oman | 0.33 | 0.07 | 0.24 | 0.44 | 0.56 | 0.29 | India/Oman | 0.37 | 0.10 | 0.22 | 0.49 | 0.10 | 0.00 |
Indonesia/India | 0.50 | 0.16 | 0.31 | 0.75 | −0.11 | 0.03 | Indonesia/India | 0.59 | 0.04 | 0.51 | 0.63 | 0.30 | 0.56 |
Indonesia/South Korea | 0.41 | 0.13 | 0.28 | 0.66 | −0.08 | 0.01 | Indonesia/South Korea | 0.42 | 0.04 | 0.36 | 0.50 | 0.20 | 0.81 |
Indonesia/Malaysia | 0.46 | 0.12 | 0.24 | 0.55 | 0.38 | 0.69 | Indonesia/Malaysia | 0.09 | 0.39 | −0.30 | 0.78 | −0.05 | 0.27 |
Indonesia/Philippine | 0.50 | 0.13 | 0.37 | 0.76 | −0.10 | 0.02 | Indonesia/Philippine | 0.59 | 0.10 | 0.39 | 0.68 | 0.39 | 0.80 |
Indonesia/Taiwan | 0.69 | 0.13 | 0.42 | 0.85 | 0.18 | 0.00 | Indonesia/Taiwan | 0.56 | 0.06 | 0.45 | 0.62 | 0.11 | 0.71 |
Indonesia/Thailand | 0.53 | 0.07 | 0.44 | 0.68 | 0.03 | 0.02 | Indonesia/Thailand | 0.65 | 0.09 | 0.47 | 0.73 | 0.33 | 0.74 |
Indonesia/Bangladesh | 0.47 | 0.03 | 0.44 | 0.54 | 0.29 | 0.00 | Indonesia/Bangladesh | −0.13 | 0.16 | −0.35 | 0.14 | −0.08 | 0.97 |
Indonesia/Sri Lanka | 0.57 | 0.12 | 0.44 | 0.75 | −0.10 | 0.00 | Indonesia/Sri Lanka | 0.25 | 0.11 | 0.11 | 0.38 | 0.01 | 0.77 |
Mean | SD | 5 % | 95 % | HE | p-value | Mean | SD | 5 % | 95 % | HE | p-value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indonesia/Pakistan | 0.60 | 0.08 | 0.51 | 0.76 | −0.04 | 0.00 | Indonesia/Pakistan | 0.05 | 0.13 | −0.11 | 0.26 | 0.00 | 0.65 |
Indonesia/Bahrain | 0.39 | 0.05 | 0.30 | 0.48 | 0.39 | 0.26 | Indonesia/Bahrain | 0.33 | 0.19 | 0.08 | 0.65 | 0.15 | 0.76 |
Indonesia/Vietnam | 0.67 | 0.11 | 0.56 | 0.88 | −0.12 | 0.00 | Indonesia/Vietnam | 0.12 | 0.15 | −0.06 | 0.35 | 0.10 | 0.48 |
Indonesia/Kuwait | 1.00 | 0.00 | 0.99 | 1.00 | 0.01 | 0.00 | Indonesia/Kuwait | 0.02 | 0.00 | 0.01 | 0.02 | 0.01 | 0.99 |
Indonesia/Oman | 0.31 | 0.05 | 0.26 | 0.41 | 0.41 | 0.03 | Indonesia/Oman | 0.41 | 0.16 | 0.04 | 0.59 | 0.01 | 0.00 |
South Korea/India | 0.61 | 0.06 | 0.52 | 0.73 | 0.26 | 0.17 | South Korea/India | 0.45 | 0.04 | 0.41 | 0.52 | 0.27 | 0.56 |
South Korea/Indonesia | 0.59 | 0.13 | 0.34 | 0.72 | 0.38 | 0.64 | South Korea/Indonesia | 0.34 | 0.10 | 0.23 | 0.54 | 0.14 | 0.97 |
South Korea/Malaysia | 0.56 | 0.21 | 0.12 | 0.75 | 0.40 | 0.01 | South Korea/Malaysia | 0.33 | 0.23 | 0.11 | 0.81 | 0.14 | 0.27 |
South Korea/Philippine | 0.63 | 0.06 | 0.52 | 0.70 | 0.25 | 0.17 | South Korea/Philippine | 0.43 | 0.05 | 0.37 | 0.51 | 0.26 | 0.80 |
South Korea/Taiwan | 0.69 | 0.22 | 0.32 | 0.88 | 0.13 | 0.76 | South Korea/Taiwan | 0.45 | 0.20 | 0.25 | 0.79 | 0.40 | 0.71 |
South Korea/Thailand | 0.63 | 0.10 | 0.44 | 0.74 | 0.26 | 0.50 | South Korea/Thailand | 0.41 | 0.08 | 0.30 | 0.56 | 0.25 | 0.74 |
South Korea/Bangladesh | 0.53 | 0.06 | 0.44 | 0.59 | 0.51 | 0.00 | South Korea/Bangladesh | 0.04 | 0.06 | −0.04 | 0.12 | 0.00 | 0.97 |
South Korea/Sri Lanka | 0.64 | 0.03 | 0.59 | 0.67 | 0.27 | 0.00 | South Korea/Sri Lanka | 0.10 | 0.03 | 0.06 | 0.17 | 0.03 | 0.77 |
South Korea/Pakistan | 0.70 | 0.04 | 0.65 | 0.76 | 0.18 | 0.00 | South Korea/Pakistan | 0.22 | 0.06 | 0.15 | 0.30 | 0.13 | 0.65 |
South Korea/Bahrain | 0.48 | 0.10 | 0.22 | 0.57 | 0.58 | 0.93 | South Korea/Bahrain | 0.23 | 0.09 | 0.14 | 0.45 | 0.04 | 0.76 |
South Korea/Vietnam | 0.80 | 0.03 | 0.75 | 0.85 | 0.11 | 0.00 | South Korea/Vietnam | 0.29 | 0.06 | 0.23 | 0.39 | 0.22 | 0.48 |
South Korea/Kuwait | 0.98 | 0.00 | 0.97 | 0.99 | 0.03 | 0.00 | South Korea/Kuwait | 0.00 | 0.00 | −0.01 | 0.00 | 0.00 | 0.99 |
South Korea/Oman | 0.42 | 0.08 | 0.30 | 0.53 | 0.60 | 0.24 | South Korea/Oman | 0.25 | 0.03 | 0.19 | 0.31 | 0.04 | 0.00 |
Malaysia/India | 0.54 | 0.22 | 0.32 | 0.95 | −0.37 | 0.00 | Malaysia/India | 0.33 | 0.08 | 0.22 | 0.46 | 0.31 | 0.56 |
Malaysia/Indonesia | 0.54 | 0.12 | 0.45 | 0.76 | 0.07 | 0.01 | Malaysia/Indonesia | 0.01 | 0.33 | −0.38 | 0.54 | −0.19 | 0.97 |
Malaysia/South Korea | 0.44 | 0.21 | 0.25 | 0.88 | −0.57 | 0.00 | Malaysia/South Korea | 0.34 | 0.05 | 0.27 | 0.40 | 0.33 | 0.81 |
Malaysia/Philippine | 0.53 | 0.15 | 0.41 | 0.89 | −0.31 | 0.00 | Malaysia/Philippine | −0.04 | 0.23 | −0.39 | 0.34 | −0.19 | 0.80 |
Malaysia/Taiwan | 0.57 | 0.10 | 0.52 | 0.84 | −0.23 | 0.00 | Malaysia/Taiwan | −0.16 | 0.37 | −0.56 | 0.43 | −0.67 | 0.71 |
Malaysia/Thailand | 0.55 | 0.14 | 0.45 | 0.89 | −0.19 | 0.00 | Malaysia/Thailand | −0.07 | 0.30 | −0.46 | 0.42 | −0.34 | 0.74 |
Malaysia/Bangladesh | 0.41 | 0.14 | 0.20 | 0.66 | 0.05 | 0.00 | Malaysia/Bangladesh | 0.45 | 0.22 | 0.09 | 0.74 | −0.42 | 0.97 |
Malaysia/Sri Lanka | 0.57 | 0.15 | 0.42 | 0.83 | −0.43 | 0.00 | Malaysia/Sri Lanka | −0.02 | 0.08 | −0.14 | 0.13 | 0.02 | 0.77 |
Malaysia/Pakistan | 0.63 | 0.17 | 0.39 | 0.91 | −0.35 | 0.00 | Malaysia/Pakistan | 0.41 | 0.10 | 0.23 | 0.57 | −0.06 | 0.65 |
Malaysia/Bahrain | 0.27 | 0.22 | 0.00 | 0.70 | 0.11 | 0.20 | Malaysia/Bahrain | 0.78 | 0.17 | 0.46 | 1.00 | −0.14 | 0.76 |
Malaysia/Vietnam | 0.74 | 0.17 | 0.49 | 0.99 | −0.22 | 0.00 | Malaysia/Vietnam | 0.49 | 0.15 | 0.26 | 0.69 | −0.11 | 0.48 |
Malaysia/Kuwait | 0.98 | 0.01 | 0.98 | 1.00 | 0.02 | 0.00 | Malaysia/Kuwait | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.99 |
Malaysia/Oman | 0.40 | 0.06 | 0.36 | 0.53 | 0.25 | 0.00 | Malaysia/Oman | −0.25 | 0.29 | −0.60 | 0.21 | −0.21 | 0.00 |
Philippine/India | 0.47 | 0.06 | 0.39 | 0.58 | 0.17 | 0.33 | Philippine/India | 0.62 | 0.05 | 0.52 | 0.69 | 0.47 | 0.56 |
Philippine/Indonesia | 0.50 | 0.13 | 0.24 | 0.63 | 0.34 | 0.58 | Philippine/Indonesia | 0.60 | 0.08 | 0.50 | 0.78 | 0.39 | 0.97 |
Philippine/South Korea | 0.37 | 0.06 | 0.30 | 0.48 | 0.22 | 0.10 | Philippine/South Korea | 0.56 | 0.03 | 0.52 | 0.63 | 0.26 | 0.81 |
Philippine/Malaysia | 0.47 | 0.15 | 0.11 | 0.59 | 0.47 | 0.12 | Philippine/Malaysia | 0.07 | 0.30 | −0.24 | 0.81 | −0.02 | 0.27 |
Philippine/Taiwan | 0.64 | 0.19 | 0.29 | 0.87 | 0.22 | 0.23 | Philippine/Taiwan | 0.52 | 0.07 | 0.46 | 0.64 | 0.25 | 0.71 |
Philippine/Thailand | 0.53 | 0.09 | 0.38 | 0.66 | 0.25 | 0.39 | Philippine/Thailand | 0.68 | 0.02 | 0.65 | 0.71 | 0.36 | 0.74 |
Philippine/Bangladesh | 0.46 | 0.03 | 0.43 | 0.50 | 0.48 | 0.00 | Philippine/Bangladesh | −0.12 | 0.14 | −0.35 | 0.10 | −0.06 | 0.97 |
Philippine/Sri Lanka | 0.57 | 0.06 | 0.50 | 0.66 | 0.19 | 0.00 | Philippine/Sri Lanka | 0.19 | 0.05 | 0.09 | 0.25 | 0.07 | 0.77 |
Philippine/Pakistan | 0.60 | 0.03 | 0.56 | 0.64 | 0.19 | 0.00 | Philippine/Pakistan | 0.11 | 0.09 | −0.01 | 0.27 | 0.08 | 0.65 |
Philippine/Bahrain | 0.41 | 0.08 | 0.16 | 0.46 | 0.56 | 0.94 | Philippine/Bahrain | 0.07 | 0.23 | −0.21 | 0.65 | 0.02 | 0.76 |
Philippine/Vietnam | 0.67 | 0.04 | 0.61 | 0.74 | 0.10 | 0.00 | Philippine/Vietnam | 0.19 | 0.13 | 0.03 | 0.39 | 0.18 | 0.48 |
Philippine/Kuwait | 0.98 | 0.00 | 0.98 | 0.99 | 0.02 | 0.00 | Philippine/Kuwait | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.99 |
Philippine/Oman | 0.31 | 0.03 | 0.24 | 0.36 | 0.59 | 0.18 | Philippine/Oman | 0.45 | 0.06 | 0.33 | 0.53 | 0.04 | 0.00 |
Taiwan/India | 0.40 | 0.18 | 0.20 | 0.76 | 0.19 | 0.20 | Taiwan/India | 0.56 | 0.05 | 0.44 | 0.62 | 0.31 | 0.56 |
Taiwan/Indonesia | 0.31 | 0.13 | 0.15 | 0.58 | 0.49 | 0.27 | Taiwan/Indonesia | 0.73 | 0.16 | 0.42 | 0.90 | 0.18 | 0.97 |
Taiwan/South Korea | 0.31 | 0.22 | 0.12 | 0.68 | 0.05 | 0.44 | Taiwan/South Korea | 0.67 | 0.04 | 0.59 | 0.73 | 0.54 | 0.81 |
Taiwan/Malaysia | 0.43 | 0.10 | 0.16 | 0.48 | 0.49 | 0.24 | Taiwan/Malaysia | −0.16 | 0.49 | −0.64 | 0.79 | −0.28 | 0.27 |
Taiwan/Philippine | 0.36 | 0.19 | 0.13 | 0.71 | 0.19 | 0.16 | Taiwan/Philippine | 0.66 | 0.14 | 0.42 | 0.86 | 0.22 | 0.80 |
Taiwan/Thailand | 0.33 | 0.18 | 0.13 | 0.66 | 0.29 | 0.18 | Taiwan/Thailand | 0.74 | 0.16 | 0.44 | 0.91 | 0.21 | 0.74 |
Taiwan/Bangladesh | 0.43 | 0.05 | 0.38 | 0.54 | 0.56 | 0.00 | Taiwan/Bangladesh | −0.37 | 0.23 | −0.69 | −0.01 | −0.14 | 0.97 |
Taiwan/Sri Lanka | 0.50 | 0.16 | 0.33 | 0.74 | 0.07 | 0.00 | Taiwan/Sri Lanka | 0.27 | 0.09 | 0.17 | 0.41 | 0.02 | 0.77 |
Taiwan/Pakistan | 0.55 | 0.12 | 0.42 | 0.75 | 0.13 | 0.00 | Taiwan/Pakistan | 0.04 | 0.18 | −0.18 | 0.29 | 0.01 | 0.65 |
Taiwan/Bahrain | 0.37 | 0.07 | 0.25 | 0.55 | 0.60 | 0.43 | Taiwan/Bahrain | −0.07 | 0.29 | −0.43 | 0.50 | −0.09 | 0.76 |
Taiwan/Vietnam | 0.61 | 0.15 | 0.47 | 0.86 | 0.06 | 0.00 | Taiwan/Vietnam | 0.02 | 0.24 | −0.28 | 0.37 | −0.04 | 0.48 |
Mean | SD | 5 % | 95 % | HE | p-value | Mean | SD | 5 % | 95 % | HE | p-value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Taiwan/Kuwait | 0.97 | 0.01 | 0.96 | 0.98 | 0.04 | 0.00 | Taiwan/Kuwait | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.99 |
Taiwan/Oman | 0.20 | 0.12 | 0.07 | 0.42 | 0.58 | 0.14 | Taiwan/Oman | 0.60 | 0.24 | 0.16 | 0.88 | −0.07 | 0.00 |
Thailand/India | 0.47 | 0.09 | 0.34 | 0.62 | 0.13 | 0.14 | Thailand/India | 0.57 | 0.04 | 0.50 | 0.61 | 0.36 | 0.56 |
Thailand/Indonesia | 0.47 | 0.07 | 0.32 | 0.56 | 0.33 | 0.87 | Thailand/Indonesia | 0.68 | 0.06 | 0.54 | 0.74 | 0.39 | 0.97 |
Thailand/South Korea | 0.37 | 0.10 | 0.26 | 0.56 | 0.11 | 0.08 | Thailand/South Korea | 0.54 | 0.05 | 0.47 | 0.63 | 0.31 | 0.81 |
Thailand/Malaysia | 0.45 | 0.14 | 0.11 | 0.55 | 0.45 | 0.31 | Thailand/Malaysia | 0.03 | 0.38 | −0.34 | 0.85 | −0.08 | 0.27 |
Thailand/Philippine | 0.47 | 0.09 | 0.34 | 0.62 | 0.14 | 0.10 | Thailand/Philippine | 0.70 | 0.07 | 0.56 | 0.80 | 0.32 | 0.80 |
Thailand/Taiwan | 0.67 | 0.18 | 0.34 | 0.87 | 0.21 | 0.06 | Thailand/Taiwan | 0.59 | 0.03 | 0.55 | 0.64 | 0.24 | 0.71 |
Thailand/Bangladesh | 0.46 | 0.01 | 0.45 | 0.49 | 0.50 | 0.00 | Thailand/Bangladesh | −0.22 | 0.17 | −0.47 | 0.05 | −0.09 | 0.97 |
Thailand/Sri Lanka | 0.56 | 0.08 | 0.47 | 0.69 | 0.15 | 0.00 | Thailand/Sri Lanka | 0.19 | 0.07 | 0.11 | 0.27 | 0.02 | 0.77 |
Thailand/Pakistan | 0.59 | 0.05 | 0.52 | 0.68 | 0.14 | 0.00 | Thailand/Pakistan | 0.07 | 0.11 | −0.08 | 0.21 | 0.04 | 0.65 |
Thailand/Bahrain | 0.40 | 0.05 | 0.24 | 0.44 | 0.56 | 0.35 | Thailand/Bahrain | 0.05 | 0.21 | −0.21 | 0.49 | −0.01 | 0.76 |
Thailand/Vietnam | 0.65 | 0.08 | 0.57 | 0.81 | 0.04 | 0.00 | Thailand/Vietnam | 0.13 | 0.16 | −0.08 | 0.36 | 0.10 | 0.48 |
Thailand/Kuwait | 0.97 | 0.00 | 0.96 | 0.97 | 0.05 | 0.00 | Thailand/Kuwait | −0.01 | 0.00 | −0.01 | −0.01 | 0.01 | 0.99 |
Thailand/Oman | 0.29 | 0.03 | 0.26 | 0.34 | 0.54 | 0.12 | Thailand/Oman | 0.45 | 0.12 | 0.19 | 0.58 | 0.06 | 0.00 |
-
SD, shows the standard deviation; HE, shows the hedge ratio.
References
Abbas, G., and S. Wang. 2020. “Does Macroeconomic Uncertainty Really Matter in Predicting Stock Market Behavior? A Comparative Study on China and USA.” China Finance Review International 10 (4): 393–427. https://doi.org/10.1108/CFRI-06-2019-0077.Search in Google Scholar
Adebayo, T. S. 2021. “Testing the EKC Hypothesis in Indonesia: Empirical Evidence from the ARDL-Based Bounds and Wavelet Coherence Approaches.” Applied Economics Journal 28 (1): 78–100.Search in Google Scholar
Adebayo, T. S., and J. A. Odugbesan. 2021. “Modeling CO2 Emissions in South Africa: Empirical Evidence from ARDL Based Bounds and Wavelet Coherence Techniques.” Environmental Science and Pollution Research 28 (8): 9377–89. https://doi.org/10.1007/s11356-020-11442-3.Search in Google Scholar PubMed
Adekoya, O. B., J. A. Oliyide, O. S. Yaya, and M. A. S. Al-Faryan. 2022. “Does Oil Connect Differently with Prominent Assets during War? Evidence from Intra-day Data during the Russia-Ukraine Saga.” Resources Policy 77 (2): 102728. https://doi.org/10.1016/j.resourpol.2022.102728.Search in Google Scholar
Aggarwal, V. 2022. “Optimum Investor Portfolio Allocation in New Age Digital Assets.” International Journal of Innovation Science 14 (3/4): 648–58. https://doi.org/10.1108/ijis-10-2020-0237.Search in Google Scholar
Antonakakis, N., and D. Gabauer. 2017. “Refined Measures of Dynamic Connectedness Based on TVP-VAR.” MPRA Paper. https://mpra.ub.uni-muenchen.de/78282/1/MPRA_paper_78282.pdf.Search in Google Scholar
Antonakakis, N., J. Cunado, G. Filis, D. Gabauer, and F. P. de Gracia. 2020. “Oil and Asset Classes Implied Volatilities: Investment Strategies and Hedging Effectiveness.” Energy Economics 91 (3): 104762. https://doi.org/10.1016/j.eneco.2020.104762.Search in Google Scholar
Antonakakis, N., J. Cunado, G. Filis, D. Gabauer, and F. P. De-Gracia. 2018. “Oil Volatility, Oil and Gas Firms and Portfolio Diversification.” Energy Economics 70 (C): 499–515. https://doi.org/10.1016/j.eneco.2018.01.023.Search in Google Scholar
Anwar, A. 2021. US-China Trade War: The Potential Impact on Bangladesh, 1st ed. Routledge. The China-US Trade War and South Asian Economies.10.4324/9781003053613-11Search in Google Scholar
Arouri, M. E. H., J. Jouini, and D. K. Nguyen. 2012. “On the Impacts of Oil Price Fluctuations on European Equity Markets: Volatility Spillover and Hedging Effectiveness.” Energy Economics 34 (2): 611–7. https://doi.org/10.1016/j.eneco.2011.08.009.Search in Google Scholar
Arshad, R., H. Zada, K. Sohag, W-K. Wong, H. Ullah, and H. Raza. 2024. “Does US Monetary Policy Uncertainty Affect Returns of Asian Developed, Emerging, and Frontier Equity Markets? Empirical Evidence by Using the Quantile-On-Quantile Approach.” Heliyon 10 (12): E32962. https://doi.org/10.1016/j.heliyon.2024.e32962.Search in Google Scholar PubMed PubMed Central
Asafo-Adjei, E., D. Agyapong, S. K. Agyei, S. Frimpong, R. Djimatey, and A. M. Adam. 2020. “Economic Policy Uncertainty and Stock Returns of Africa: A Wavelet Coherence Analysis.” Discrete Dynamics in Nature and Society 1: 1–8. https://doi.org/10.1155/2020/8846507.Search in Google Scholar
Aslam, F., P. Ferreira, H. Ali, and S. Kauser. 2022. “Herding Behavior during the Covid-19 Pandemic: A Comparison between Asian and European Stock Markets Based on Intraday Multifractality.” Eurasian Economic Review 12 (1): 333–59. https://doi.org/10.1007/s40822-021-00191-4.Search in Google Scholar
Ashfaq, S., Y. Tang, and R. Maqbool. 2020. “Dynamics of Spillover Network Among Oil and Leading Asian Oil Trading Countries’ Stock Markets.” Energy 207 (3): 118077. https://doi.org/10.1016/j.energy.2020.118077.Search in Google Scholar
Baker, S. R., N. Bloom, and S. J. Davis. 2016. “Measuring Economic Policy Uncertainty.” The Quarterly Journal of Economics 131 (4): 1593–636. https://doi.org/10.1093/qje/qjw024.Search in Google Scholar
Balcilar, M., D. Gabauer, and Z. Umar. 2021. “Crude Oil Futures Contracts and Commodity Markets: New Evidence from a TVP-VAR Extended Joint Connectedness Approach.” Resources Policy 73 (C): 102219. https://doi.org/10.1016/j.resourpol.2021.102219.Search in Google Scholar
Bang, J., D. Ryu, and R. I. Webb. 2023. “ESG Controversy as a Potential Asset-Pricing Factor.” Finance Research Letters 58 (4): 104315. https://doi.org/10.1016/j.frl.2023.104315.Search in Google Scholar
Barroso, P., and P. Maio. 2024. “The Risk-Return Trade-Off Among Equity Factors.” Journal of Empirical Finance 78 (C): 101518. https://doi.org/10.1016/j.jempfin.2024.101518.Search in Google Scholar
Bianconi, M., F. Esposito, and M. Sammon. 2021. “Trade Policy Uncertainty and Stock Returns.” Journal of International Money and Finance 119 (C): 102492. https://doi.org/10.1016/j.jimonfin.2021.102492.Search in Google Scholar
Bouri, E. 2015. “Return and Volatility Linkages between Oil Prices and the Lebanese Stock Market in Crisis Periods.” Energy 89 (C): 365–71. https://doi.org/10.1016/j.energy.2015.05.121.Search in Google Scholar
Caldara, Dario, and Matteo Iacoviello. 2021. Measuring Geopolitical Risk. Board of Governors of the Federal Reserve Board. International Finance Discussion. Working Paper No. 1222.Search in Google Scholar
Carlo, R., and O. Asuncion. 2018. The Impact of the US-China Trade War on the Philippines. https://unionbank.globallinker.com/bizforum/article/the-impact-of-the-uschina-trade-war-on-the-philippines/17550.Search in Google Scholar
Charithra, C. M., M. Sharma, and B. Vikas. 2024. “Relationship between the Volume of Trade and Volatility Spillover between the Selected Developed and Emerging Asian Markets.” Educational Administration: Theory and Practice 30 (5): 13421–39. https://doi.org/10.53555/kuey.v30i5.5804.Search in Google Scholar
Chen, S. 2022. “The Spillover Impact of the US-China Trade War on India’s Economy.” BCP Business & Management 38: 118–25. https://doi.org/10.54691/bcpbm.v38i.3677.Search in Google Scholar
Cieslak, A., and C. Pflueger. 2023. “Inflation and Asset Returns.” Annual Review of Financial Economics 15 (1): 433–48. https://doi.org/10.1146/annurev-financial-110921-104726.Search in Google Scholar
Diebold, F. X., and K. Yılmaz. 2014. “On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms.” Journal of Econometrics 182 (1): 119–34. https://doi.org/10.1016/j.jeconom.2014.04.012.Search in Google Scholar
Diebold, F. X., and K. Yilmaz. 2012. “Better to Give Than to Receive: Predictive Directional Measurement of Volatility Spillovers.” International Journal of Forecasting 28 (1): 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006.Search in Google Scholar
Donadelli, M. 2014. “Asian Stock Markets, US Economic Policy Uncertainty and US Macro-Shocks.” New Zealand Economic Papers 49 (2): 103–33. https://doi.org/10.1080/00779954.2014.890024.Search in Google Scholar
Duc, D., N. Hoai, V. Nguyen, D. Nguyen, N. Anh, and H. Hai. 2024. “Google Search Intensity and Stock Returns in Frontier Markets: Evidence from the Vietnamese Market1.” Economics and Business Review 10 (1): 30–56. https://doi.org/10.18559/ebr.2024.1.778.Search in Google Scholar
Ederington, L. H. 1979. “The Hedging Performance of the New Futures Markets.” The Journal of Finance 34 (1): 157–70. https://doi.org/10.1111/j.1540-6261.1979.tb02077.x.Search in Google Scholar
Fama, E. F. 1965. “Random Walks in Stock Market Prices.” Financial Analysts Journal 21 (5): 55–9. https://doi.org/10.2469/faj.v51.n1.1861.Search in Google Scholar
Forbes India. 2024. The Top 10 Largest Economies in the World in 2024. https://www.forbesindia.com/article/explainers/top-10-largest-economies-in-the-world/86159/1.Search in Google Scholar
Gabauer, D., and R. Gupta. 2018. “On the Transmission Mechanism of Country-specific and International Economic Uncertainty Spillovers: Evidence from a TVP-VAR Connectedness Decomposition Approach.” Economics Letters 171 (C): 63–71. https://doi.org/10.1016/j.econlet.2018.07.007.Search in Google Scholar
Gavriilidis, K. 2021. “Measuring Climate Policy Uncertainty.” Available at SSRN: https://ssrn.com/abstract=3847388.10.2139/ssrn.3847388Search in Google Scholar
Goupillaud, P., A. Grossmann, and J. Morlet. 1984. “Cycle-octave and Related Transforms in Seismic Signal Analysis.” Geo Exploration 23 (1): 85–102. https://doi.org/10.1016/0016-7142(84)90025-5.Search in Google Scholar
Gur, N., and S. Dilek. 2023. “US–China Economic Rivalry and the Reshoring of Global Supply Chains.” The Chinese Journal of International Politics 16 (1): 61–83. https://doi.org/10.1093/cjip/poac022.Search in Google Scholar
Ha, L. T., A. Bouteska, T. Sharif, and M. Z. Abdein. 2024. “Dynamic Interlinkages between Carbon Risk and Volatility of Green and Renewable Energy: A TVP-VAR Analysis.” Research in International Business and Finance 69 (C): 102278. https://doi.org/10.1016/j.ribaf.2024.102278.Search in Google Scholar
Hassan, K. 2020. “CPEC: A Win-Win for China and Pakistan.” Human Affairs 30 (2): 212–23. https://doi.org/10.1515/humaff-2020-0020.Search in Google Scholar
Hoque, M. E., and M. A. S. Zaidi. 2020. “Global and Country-specific Geopolitical Risk Uncertainty and Stock Return of Fragile Emerging Economies.” Borsa Istanbul Review 20 (3): 197–213. https://doi.org/10.1016/j.bir.2020.05.001.Search in Google Scholar
Hoque, M. E., L. Soo-Wah, M. A. Uddin, and A. Rahman. 2023. “International Trade Policy Uncertainty Spillover on Stock Market: Evidence from Fragile Five Economies.” The Journal of International Trade & Economic Development 32 (1): 104–31. https://doi.org/10.1080/09638199.2022.2072520.Search in Google Scholar
Iqbal, M., Y. Elianda, Nurhadiyanti, and A. Akbar. 2020. “USA–China Trade War: Economic Impact on Indonesia.” Journal of Public Affairs 22 (3): e2543, https://doi.org/10.1002/pa.2543.Search in Google Scholar
Kam, A. Jia-Yi. 2024. “Navigating the U.S.–China Decoupling: Malaysia’s Response to the U.S.–China Trade War.” Asian Economic Papers 23 (2): 144–73. https://doi.org/10.1162/asep_a_00899.Search in Google Scholar
Keddad, B. 2024. “Asian Stock Market Volatility and Economic Policy Uncertainty: The Role of World and Regional Leaders.” Journal of International Financial Markets, Institutions and Money 91 (C): 101928. https://doi.org/10.1016/j.intfin.2023.101928.Search in Google Scholar
Koop, G., and D. Korobilis. 2014. “A New Index of Financial Conditions.” European Economic Review 71 (C): 101–16. https://doi.org/10.1016/j.euroecorev.2014.07.002.Search in Google Scholar
Koop, G., M. H. Pesaran, and S. M. Potter. 1996. “Impulse Response Analysis in Nonlinear Multivariate Models.” Journal of Econometrics 74 (1): 119–47. https://doi.org/10.1016/0304-4076(95)01753-4.Search in Google Scholar
Korobilis, D., and K. Yılmaz. 2018. Measuring Dynamic Connectedness with Large Bayesian VAR Models. UK: Essex Finance Centre Working Papers 20937, University of Essex, Essex Business School.10.2139/ssrn.3099725Search in Google Scholar
Kroner, K. F., and V. K. Ng. 1998. “Modeling Asymmetric Co-movements of Asset Returns.” The Review of Financial Studies 11 (4): 817–44. https://doi.org/10.1093/rfs/11.4.817.Search in Google Scholar
Kroner, K. F., and J. Sultan. 1993. “Time-varying Distributions and Dynamic Hedging with Foreign Currency Futures.” Journal of Financial and Quantitative Analysis 28 (4): 535–51. https://doi.org/10.2307/2331164.Search in Google Scholar
Kumar, D., and S. Maheswaran. 2013. “Correlation Transmission Between Crude Oil and Indian Markets.” South Asian Journal Global Business Research 2 (2): 211–29. https://doi.org/10.1108/sajgbr-08-2012-0104.Search in Google Scholar
Lahiani, A., S. Mefteh-Wali, and D-G. Vasbieva. 2021. “The Safe-Haven Property of Precious Metal Commodities in the COVID-19 Era.” Resources Policy 74 (C): 10240. https://doi.org/10.1016/j.resourpol.2021.102340.Search in Google Scholar
Lastauskas, P., and A. D. M. Nguyen. 2024. “Spillover Effects of US Monetary Policy on Emerging Markets amidst Uncertainty.” Journal of International Financial Markets, Institutions and Money 92 (C): 101956. https://doi.org/10.1016/j.intfin.2024.101956.Search in Google Scholar
Lean, H. H., O. M. Alkhazali, K. Gleason, and X. W. Yeap. 2024. “Connectedness and Economic Policy Uncertainty Spillovers to the ASEAN Stock Markets.” International Review of Economics & Finance 90 (4): 167–86. https://doi.org/10.1016/j.iref.2023.11.004.Search in Google Scholar
Lee, C. C. 2023. “International Spillovers of U.S. Monetary Uncertainty and Equity Market Volatility to China’s Stock Markets.” Journal of Asian Economics 84 (3): 101575. https://doi.org/10.1016/j.asieco.2022.101575.Search in Google Scholar
Lee, J. Y., and R. Majuca. 2019. The U.S.-China Trade Conflict and its Potential Impact on the Thai Economy. https://amro-asia.org/the-u-s-china-trade-conflict-and-its-potential-impact-on-the-thai-economy/.Search in Google Scholar
Li, H., Y. Li, and L. Guo. 2023a. “Extreme Risk Spillover Effect and Dynamic Linkages between Uncertainty and Commodity Markets: A Comparison Between China and America.” Resources Policy 85 (8): 103839. https://doi.org/10.1016/j.resourpol.2023.103839.Search in Google Scholar
Li, R., S. Li, D. Yuan, H. Chen, and S. Xiang. 2023b. “Spillover Effect of Economic Policy Uncertainty on the Stock Market in the Post-epidemic Era.” The North American Journal of Economics and Finance 64 (C): 101846. https://doi.org/10.1016/j.najef.2022.101846.Search in Google Scholar
Mark, J. 2022. US-China Financial Market Tensions: The Road to Riches or Ruin? https://www.atlanticcouncil.org/blogs/new-atlanticist/us-china-financial-market-tensions-the-road-to-riches-or-ruin/.Search in Google Scholar
Markowitz, H. 1952. “Selection Portfolio.” The Journal of Finance 7 (1): 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.Search in Google Scholar
Muzaffar, Z., and I. R. Malik. 2024. “Market Liquidity and Volatility: Does Economic Policy Uncertainty Matter? Evidence from Asian Emerging Economies.” PLoS ONE 19 (6): e0301597. https://doi.org/10.1371/journal.pone.0301597.Search in Google Scholar PubMed PubMed Central
Patel, R. 2021. “Equity Market Integration and Portfolio Decisions: A Study of NASDAQ USA and MSCI Emerging Markets Asia Indexes.” Journal of Wealth Management 24 (1): 11–39. https://doi.org/10.3905/jwm.2021.1.129.Search in Google Scholar
Patel, R., M. Gubareva, M. Z. Chishti, and T. Teplova. 2024. “Connectedness between Healthcare Cryptocurrencies and Major Asset Classes: Implications for Hedging and Investments Strategies.” International Review of Financial Analysis: 93(C): 103181. https://doi.org/10.1016/j.irfa.2024.103181.Search in Google Scholar
Pesaran, H. H., and Y. Shin. 1998. “Generalized Impulse Response Analysis in Linear Multivariate Models.” Economics Letters 58 (1): 17–29. https://doi.org/10.1016/s0165-1765(97)00214-0.Search in Google Scholar
Ren, X., J. Li, F. He, and B. Lucey. 2023. “Impact of Climate Policy Uncertainty on Traditional Energy and Green Markets: Evidence from Time-Varying Granger Tests.” Renewable and Sustainable Energy Reviews 173 (1): 113058. https://doi.org/10.1016/j.rser.2022.113058.Search in Google Scholar
Rogers, J. H., B. Sun, and T. Sun. 2024. “U.S.-China Tension.” SSRN Electronic Journal 1–78. https://doi.org/10.2139/ssrn.4815838.Search in Google Scholar
Ross, S. A. 1989. “Information and Volatility: The No-Arbitrage Martingale Approach to Timing and Resolution Irrelevancy.” The Journal of Finance 44 (1): 1–17. https://doi.org/10.1111/j.1540-6261.1989.tb02401.x.Search in Google Scholar
Sauzet, M. 2020. “Asset Prices, Global Portfolios, and the International Financial Spillover Network.” Proceedings of the EUROFIDAI-ESSEC Paris December Finance Meeting 2023 1–84. http://www.paris-december.eu/.Search in Google Scholar
Sawarn, U., and P. Dash. 2023. “Time and Frequency Uncertainty Spillover Among Macro Uncertainty, Financial Stress and Asset Markets.” Studies in Economics and Finance 40 (3): 500–26. https://doi.org/10.1108/SEF-11-2022-0518.Search in Google Scholar
Szczygielski, J. J., A. Charteris, P. R. Bwanya, and J. Brzeszczyński. 2024. “Google Search Trends and Stock Markets: Sentiment, Attention or Uncertainty?” International Review of Financial Analysis 91 (C): 102549. https://doi.org/10.1016/j.irfa.2023.102549.Search in Google Scholar
Sznajderska, A., and M. Kapuściński. 2020. “Macroeconomic Spillover Effects of the Chinese Economy.” Review of International Economics 28 (4): 992–1019. https://doi.org/10.1111/roie.12479.Search in Google Scholar PubMed PubMed Central
Tang, W., S. Ding, and H. Chen. 2021. “Economic Uncertainty and its Spillover Networks: Evidence from the Asia-Pacific Countries.” Pacific-Basin Finance Journal 67 (C): 101539. https://doi.org/10.1016/j.pacfin.2021.101539.Search in Google Scholar
Tsai, I. C. 2017. “The Source of Global Stock Market Risk: A Viewpoint of Economic Policy Uncertainty.” Economic Modelling 60 (C): 122–31. https://doi.org/10.1016/j.econmod.2016.09.002.Search in Google Scholar
Walmsley, T., and P. Minor. 2020. “US Trade Actions against China: A Supply Chain Perspective.” Foreign Trade Review 55 (3): 337–71. https://doi.org/10.1177/0015732520920465.Search in Google Scholar
Yaya, O. S., N. Abu, and T. P. Ogundunmade. 2021. “Economic Policy Uncertainty in G7 Countries: Evidence of Long-Range Dependence and Cointegration.” Economic Change and Restructuring 54 (2): 541–56. https://doi.org/10.1007/s10644-020-09288-3.Search in Google Scholar
Yaya, O. S., A. E. Ogbonna, and X. V. Vo. 2022. “Oil Shocks and Volatility of Green Investments: GARCH-MIDAS Analyses.” Resources Policy 78 (5): 102789. https://doi.org/10.1016/j.resourpol.2022.102789.Search in Google Scholar
Yaya, O. S., M. Zhang, H. Xi, and F. Furuoka. 2024a. “How Do Leading Stock Markets in America and Europe Connect with Asian Stock Markets? an Analysis of Quantile Dynamic Connectedness.” Quantitative Finance and Economics 8 (3): 502–31. https://doi.org/10.3934/qfe.2024019.Search in Google Scholar
Yaya, O. S., H. A. Olayinka, E. A. Ogbonna, M. A. S. Al-Faryan, and X. V. Vo. 2024b. “Dynamic Connectedness of Economic Policy Uncertainty in G7 Countries, and the Influence of the US and UK: Quantile VAR Analysis.” Economic Change and Restructuring 57 (2): 76. https://doi.org/10.1007/s10644-024-09658-1.Search in Google Scholar
Yousaf, I., W. Mensi, X. V. Vo, and S. Kang. 2023. “Spillovers and Connectedness between Chinese and ASEAN Stock Markets during Bearish and Bullish Market Statuses.” International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-07-2022-1194.Search in Google Scholar
Yousaf, I., and L. Yarovaya. 2022. “Static and Dynamic Connectedness between NFTs, Defi and Other Assets: Portfolio Implication.” Global Finance Journal 53 (534): 100719. https://doi.org/10.1016/j.gfj.2022.100719.Search in Google Scholar
Yousaf, I., M. Youssef, and M. Gubareva. 2024. “Return and Volatility Spillovers between Non-fungible Tokens and Conventional Currencies: Evidence from the TVP-VAR Model.” Financial Innovation 10 (101). https://doi.org/10.1186/s40854-023-00570-7.Search in Google Scholar
Zhang, D., and D. C. Broadstock. 2020. “Global Financial Crisis and Rising Connectedness in the International Commodity Markets.” International Review of Financial Analysis 68 (C): 101239. https://doi.org/10.1016/j.irfa.2018.08.003.Search in Google Scholar
Zhang, P., J. Gao, Y. Zhang, and T.-W. Wang. 2021. “Dynamic Spillover Effects between the US Stock Volatility and China’s Stock Market Crash Risk: A TVP-VAR Approach.” Mathematical Problems in Engineering 2021 (10): 1–12. https://doi.org/10.1155/2021/6616577.Search in Google Scholar
Zhang, S., K. Kalirajan, and C. Chen. 2022. “The Impact of Outward Foreign Direct Investment on China’s Export: An Analysis Using Two-Tier Stochastic Frontier Gravity Model.” Journal of the Asia Pacific Economy 29 (2): 545–65. https://doi.org/10.1080/13547860.2022.2029048.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/snde-2024-0116).
© 2025 Walter de Gruyter GmbH, Berlin/Boston