Home Stability in Threshold VAR Models
Article
Licensed
Unlicensed Requires Authentication

Stability in Threshold VAR Models

  • Pu Chen EMAIL logo and Willi Semmler
Published/Copyright: November 13, 2023

Abstract

This paper investigates the stability of threshold autoregressive models. We review recent research on stability issues from both a theoretical and empirical standpoint. We provide a sufficient condition for the stationarity and ergodicity of threshold autoregressive models by applying the concept of joint spectral radius to the switching system. The joint spectral radius criterion offers a generally applicable criterion to determine the stability in a threshold autoregressive model.

JEL Classification: C01; C62; E3; C02; C15

Corresponding author: Pu Chen, Melbourne Institute of Technology, 154–158 Sussex Street, Sydney, NSW 2000, Australia, E-mail:

Acknowledgment

We want to acknowledge comments on a previous version of the paper, presented at the 6TH international FMND Workshop, organized in Paris, June 2022.

Appendix

R codes for the calculation of upper and lower bounds of a joint spectra radius using Julia.

getwd()

library(JuliaCall)

julia_setup(installJulia = TRUE)

## https://blegat.github.io/SwitchOnSafety.jl/latest/generated/AJPR14e54/

julia_command(“using SwitchOnSafety”)

julia_command(“A1 = [−1 −1 ; −4 0]”)

julia_command(“A2 = [ 3 3 ; −2 1]”)

julia_command(“s = discreteswitchedsystem([A1, A2])”)

julia_command(“import CSDP”)

julia_command(“optimizer_constructor = optimizer_with_attributes(CSDP.Optimizer,

MOI.Silent() => true);”)

julia_command(“lb, ub = soslyapb(s, 1, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

## SNDE codes

##

## Hansen Example 1.1 US GNP data

julia_command(“A1 = [0.51 −0.93 0 0 −0.38 ; 1 0 0 0 0 ; 0 1 0 0 0 ; 0 0 1 0 0; 0 0

0 1 0]”)

julia_command(“A2 = [0.30 0.18 0 0 −0.16 ; 1 0 0 0 0 ; 0 1 0 0 0 ; 0 0 1 0 0; 0 0

0 1 0]”)

julia_command(“s = discreteswitchedsystem([A1, A2])”)

julia_command(“import CSDP”)

julia_command(“optimizer_constructor = optimizer_with_attributes(CSDP.Optimizer,

MOI.Silent() => true);”)

julia_command(“lb, ub = soslyapb(s, 1, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

julia_command(“seq = sosbuildsequence(s, 1, p_0=:Primal)”)

julia_command(“psw = findsmp(seq)”)

julia_command(“lb, ub = soslyapb(s, 2, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

## (0.8188989463625622, 0.9738413822096623)

## Hansen Exampl does not meet the condition of Brockwell, Liu, and Tweedie (1992)

G = abs(c(0.51, −0.93, 0, 0, −0.38 ))

dim(G) = c(1,1,5)

STAT(G)

G = abs(c(0.3, 0.18, 0, 0, −0.16 ))

dim(G) = c(1,1,5)

STAT(G)

sum(G)

## Tsay89 Exampl 2.1 attic temperature data

julia_command(“A1 = [2.51 −1.86 0.02 0.18 0.06 0.17 −0.17 ; 1 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 ; 0 0 1 0 0 0 0 ; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ;]”)

julia_command(“A2 = [1.50 -0.68 0.11 0.43 -0.84 0.34 0 ; 1 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 ; 0 0 1 0 0 0 0 ; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ;]”)

julia_command(“s = discreteswitchedsystem([A1, A2])”)

julia_command(“import CSDP”)

julia_command(“optimizer_constructor = optimizer_with_attributes(CSDP.Optimizer,

MOI.Silent() => true);”)

julia_command(“lb, ub = soslyapb(s, 1, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

julia_command(“seq = sosbuildsequence(s, 1, p_0=:Primal)”)

julia_command(“psw = findsmp(seq)”)

julia_command(“lb, ub = soslyapb(s, 2, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

## Chen21 Exampl 2.2 Canadian lxyn data

julia_command(“A1 = [−0.4 1.02 0.29 −0.593 ; 1 0 0 0 ; 0 1 0 0 ; 0 0 1 0;]”)

julia_command(“A2 = [ 1.5 −0.979 0 0 ; 1 0 0 0 ; 0 1 0 0 ; 0 0 1 0;]”)

julia_command(“s = discreteswitchedsystem([A1, A2])”)

julia_command(“import CSDP”)

julia_command(“optimizer_constructor = optimizer_with_attributes(CSDP.Optimizer,

MOI.Silent() => true);”)

julia_command(“lb, ub = soslyapb(s, 1, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

julia_command(“seq = sosbuildsequence(s, 1, p_0=:Primal)”)

julia_command(“psw = findsmp(seq)”)

julia_command(“lb, ub = soslyapb(s, 2, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

### Amendola09

julia_command(“A1 = [1.5 −0.51 ; 1 0]”)

julia_command(“A2 = [ 1 −0.5 ; 1 0]”)

julia_command(“s = discreteswitchedsystem([A1, A2])”)

julia_command(“import CSDP”)

julia_command(“optimizer_constructor = optimizer_with_attributes(CSDP.Optimizer,

MOI.Silent() => true);”)

julia_command(“lb, ub = soslyapb(s, 1, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

julia_command(“seq = sosbuildsequence(s, 1, p_0=:Primal)”)

julia_command(“psw = findsmp(seq)”)

julia_command(“lb, ub = soslyapb(s, 2, optimizer_constructor=optimizer_constructor,

tol=1e-6, verbose=1)”)

A1 = matrix(c(1.5, 1, −0.51, 0),2,2)

A2 = matrix(c(1, 1, −0.5, 0),2,2)

eigen(abs(A1))

References

Amendola, A., M. Niglio, and C. Vitale. 2009. “Statistical Properties of Threshold Models.” Communications in Statistics – Theory and Methods 38: 2479–97. https://doi.org/10.1080/03610920802571146.Search in Google Scholar

Bec, F., and A. Rahbek. 2004. “Vector Equilibrium Correction Models with Non-Linear Discontinuous Adjustments.” The Econometrics Journal 7: 628–51. https://doi.org/10.1111/j.1368-423x.2004.00147.x.Search in Google Scholar

Binder, M., and M. Gross. 2013. “Regime-Switching Global Vector Autoregressive Models.” ECB Working Paper Series, No. 1569.10.2139/ssrn.2302510Search in Google Scholar

Boucher, T. R., and D. B. H. Cline. 2007. “Stability of Cyclic Threshold and Threshold-Like Autoregressive Time Series Models.” Statistica Sinica 17: 43–62.Search in Google Scholar

Boucher, T. R., and D. B. H. Cline. 2009. “Piggybacking Thresold Processes with a Finite State Markov Chain.” Stochastics and Dynamics 9 (2): 187–204. https://doi.org/10.1142/s0219493709002622.Search in Google Scholar

Brockwell, P. J., J. Liu, and R. L. Tweedie. 1992. “On the Existence of Stationary Threshold Autoregressive Moving-Average Process.” Journal of Time Series Analysis 13 (2): 95–107. https://doi.org/10.1111/j.1467-9892.1992.tb00096.x.Search in Google Scholar

Chan, K. S., and H. Tong. 1985. “On the Use of the Deterministic Lyapunov Function for the Ergodicity of Stochastic Difference Equations.” Advances in Applied Probability 17 (4): 667–78.10.2307/1427125Search in Google Scholar

Chen, P., and W. Semmler. 2018. “Financial Stress, Regime Switching and Spillover Effects: Evidence from a Multiregime Global VAR Model.” Journal of Economic Dynamics and Control 91: 318–48. https://doi.org/10.1016/j.jedc.2018.03.001.Search in Google Scholar

Chen, R., and W. S. Tsay. 1991. “On the Ergodicity of Tar(1) Processes.” Annals of Applied Probability 1 (4): 613–34.10.1214/aoap/1177005841Search in Google Scholar

Chen, C. W. S., M. K. P. So, and F.-C. Liu. 2011. “A Review of Threshold Time Series Models in Finance.” Statistics and Its Interface 4: 167–81. https://doi.org/10.4310/sii.2011.v4.n2.a12.Search in Google Scholar

Chen, P., C. Y. Hsiao, and W. Semmler. 2021. “Instability in Regime Switching Models.” Studies in Nonlinear Dynamics and Econometrics 26 (5): 655–74, https://doi.org/10.1515/snde–2020–0086.10.1515/snde-2020-0086Search in Google Scholar

Chen, P., W. Semmler, and H. Maurer. 2022. “Delayed Monetary Policy Effects in a Multi-Regime Cointegrated VAR(MRCIVAR).” Econometrics and Statistics. https://doi.org/10.1016/j.ecosta.2022.03.004.Search in Google Scholar

Enders, W., B. L. Falk, and P. L. Siklos. 2001. “A Threshold Model of Real Us Gdp and the Problem of Constructing Confidence Intervals in Tar Models.” Studies in Nonlinear Dynamics and Econometrics 11: 166–79.10.2202/1558-3708.1322Search in Google Scholar

Farmer, R. E., D. F. Waggoner, and T. Zha. 2009. “Understanding Markov-Switching Rational Expectations Models.” Journal of Economic Theory 144: 1849–67. https://doi.org/10.1016/j.jet.2009.05.004.Search in Google Scholar

Giordano, F., M. Niglio, and C. D. Vitale. 2013. “On the Stationarity of the Threshold Autoregressive Process: The Two Regimes Case.” www.sis-statistica.it/old_upload/contenuti/2013/09/RS12-On-the-stationarity-of-the-Threshold.pdf.Search in Google Scholar

Hamilton, J. D. 1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” Econometrica 57: 357–84. https://doi.org/10.2307/1912559.Search in Google Scholar

Hansen, B. E. 1996. “Inference when a Nuisance Parameter is Not Identified under the Null Hypothesis.” Econometrica 64 (2): 413–30. https://doi.org/10.2307/2171789.Search in Google Scholar

Hansen, B. E. 2000. “Sample Splitting and Threshold Estimation.” Econometrica 68 (3): 575–603. https://doi.org/10.1111/1468-0262.00124.Search in Google Scholar

Hansen, B. E. 2011. “Threshold Autoregression in Economics.” Statistics and its Interface 4: 123–7. https://doi.org/10.4310/sii.2011.v4.n2.a4.Search in Google Scholar

Hansen, B. E., and B. Seo. 2002. “Testing for Two-Regime Threshold Cointegration in Vector Error-Correction Models.” Journal of Econometrics 110 (2): 239–318.10.1016/S0304-4076(02)00097-0Search in Google Scholar

Jungers, R. 2009. The Joint Spectral Radius: Theory and Application. Berlin, Heidelberg: Springer.10.1007/978-3-540-95980-9Search in Google Scholar

Kheifets, I. L., and P. J. Saikkonen. 2020. “Stationarity and Ergodicity of Vector STAR Models.” Econometric Reviews 39 (4): 407–14. https://doi.org/10.1080/07474938.2019.1651489.Search in Google Scholar

Kozyakin, V. 2018. “An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius.” https://doi.org/10.13140/RG.2.1.4257.5040/1.Search in Google Scholar

Legat, B., P. Parrilo, and R. Jungers. 2020. “Certifying Unstability of Switched Systems Using Sum of Squares Programming.” SIAM Journal on Control and Optimization 58 (4): 2616–38, https://doi.org/10.1137/18M1173460.Search in Google Scholar

Ling, S. 1999. “On the Probabilistic Properties of a Double Threshold Arma Conditional Heteroskedastic Model.” Journal of Applied Probability 36: 688–705.10.1239/jap/1032374627Search in Google Scholar

Ling, S., and H. Tong. 2005. “Testing for a Linear MA Model Against Threshold MA Models.” The Annals of Statistics 33: 2529–52.10.1214/009053605000000598Search in Google Scholar

Ling, S., H. Tong, and D. Li. 2007. “Ergodicity and Invertibility of Threshold Moving-Average Models.” Bernoulli 13: 161–8.10.3150/07-BEJ5147Search in Google Scholar

Niglio, M., and C. Vitale. 2015. “Threshold Vector ARMA Models.” Communications in Statistics – Theory and Methods 44: 2911–23. https://doi.org/10.1080/03610926.2013.814785.Search in Google Scholar

Peel, D., and A. E. H. Speight. 1998. “Threshold Nonlinearities in Output: Some International Evidence.” Applied Economics 30: 323–33. https://doi.org/10.1080/000368498325840.Search in Google Scholar

Petruccelli, J. D., and S. W. Woolford. 1984. “A Threshold AR(1) Model.” Journal of Applied Probability 21 (2): 270–86. https://doi.org/10.2307/3213639.Search in Google Scholar

Potter, S. M. 1995. “A Nonlinear Approch to US GNP.” Journal of Applied Econometrics 10: 109–25. https://doi.org/10.1002/jae.3950100203.Search in Google Scholar

Saikkonen, P. 2005. “Stability Results for Nonlinear Error Correction Models.” Journal of Econometrics 127: 69–81. https://doi.org/10.1016/j.jeconom.2004.03.001.Search in Google Scholar

Saikkonen, P. 2008. “Stability of Regime Switching Error Correction Models Under Linear Cointegration.” Econometric Theory 24: 294–318.10.1017/S0266466608080122Search in Google Scholar

Theys, J. 2005. Joint Spectral Radius: Theory and Approximations. SemanticScholar, Corpus ID: 118270425.Search in Google Scholar

Tong, H. 1983. Threshold Models in Non-Linear Time Series Analysis. Berlin: Springer-Verlag, Lecture Notes in Statistics.10.1007/978-1-4684-7888-4Search in Google Scholar

Tong, H. 1990. Non-Linear Time Series: A Dynamic Approach. Oxford, New York: Oxfort University Press.10.1093/oso/9780198522249.001.0001Search in Google Scholar

Tong, H., and K. S. Lim. 1980. “Threshold Autoregression, Limit Cycles and Cyclical Data.” Journal of the Royal Statistical Society: Series B 42 (3): 245–68. https://doi.org/10.1111/j.2517-6161.1980.tb01126.x.Search in Google Scholar

Tsay, R. S. 1989. “Testing and Modeling Threshold Autoregressive Processes.” Journal of the American Statistical Association 84: 231–40. https://doi.org/10.1080/01621459.1989.10478760.Search in Google Scholar

Received: 2022-11-01
Accepted: 2023-10-16
Published Online: 2023-11-13

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2022-0099/html
Scroll to top button