Home What model for the target rate
Article
Licensed
Unlicensed Requires Authentication

What model for the target rate

  • Bruno Feunou EMAIL logo , Jean-Sébastien Fontaine and Jianjian Jin
Published/Copyright: January 23, 2020

Abstract

The Federal Reserve target rate has a lower bound. Changes to the target rate occur with discrete increments. Using out-of-sample forecasts of the target rate, we evaluate models incorporating these two realistic non-linear features. Incorporating these features mitigates in-sample over-fitting and improves out-of-sample forecast accuracy of the target rate level and volatility. A model with these features performs better relative to the linear models because (i) it produces stronger responses of forecasts to inflation and unemployment and a weaker response to lagged target rate, and because (ii) it yields very different forecast distributions when the target rate is close to the lower bound.

JEL Classification: E43

Acknowledgement

We thank Antonio Diez, Geoffrey Dunbar, Jonathan Witmer, Bruce Mizrach (the editor), and an anonymous referee for comments and suggestions. The views expressed in this paper are those of the authors and do not necessarily reflect those of the Bank of Canada and the British Columbia Investment Management Corporation.

A Appendix

A.1 Moment-Generating Functions for rt+1

A.1.1Et[exp(urt+1)]

The one-step-ahead conditional characteristic function of rt+1 is given by:

(17)ψt(u)Et[exp(urt+1)]=exp((ωt1+βEt[Yt+1])u+(σr2+βΣtΣtβ)2u2),

for u a real or complex scalar. Note that the partial derivatives ψt(u) and ψt(u) are given by:

(18)ψt(u)=(ωt1+βEt[Yt+1]+(σt2+βΣtΣtβ)u)ψt(u)
(19)ψt(u)=[(σr2+βΣtΣtβ)+(ωt1+βEt[Yt+1]+(σr2+βΣtΣtβ)u)2]ψt(u).

A.1.2Et[exp(art+1)1[rt+1x]]

We are also interested in Et[rt+11[rt+1x]] and Et[(rt+1)21[rt+1x]] to forecast the level and variance of the target rate one-period ahead in the B-Linear model. Define φt(a;x)Et[exp(art+1)1[rt+1x]] the truncated generating function, with a scalar. Then, using result in Duffie, Pan, and Singleton (2000), we have

(20)φt(a;x)=ψt(a)21π0Im(ψt(a+iv)eivx)vdv.

The partial derivatives with respect to the first argument are as follows:

φt(a;x)=Et[rt+1exp(art+1)1[rt+1x]]φt(a;x)=Et[(rt+1)2exp(art+1)1[rt+1x]],

This leads to to following solution:

(21)Et[rt+11[rt+1x]]=φt(0;x)=ωt1+βEt[Yt+1]21π0Im(ψt(iv)eivx)vdv
(22)Et[(rt+1)21[rt+1x]]=φt(0;x)=σr2+βΣtΣtβ+(ωt1+βEt[Yt+1])221π0Im(ψt(iv)eivx)vdv.

A.1.3Et[exp(umax(rt+1,0))]

In the B-Linear model, the conditional moment-generating function Et[exp(umax(rt+1,0))] is given by:

Et[exp(umax(rt+1,0))]=Et[exp(umax(rt+1,0))1rt+1>0]+Et[exp(umax(rt+1,0))1rt+10]=Et[exp(urt+1)(11rt+10)]+Pt(rt+10),

leading to the following closed-form solution:

(23)Et[exp(umax(rt+1,0))]=ψt(u)φt(u;0)+Φ((ωt1+βEt[Yt+1])σr2+βΣtΣtβ).

In particular, evaluating the partial derivatives at u = 0:

(24)Et[max(rt+1,0)]=ψt(0)φt(0;0)
(25)Et[max(rt+1,0)2]=ψt(0)φt(0;0).

A.2 Density and Probability Distribution

We derive the density ft(rt+1) for the Linear, B-Linear and Square models. In each case, we start with the computation of ft(rt+1|Yt+1) and then derive ft(rt+1). Similarly, we derive the probability distribution function Pt(n) for the Ordered and B-Ordered model.

A.2.1 Linear

In the Linear model,

ft(rt+1|Yt+1)=1σrϕ(rt+1(ωt1+βYt+1)σr),

and

ft(rt+1)=1σ2+βΣΣβϕ(rt+1(ωt1+βEt[Yt+1])σ2+βΣΣβ).

A.2.2 B-Linear

In the B-Linear model,

ft(rt+1|Yt+1)=1σϕ(rt+1(ωt1+βYt+1)σ)1[rt+1>0]+Φ(rt+1(ωt1+βYt+1)σ)1[rt+1=0],

and

ft(rt+1|Yt+1)=1σ2+βΣΣβϕ(rt+1(ωt1+βEt[Yt+1])σ2+βΣΣβ)1[rt+1>0]+Φ(rt+1(ωt1+βEt[Yt+1])σ2+βΣΣβ)1[rt+1=0].

A.2.3 Square

In the Square model,

ft(rt+1|Yt+1)=12σrt+1[ϕ(rt+1(ωt1+βYt+1)σ)+ϕ(rt+1+(ωt1+βYt+1)σ)]1[rt+1>0],

and

ft(rt+1)=12σ2+βΣΣβrt+1[ϕ(rt+1(ωt1+βEt[Yt+1])σ2+βΣΣβ)+ϕ(rt+1+(ωt1+βEt[Yt+1])σ2+βΣΣβ)]1[rt+1>0].

A.2.4 Ordered and B-Ordered

For the Ordered models, the mapping from the latent rt+1 to the observed target rate rt+1 works via 2. This implies that the conditional probability distribution for rt+1 collapses to the conditional probability distribution for n:

Pt(n)Pt(rt+1=rt+0.25n)=Pt(rt+0.25n<rt+1rt+0.25(n+1)),

as in 9. First,

Pt(n|Yt+1)={Φ(rt+(\underline{n}+1)c(ωt1+βYt+1)σ)forn=\underline{n}Φ(rt+(n+1)c(ωt1+βYt+1)σ)Φ(rt+nc(ωt1+βYt+1)σ)for\bn<n<n¯Φ((ωt1+βYt+1)(rt+n¯c)σ)forn=n¯

, which implies

Pt(n)={Φ(rt+(\underline{n}+1)c(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)forn=\bnΦ(rt+(n+1)c(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)Φ(rt+nc(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)for\bn<n<n¯Φ((ωt1+βEt[Yt+1])(rt+n¯c)σr2+βΣtΣtβ)forn=n¯.

A.3 Conditional variance or rt+1

A.3.1 Linear

In the Linear model, the conditional variance of rt+1 is given directly by

Vart[rt+1]=βΣtΣtβ+σr2.

A.3.2 B-linear

Then, the conditional variance of rt+1 can be computed from Var(x)=Ex2(Ex)2. Using 24 and 25:

Et[rt+1]=ωt1+βEt[Yt+1]2+1π0Im(ψt(iv))vdv
Et[rt+12]=Et[(rt+1)2]ψt(0)2+1π0Im(ψt(iv))vdv=Et[(rt+1)2]2+1π0Im(ψt(iv))vdv=σr2+βΣtΣtβ+(ωt1+βEt[Yt+1])22+1π0Im(ψt(iv))vdv.

A.3.3 Square

In the Square model, we use standard results:

Vart[rt+1]=Vart[(rt+1)2]=Vart[rt+1]2Vart[(rt+1Et[rt+1]Vart[rt+1]+Et[rt+1]Vart[rt+1])2]=2(βΣtΣtβ+σr2)2(1+2Et[rt+1]2Vart[rt+1])=2(βΣtΣtβ+σr2)2(1+2(ωt1+βEt[Yt+1])2σr2+βΣtΣtβ)=2(βΣtΣtβ+σr2)(σr2+βΣtΣtβ+2(ωt1+βEt[Yt+1])2).

A.3.4 Ordered

In the Ordered model, the conditional variance can be computed directly from its definition and the solution for Pt(n):

Vart(rt+1)=n(rt+0.25n)2Pt(n).

A.3.5 B-Ordered

In the B-Ordered model, the conditional variance can be computed directly from its definition and the solution for Pt(n):

Vart(rt+1)=n(max(rt+0.25n,0))2Pt(n).

A.4 Response coefficients

A.4.1 Linear

In the Linear model, the response coefficient is given by:

Et[rt+1]Yt=βEt[Yt+1]Yt,

and

Et[rt+1|Yt+1]rt=ρ.

A.4.2 Black linear

In the Black Linear model, the response coefficient is given by:

Et[rt+1]Yt=ωt1+βEt[Yt+1]Yt2+1π0Im((ωt1+βEt[Yt+1]Yt+(σr2+βΣtΣtβ)iv)ψt(iv))vdv+1π0Im((ωt1+βEt[Yt+1]+(σr2+βΣtΣtβ)iv)βEt[Yt+1]Ytivψt(iv))vdv,

and

Et[rt+1|Yt+1]rt=[Φ(ωt1+βYt+1σr)+2(ωt1+βYt+1σr)ϕ(ωt1+βYt+1σr)]ρ.

A.4.3 Square

In the Square model, the response coefficient is given by:

Et[rt+1]Yt=2(ωt1+βEt[Yt+1])βEt[Yt+1]Yt

and

Et[rt+1|Yt+1]rt=2(ωt1+βYt+1)ρ.

A.4.4 Ordered

In the Ordered model, the response coefficient is given by:

Et[rt+1]Yt=1σr2+βΣtΣtβ(rt+\underline{n}c)ϕ(rt+(\underline{n}+1)c(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)βEt[Yt+1]Yt1σr2+βΣtΣtβ\underline{n}<n<n¯(rt+nc)[ϕ(rt+(n+1)c(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)ϕ(rt+nc(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)]βEt[Yt+1]Yt+1σr2+βΣtΣtβ(rt+n¯c)ϕ((ωt1+βEt[Yt+1])(rt+n¯c)σr2+βΣtΣtβ)βEt[Yt+1]Yt

and

Et[rt+1|Yt+1]rt=1σr(rt+\underline{n}c)ϕ(rt+(\underline{n}+1)c(ωt1+βYt+1)σr)ρ1σr\underline{n}<n<n¯(rt+nc)[ϕ(rt+(n+1)c(ωt1+βYt+1)σr)ϕ(rt+nc(ωt1+βYt+1)σr)]ρ+1σr(rt+n¯c)ϕ((ωt1+βYt+1)(rt+n¯c)σr)ρ.

A.5 Cumulative probability distributions

We derive the cumulative probability distribution in each model. We repeatedly use the fact that

XN(X¯,α2)E[Φ(X)]=Φ(X¯1+α2).

A.5.1 Linear

In the Linear model, for zR:

Pt[rt+1z]=Et[Pt[rt+1z|Yt+1]]=Et[Φ(z(ωt1+βYt+1)σr)]=Φ(z(ωt1+βEt[Yt+1])σr2+βΣtΣtβ).

A.5.2 B-linear

In the B-Linear model, for zR:

Pt[rt+1z|Yt+1]=Pt[max(ωt1+βYt+1+σrεt+1,0)z|Yt+1]=1[z0]Φ((ωt1+βYt+1)σr)+Pt[(ωt1+βYt+1)σrεt+1z(ωt1+βYt+1)σr|Yt+1]=1[z0]Φ((ωt1+βYt+1)σr)+[Φ(z(ωt1+βYt+1)σr)Φ((ωt1+βYt+1)σr)]1[z0]=Φ(z(ωt1+βYt+1)σr)1[z0],

and therefore,

Pt[rt+1z]=Et[Φ(z(ωt1+βYt+1)σr)1[z0]]=Φ(z(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)1[z0].

A.5.3 Square

In the Square model, for zR:

Pt[rt+1z|Yt+1]=Pt[(ωt1+βYt+1+σrεt+1)2z|Yt+1]=Pt[|ωt1+βYt+1+σrεt+1|z|Yt+1]1[z0]=Pt[zωt1+βYt+1+σrεt+1z|Yt+1]1[z0]=Pt[z(ωt1+βYt+1)σrεt+1z(ωt1+βYt+1)σr|Yt+1]1[z0]=(Φ(z(ωt1+βYt+1)σr)Φ(z(ωt1+βYt+1)σr))1[z0],

and therefore:

Pt[rt+1z]=1[z0](Et[Φ(z(ωt1+βYt+1)σr)]Et[Φ(z(ωt1+βYt+1)σr)])=1[z0](Φ(z(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)Φ(z(ωt1+βEt[Yt+1])σr2+βΣtΣtβ)).

A.5.4 Ordered and ordered B-linear

In the Ordered model, for zN:

Pt[rt+1z]=n=n_n=zPt(n),

and in the B-Ordered model:

Pt[rt+1z]=n=n_n=zPt(n)1z0.

A.6 Option prices

We can derive option prices using 10. We need a solution for Et[rt+11[rt+1z]] for each model. The solution Pt[rt+1z] is given in the previous section.

A.6.1 Linear

In the Linear model:

Et[rt+11[rt+1z]]=Et[rt+11[rt+1z]]=Et[rt+1]Et[rt+11[rt+1z]]=ωt1+βEt[Yt+1]Et[rt+11[rt+1z]]=ωt1+βEt[Yt+1]φt(0,z).

A.6.2 B-linear

In the B-Linear model:

Et[rt+11[rt+1z]]=Et[max(rt+1,0)1[max(rt+1,0)z]]=Et[rt+11[rt+1max(z,0)]]=Et[rt+1]Et[rt+11[rt+1max(z,0)]]=ωt1+βEt[Yt+1]Et[rt+11[rt+1max(z,0)]]=ωt1+βEt[Yt+1]φt(0,max(z,0)).

A.6.3 Square

In the Square model:

Et[rt+11[rt+1z]]=Et[(rt+1)21[(rt+1)2z]]=Et[(rt+1)21[|rt+1|z]]=Et[(rt+1)21[rt+1>z]]+Et[(rt+1)21[rt+1<z]]=Et[(rt+1)2[11[rt+1<z]]]+Et[(rt+1)21[rt+1<z]]=Et[(rt+1)2[11[rt+1<z]]]+Et[(rt+1)21[rt+1<z]]=Et[(rt+1)2]+Et[(rt+1)21[rt+1<z]]Et[(rt+1)21[rt+1<z]],

where, from Section A.1.1:

Et[(rt+1)2]=σr2+βΣtΣtβ+(ωt1+βEt[Yt+1])2,

and from Section A.1.2:

Et[rt+11[rt+1x]]=φt(0;x)Et[(rt+1)21[rt+1x]]=φt(0;x).

References

Ahn, D.-H., R. Dittmar, and A. R. Gallant. 2002. “Quadratic Term Structure Models: Theory and Evidence.” Review of Financial Studies 15: 243–288.10.1093/rfs/15.1.243Search in Google Scholar

Andreasen, M. M., and A. Meldrum. 2019. “Dynamic Term Structure Models: The Best Way to Enforce the Zero Lower Bound in the United States.” Journal of Financial and Quantitative Analysis 54 (5): 2261–2292.10.2139/ssrn.2667562Search in Google Scholar

Ang, A., G. Bekaert, and M. Wei. 2007. “Do Macro Variables, Asset Markets, or Surveys Forecast Inflation Better?” Journal of Monetary Economics 54 (4): 1163–1212.10.3386/w11538Search in Google Scholar

Black, F. 1995. “Interest Rates as Options.” The Journal of Finance 50: 1371–1376.10.1111/j.1540-6261.1995.tb05182.xSearch in Google Scholar

Carlson, J., B. Craig, and W. Melick. 2005. “Recovering Market Expectations of FOMC Rate Changes with Options on Federal Funds Futures.” Journal of Futures Markets 25: 1203–1242.10.26509/frbc-wp-200507Search in Google Scholar

Chernov, M., and E. Ghysels. 2000. “A Study Towards a Unified Approach to the Joint Estimation of Objective and Risk Neutral Measures for the Purpose of Options Valuation.” Journal of Financial Economics 56 (3): 407–458.10.1016/S0304-405X(00)00046-5Search in Google Scholar

Christoffersen, P., K. Jacobs, and C. Ornthanalai. 2012. “Dynamic Jump Intensities and Risk Premiums: Evidence from S&P500 Returns and Options.” Journal of Financial Economics 106 (3): 447–472.10.1016/j.jfineco.2012.05.017Search in Google Scholar

Christoffersen, P., K. Jacobs, and B. Young. 2012. “Forecasting with Option-Implied Information.” In Handbook of Economic Forecasting, edited by G. Elliott, and A. Timmermann, chapter 10, 581–656. Amsterdam: Elsevier.10.1016/B978-0-444-53683-9.00010-4Search in Google Scholar

Chua, C. L., S. Suardi, and S. Tsiaplias. 2013. “Predicting Short-Term Interest Rates Using Bayesian Model Averaging: Evidence from Weekly and High Frequency Data.” International Journal of Forecasting 29 (3): 442–455.10.1016/j.ijforecast.2012.10.003Search in Google Scholar

Diebold, F. X., and R. S. Mariano. 1995. “Comparing Predictive Accuracy.” Journal of Business & Economic Statistics 20 (1): 134–144.10.3386/t0169Search in Google Scholar

Diebold, F. X., and C. Li. 2006. “Forecasting the Term Structure of Government Bond Yields.” Journal of Econometrics 130 (2): 337–364.10.3386/w10048Search in Google Scholar

Dijk, D., S. J. Koopman, M. Wel, and J. H. Wright. 2013. “Forecasting Interest Rates with Shifting Endpoints.” Journal of Applied Econometrics 29 (5): 693–712.10.1002/jae.2358Search in Google Scholar

Dueker, M. J. 1999. “Measuring Monetary Policy Inertia in Target Fed Funds Rate Changes.” Federal Reserve Bank of St. Louis Review 81: 3–10.10.20955/r.81.3-10Search in Google Scholar

Duffee, G. 2002. “Term Premia and Interest Rate Forecasts in Affine Model.” The Journal of Finance 57: 405–443.10.1111/1540-6261.00426Search in Google Scholar

Duffie, D., J. Pan, and K. Singleton. 2000. “Transform Analysis and Asset Pricing for Affine Jump-Diffusion.” Econometrica 68: 1343–1376.10.3386/w7105Search in Google Scholar

Engle, R. 2002. “Dynamic Conditional Correlation – A Simple Class of Multivariate GARCH Models.” Journal of Business and Economic Statistics 17: 339–350.10.2139/ssrn.236998Search in Google Scholar

English, W. B., W. R. Nelson, and B. P. Sack. 2003. “Interpreting the Significance of the Lagged Interest Rate in Estimated Monetary Policy Rules.” Contributions in Macroeconomics 3 (1): 1–18.10.2202/1534-6005.1073Search in Google Scholar

Galvao, A. B., and S. Costa. 2013. “Does the Euro Area Forward Rate Provide Accurate Forecasts of the Short Rate?” International Journal of Forecasting 29 (1): 131–141.10.1016/j.ijforecast.2012.07.003Search in Google Scholar

Grammig, J., and K. Kehrle. 2008. “A new marked point process model for the federal funds rate target: Methodology and forecast evaluation.” Journal of Economic Dynamics & Control 32: 2370–2396.10.2139/ssrn.888543Search in Google Scholar

Guidolin, M., and D. L. Thornton. 2018. “Predictions of Short-Term Rates and the Expectations Hypothesis.” International Journal of Forecasting 34 (4): 636–664.10.20955/wp.2010.013Search in Google Scholar

Hamilton, J., and O. Jordà. 2002. “A Model of the Federal Funds Rate Target.” The Journal of Political Economy 110: 1136–1167.10.3386/w7847Search in Google Scholar

Hu, L., and P. C. B. Phillips. 2004. “Dynamics of the Federal Funds Target Rate: A Nonstationary Discrete Choice Approach.” Journal of Applied Econometrics 19 (7): 851–867.10.1002/jae.747Search in Google Scholar

Kim, D. H., and K. Singleton. 2012. “Term Structure Models and the Zero Bound: An Empirical Investigation of Japanese Yields.” Journal of Econometrics 170: 32–49.10.1016/j.jeconom.2011.12.005Search in Google Scholar

Nibbering, D., R. Paap, and M. van der Wel. 2018. “What do Professional Forecasters Actually Predict?” International Journal of Forecasting 34 (2): 288–311.10.1016/j.ijforecast.2017.12.004Search in Google Scholar

Pan, J. 2002. “The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-Series Study.” Journal of Financial Economics 63 (1): 3–50.10.1016/S0304-405X(01)00088-5Search in Google Scholar

Patton, A. J., and A. Timmermann. 2011. “Predictability of Output Growth and Inflation: A Multi-Horizon Survey Approach.” Journal of Business & Economic Statistics 29 (3): 397–410.10.1198/jbes.2010.08347Search in Google Scholar

Piazzesi, M., and E. T. Swanson. 2008. “Futures Prices as Risk-Adjusted Forecasts of Monetary Policy.” Journal of Monetary Economics 55 (4): 677–691.10.3386/w10547Search in Google Scholar

Rudebusch, G. 2006. “Monetary Policy Inertia: Fact or Fiction?” International Journal of Central Banking 2: 85–135.10.2139/ssrn.864484Search in Google Scholar

Sarno, L., D. L. Thornton, and G. Valente. 2005. “Federal Funds Rate Prediction.” Journal of Money, Credit and Banking 37 (3): 449–471.10.1353/mcb.2005.0035Search in Google Scholar

Smets, F., and R. Wouters. 2004. “Forecasting with a Bayesian DSGE Model: An Application to the Euro Area.” JCMS: Journal of Common Market Studies 42 (4): 841–867.10.1111/j.0021-9886.2004.00532.xSearch in Google Scholar

Woodford, M. 2001. “The Taylor Rule and Optimal Monetary Policy.” American Economic Review 91 (2): 232–237.10.1257/aer.91.2.232Search in Google Scholar

Wu, J. C., and F. D. Xia. 2016. “Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound.” Journal of Money, Credit and Banking 48 (2–3): 253–291.10.3386/w20117Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/snde-2019-0005).


Published Online: 2020-01-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2019-0005/html
Scroll to top button