Abstract
This paper extends Regression discontinuity designs with unknown discontinuity points developed by (Porter, J., and P. Yu. 2015. “Regression Discontinuity Designs with Unknown Discontinuity Points: Testing and Estimation.” Journal of Econometrics 189: 132–147.) to allow for state-dependent discontinuity points. We discuss the estimation of the model, and propose test statistics for treatment effect and state dependency in the discontinuity points. We conduct Monte Carlo simulations to compare the proposed estimator with these based on the constant discontinuity RDD and the classic fuzzy RDD, and find that overlooking the state dependency can lead to biased estimates of treatment effects, while the proposed estimator works well and is robust when applied to constant discontinuity RDDs. Monte Carlo experiments also point out that the sizes and powers of the proposed test statistics are generally satisfactory. The model is illustrated with an empirical application.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 71803072
Funding statement: National Natural Science Foundation of China, Funder Id: 10.13039/501100001809, Grant Number: 71803072.
Acknowledgement
The author thanks two anonymous referees and the editor for very valuable comments and suggestions on previous versions of the paper. Remaining errors are my own.
Appendix
Robustness of the simulation results
This Appendix discusses the robustness of the simulation results to different choices of kernel and bandwidth. We compare the simulation results based on the uniform and triangular kernels, and examine the sensitivity of the simulation results to the choice of bandwidth by choosing the bandwidth h in an ad-hoc way, setting h = 0.1,0.2 and 0.5.
Table 6–Table 8 report the simulation results based on different choices of kernel and bandwidth. Table 6 presents the summary statistics (i.e. mean and standard deviation) for the estimates by applying the proposed estimation procedure with state-dependent discontinuity points. Table 7 reports the summary statistics (i.e. mean and standard deviation) for the parameter estimates based on the Porter and Yu’s (2015) procedure assuming a constant discontinuity point. In Table 8, we compare the proposed estimator with the classical fuzzy RDD estimator. These results support that the simulation results are not sensitive to the choices of kernel and bandwidth. And thus, these simulation results confirm the robustness of the main findings in the paper.
Estimates of the parameters using the estimation procedure proposed in Section 2.
Treatment effect discontinuity point | Coefficients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
bandwidth | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | |
Panel A: Uniform kernel | |||||||||||
C = 1 | a0 | α = a0 | γ0 = 1 | γ1 = 0 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.504 | 0.083 | 1.003 | 0.095 | 0.000 | 0.013 | 1.017 | 0.322 | 0.981 | 0.354 |
h = 0.2 | 0.5 | 0.498 | 0.055 | 1.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.099 | 1.005 | 0.118 |
h = 0.5 | 0.5 | 0.499 | 0.034 | 1.000 | 0.000 | 0.000 | 0.000 | 1.001 | 0.021 | 1.000 | 0.029 |
Entire sample | 0.5 | 0.500 | 0.022 | 1.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.009 | 1.000 | 0.009 |
C | a0 | α = a0 | γ0 = 1 | γ1 = 0.5 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.498 | 0.042 | 1.000 | 0.111 | 0.500 | 0.021 | 0.999 | 0.048 | 1.002 | 0.038 |
h = 0.2 | 0.5 | 0.499 | 0.030 | 1.000 | 0.000 | 0.500 | 0.000 | 1.002 | 0.031 | 1.000 | 0.027 |
h = 0.5 | 0.5 | 0.500 | 0.023 | 1.000 | 0.000 | 0.500 | 0.000 | 1.001 | 0.016 | 0.999 | 0.015 |
Entire sample | 0.5 | 0.500 | 0.021 | 1.000 | 0.000 | 0.500 | 0.000 | 1.000 | 0.009 | 1.000 | 0.008 |
Panel B: Triangular kernel | |||||||||||
C = 1 | a0 | α = a0 | γ0 = 1 | γ1 = 0 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.498 | 0.087 | 1.000 | 0.045 | 0.000 | 0.022 | 0.991 | 0.407 | 1.011 | 0.441 |
h = 0.2 | 0.5 | 0.497 | 0.062 | 1.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.127 | 1.005 | 0.152 |
h = 0.5 | 0.5 | 0.502 | 0.037 | 1.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.038 | 1.000 | 0.028 |
Entire sample | 0.5 | 0.500 | 0.023 | 1.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.009 | 1.000 | 0.010 |
C = 1 + 0.5S | a0 | α = a0 | γ0 = 1 | γ1 = 0.5 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.501 | 0.048 | 1.000 | 0.000 | 0.500 | 0.000 | 0.997 | 0.055 | 1.001 | 0.047 |
h = 0.2 | 0.5 | 0.500 | 0.035 | 1.000 | 0.000 | 0.500 | 0.000 | 1.002 | 0.036 | 0.999 | 0.031 |
h = 0.5 | 0.5 | 0.501 | 0.025 | 1.000 | 0.000 | 0.500 | 0.000 | 1.001 | 0.019 | 0.999 | 0.018 |
Entire sample | 0.5 | 0.500 | 0.021 | 1.000 | 0.000 | 0.500 | 0.000 | 1.000 | 0.009 | 1.000 | 0.008 |
The simulations were written in the GAUSS programming language. The number of replications is 5000.
Estimates of the parameters using the estimation procedure assuming a constant discontinuity point.
Treatment effect discontinuity point | Coefficients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
bandwidth | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | |
Panel A: Uniform kernel | |||||||||||
C = 1 | a0 | α = a0 | γ0 = 1 | γ1 = 0 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.501 | 0.082 | 1.000 | 0.000 | – | – | 1.001 | 0.328 | 0.994 | 0.357 |
h = 0.2 | 0.5 | 0.499 | 0.058 | 1.000 | 0.000 | – | – | 0.998 | 0.104 | 1.002 | 0.125 |
h = 0.5 | 0.5 | 0.500 | 0.035 | 1.000 | 0.000 | – | – | 1.000 | 0.022 | 1.000 | 0.031 |
Entire sample | 0.5 | 0.500 | 0.023 | 1.000 | 0.000 | – | – | 1.000 | 0.008 | 1.000 | 0.006 |
C = 1 + 0.5S | a0 | α = a0 | γ0 = 1 | γ1 = 0.5 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.043 | 0.116 | 1.028 | 0.256 | – | – | 0.892 | 0.492 | 1.353 | 0.536 |
h = 0.2 | 0.5 | 0.023 | 0.109 | 1.041 | 0.272 | – | – | 0.949 | 0.267 | 1.319 | 0.241 |
h = 0.5 | 0.5 | 0.022 | 0.121 | 1.093 | 0.284 | – | – | 0.993 | 0.146 | 1.234 | 0.106 |
Entire sample | 0.5 | 0.189 | 0.173 | 1.033 | 0.279 | – | – | 1.002 | 0.020 | 1.018 | 0.048 |
Panel B: Triangular kernel | |||||||||||
C = 1 | a0 | α = a0 | γ0 = 1 | γ1 = 0 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.502 | 0.090 | 1.000 | 0.000 | – | – | 1.003 | 0.411 | 0.976 | 0.449 |
h = 0.2 | 0.5 | 0.499 | 0.065 | 1.000 | 0.000 | – | – | 0.999 | 0.136 | 1.002 | 0.162 |
h = 0.5 | 0.5 | 0.500 | 0.039 | 1.000 | 0.000 | – | – | 1.000 | 0.028 | 1.000 | 0.039 |
Entire sample | 0.5 | 0.500 | 0.024 | 1.000 | 0.000 | – | – | 1.000 | 0.011 | 1.000 | 0.010 |
C = 1 + 0.5S | a0 | α = a0 | γ0 = 1 | γ1 = 0.5 | β0 = 1 | β1 = 1 | |||||
h = 0.1 | 0.5 | 0.035 | 0.119 | 1.023 | 0.263 | – | – | 0.911 | 0.515 | 1.259 | 0.523 |
h = 0.2 | 0.5 | 0.025 | 0.119 | 1.055 | 0.288 | – | – | 0.956 | 0.276 | 1.267 | 0.222 |
h = 0.5 | 0.5 | 0.033 | 0.111 | 1.071 | 0.277 | – | – | 0.990 | 0.161 | 1.241 | 0.115 |
Entire sample | 0.5 | 0.083 | 0.183 | 1.115 | 0.283 | – | – | 1.015 | 0.070 | 1.151 | 0.073 |
The simulations were written in the GAUSS programming language. The number of replications is 5000.
Estimation of treatment effect based on state-dependent RDDs and classical fuzzy RDDs.
State-dependent RDD | Fuzzy RDD | State-dependent RDD | Fuzzy RDD | ||||||
---|---|---|---|---|---|---|---|---|---|
bandwidth | a0 | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev | Mean | Std.dev |
Panel A: Uniform kernel | |||||||||
C = 1 | C = 1 + 0.1S | ||||||||
h = 0.1 | 0.5 | 0.499 | 0.081 | 0.500 | 0.129 | 0.502 | 0.046 | 0.053 | 38.158 |
h = 0.2 | 0.5 | 0.500 | 0.056 | 0.501 | 0.088 | 0.500 | 0.037 | 0.189 | 24.075 |
h = 0.5 | 0.5 | 0.499 | 0.035 | 0.501 | 0.053 | 0.500 | 0.031 | 0.497 | 0.135 |
Entire sample | 0.5 | 0.499 | 0.026 | 0.501 | 0.038 | 0.500 | 0.027 | 0.500 | 0.055 |
C = 1 + 0.5S | C = 1 + S | ||||||||
h = 0.1 | 0.5 | 0.501 | 0.041 | 0.061 | 34.355 | 0.500 | 0.041 | 0.235 | 53.988 |
h = 0.2 | 0.5 | 0.500 | 0.031 | 0.295 | 22.581 | 0.502 | 0.031 | 0.907 | 50.517 |
h = 0.5 | 0.5 | 0.500 | 0.023 | 0.356 | 20.323 | 0.500 | 0.021 | 0.347 | 46.394 |
Entire sample | 0.5 | 0.503 | 0.032 | 0.381 | 9.438 | 0.501 | 0.015 | 0.411 | 46.207 |
Panel B: Triangular kernel | |||||||||
C = 1 | C = 1 + 0.1S | ||||||||
h = 0.1 | 0.5 | 0.498 | 0.091 | 0.499 | 0.136 | 0.501 | 0.059 | 0.033 | 43.112 |
h = 0.2 | 0.5 | 0.501 | 0.063 | 0.500 | 0.093 | 0.498 | 0.049 | 0.606 | 22.145 |
h = 0.5 | 0.5 | 0.499 | 0.056 | 0.499 | 0.058 | 0.500 | 0.036 | 0.488 | 0.858 |
Entire sample | 0.5 | 0.500 | 0.023 | 0.501 | 0.041 | 0.500 | 0.023 | 0.499 | 0.069 |
C = 1 + 0.5S | C = 1 + S | ||||||||
h = 0.1 | 0.5 | 0.500 | 0.048 | 0.312 | 17.657 | 0.499 | 0.048 | 0.133 | 55.676 |
h = 0.2 | 0.5 | 0.500 | 0.034 | 0.678 | 22.479 | 0.500 | 0.034 | 1.601 | 52.811 |
h = 0.5 | 0.5 | 0.500 | 0.025 | 0.326 | 15.918 | 0.500 | 0.023 | 1.347 | 52.333 |
Entire sample | 0.5 | 0.500 | 0.021 | 0.411 | 13.277 | 0.500 | 0.018 | 0.232 | 55.222 |
The simulations were written in the GAUSS programming language. The number of replications is 5000.
References
Angrist, J. D., and M. Rokkanen. 2015. “Wanna get Away? Regression Discontinuity Estimation of Exam School Effects Away From the Cutoff.” Journal of the American Statistical Association 110: 1331–1344.10.1080/01621459.2015.1012259Search in Google Scholar
Arai, Y., and H. Ichimura. 2018. “Simultaneous Selection of Optimal Bandwidths for the Sharp Regression Discontinuity Estimator.” Quantitative Economics 9: 441–482.10.3982/QE590Search in Google Scholar
Atalay, K., and G. F. Barrett. 2014. “The Causal Effect of Retirement on Health: New Evidence From Australian Pension Reform.” Economics Letters 125: 392–395.10.1016/j.econlet.2014.10.028Search in Google Scholar
Bartalotti, O., and Q. Brummet. 2017. “Regression Discontinuity Designs with Clustered Data.” In: edited by M. D. Cattaneo, and J. C. Escanciano. Regression Discontinuity Designs: Theory and Applications, 383–420. UK: Emerald Publishing Limited.10.1108/S0731-905320170000038017Search in Google Scholar
Bertanha, M. 2017. “Regression Discontinuity Design with Many Thresholds.” Available at SSRN, http://dx.doi.org/10.2139/ssrn.2712957.10.2139/ssrn.2712957Search in Google Scholar
Bertanha, M., and G. W. Imbens. 2014. “External Validity in Fuzzy Regression Discontinuity Designs.” National Bureau of Economic Research, No. w20773.10.3386/w20773Search in Google Scholar
Canay, I. A., and V. Kamat. 2018. “Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design.” The Review of Economic Studies 85: 1577–1608.10.1093/restud/rdx062Search in Google Scholar
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2017. “rdrobust: Software for Regression Discontinuity Designs.” Stata Journal 17: 372–404.10.1177/1536867X1701700208Search in Google Scholar
Calonico, S., M. D. Cattaneo, and R. Titiunik. 2014. “Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs.” Econometrica 82: 2295–2326.10.3982/ECTA11757Search in Google Scholar
Cattaneo, M. D., N. Idrobo, and R. Titiunik. 2018. A Practical Introduction to Regression Discontinuity Designs. Vol. I, Cambridge Elements: Quantitative and Computational Methods for Social Science. UK: Cambridge University Press.10.1017/9781108684606Search in Google Scholar
Calonico, S., M. D. Cattaneo, M. H. Farrell, and R. Titiunik. 2018. “Regression Discontinuity Designs Using Covariates.” Review of Economics and Statistics. DOI: 10.1162/rest_a_00760. forthcoming.Search in Google Scholar
Cattaneo, M. D., R. Titiunik, G. Vazquez-Bare, and L. Keele. 2016. “Interpreting Regression Discontinuity Designs with Multiple Cutoffs.” The Journal of Politics 78: 1229–1248.10.1086/686802Search in Google Scholar
Chudik, A., K. Mohaddes, M. H. Pesaran, and M. Raissi. 2017. “Is There a Debt-Threshold Effect on Output Growth?” Review of Economics and Statistics 99: 135–150.10.1162/REST_a_00593Search in Google Scholar
Chudik, A., K. Mohaddes, M. H. Pesaran, and M. Raissi. 2018. “Rising Public Debt to GDP Can Harm Economic Growth.” Economic Letter 13: 1–4.Search in Google Scholar
Davies, R. B. 1977. “Hypothesis Testing When a Nuisance Parameter is Present Only Under the Alternative.” Biometrika 64: 247–254.10.1093/biomet/64.2.247Search in Google Scholar
Davies, R. B. 1987. “Hypothesis Testing When a Nuisance Parameter is Present Only Under the Alternative.” Biometrika 74: 33–43.10.1093/biomet/74.1.33Search in Google Scholar
De La Mata, D. 2012. “The Effect of Medicaid Eligibility on Coverage, Utilization, and Children’s Health.” Health Economics 21: 1061–1079.10.1002/hec.2857Search in Google Scholar PubMed
Dong, Y. 2017. “Regression Discontinuity Designs with Sample Selection.” Journal of Business and Economic Statistics. DOI: 10.1080/07350015.2017.1302880. forthcoming.Search in Google Scholar
Feir, D., T. Lemieux, and V. Marmer. 2016. “Weak Identification in Fuzzy Regression Discontinuity Designs.” Journal of Business and Economic Statistics 34: 185–196.10.1080/07350015.2015.1024836Search in Google Scholar
Fölich, M., and M. Huber. 2018. “Including Covariates in the Regression Discontinuity Design.” Journal of Business and Economic Statistics. DOI: 10.1080/07350015.2017.1421544. forthcoming.Search in Google Scholar
Gelman, A., and G. Imbens. 2018. “Why High-Order Polynomials Should not be Used in Regression Discontinuity Designs.” Journal of Business and Economic Statistics. DOI: 10.1080/07350015.2017.1366909. forthcoming.Search in Google Scholar
Hansen, B. E. 1996. “Inference when a nuisance parameter is not identified under the null hypothesis.” Econometrica 64: 413– 430.10.2307/2171789Search in Google Scholar
Hansen, B. E. 2017. “Regression Kink with an Unknown Threshold.” Journal of Business and Economic Statistics 35: 228–240.10.1080/07350015.2015.1073595Search in Google Scholar
Hahn, J., P. Todd, and W. Van der Klaauw. 2001. “Identification and Estimation of Treatment Effects with a Regression Discontinuity Design.” Econometrica 69: 201–209.10.1111/1468-0262.00183Search in Google Scholar
Imbens, G. W., and T. Lemieux. 2008. “Regression Discontinuity Designs: A Guide to Practice.” Journal of Econometrics 142: 615–635.10.1016/j.jeconom.2007.05.001Search in Google Scholar
Imbens, G., and K. Kalyanaraman. 2012. “Optimal Bandwidth Choice for the Regression Discontinuity Estimator.” The Review of Economic Studies 79: 933–959.10.1093/restud/rdr043Search in Google Scholar
Lee, D. S., and D. Card. 2008. “Regression Discontinuity Inference with Specification Error.” Journal of Econometrics 142: 655–674.10.1016/j.jeconom.2007.05.003Search in Google Scholar
Lee, D. S., and T. Lemieux. 2010. “Regression Discontinuity Designs in Economics.” Journal of Economic Literature 48: 281–355.10.1257/jel.48.2.281Search in Google Scholar
McCrary, J. 2008. “Testing for Manipulation of the Running Variable in the Regression Discontinuity Design.” Journal of Econometrics 142: 698–714.10.1016/j.jeconom.2007.05.005Search in Google Scholar
Panizza, U., and A. F. Presbitero. 2014. “Public Debt and Economic Growth: Is There a Causal Effect?” Journal of Macroeconomics 41: 21–41.10.1016/j.jmacro.2014.03.009Search in Google Scholar
Porter, J., and P. Yu. 2015. “Regression Discontinuity Designs with Unknown Discontinuity Points: Testing and Estimation.” Journal of Econometrics 189: 132–147.10.1016/j.jeconom.2015.06.002Search in Google Scholar
Reinhart, C. M., and K. S. Rogoff. 2010. “Growth in a Time of Debt.” American Economic Review 100: 573–78.10.1257/aer.100.2.573Search in Google Scholar
Skovron, C., and R. Titiunik. 2015. “A Practical Guide to Regression Discontinuity Designs in Political Science.” American Journal of Political Science 2015: 1–36.Search in Google Scholar
Thistlethwaite, D. L., and D. T. Campbell. 1960. “Regression-Discontinuity Analysis: An Alternative to the Ex Post Facto Experiment.” Journal of Educational Psychology 51: 309–317.10.1037/h0044319Search in Google Scholar
Van der Klaauw, W. 2002. “Estimating the Effect of Financial Aid Offers on College Enrollment: A Regression-Discontinuity Approach.” International Economic Review 43: 1249–1287.10.1111/1468-2354.t01-1-00055Search in Google Scholar
Van der Klaauw, W. 2008. “Regression-Discontinuity Analysis: A Survey of Recent Developments in Economics.” Labour 22: 219–245.10.1111/j.1467-9914.2008.00419.xSearch in Google Scholar
Xu, K.-L. 2017. “Regression Discontinuity with Categorical Outcomes.” Journal of Econometrics 201: 1–18.10.1016/j.jeconom.2017.07.004Search in Google Scholar
Yu, P. 2016. “Understanding Estimators of Treatment Effects in Regression Discontinuity Designs.” Econometric Reviews 35: 1–52.10.1080/07474938.2013.833831Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/snde-2017-0059).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Research Articles
- A unified framework jointly explaining business conditions, stock returns, volatility and “volatility feedback news” effects
- Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models
- A parametric stationarity test with smooth breaks
- Regression discontinuity designs with unknown state-dependent discontinuity points: estimation and testing
- Foster-Hart optimization for currency portfolios
- Asymmetric impact of uncertainty in recessions: are emerging countries more vulnerable?
Articles in the same Issue
- Research Articles
- A unified framework jointly explaining business conditions, stock returns, volatility and “volatility feedback news” effects
- Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models
- A parametric stationarity test with smooth breaks
- Regression discontinuity designs with unknown state-dependent discontinuity points: estimation and testing
- Foster-Hart optimization for currency portfolios
- Asymmetric impact of uncertainty in recessions: are emerging countries more vulnerable?