Home Estimation of long memory in volatility using wavelets
Article
Licensed
Unlicensed Requires Authentication

Estimation of long memory in volatility using wavelets

  • Lucie Kraicová and Jozef Baruník EMAIL logo
Published/Copyright: April 6, 2017

Abstract

This work studies wavelet-based Whittle estimator of the fractionally integrated exponential generalized autoregressive conditional heteroscedasticity (FIEGARCH) model often used for modeling long memory in volatility of financial assets. The newly proposed estimator approximates the spectral density using wavelet transform, which makes it more robust to certain types of irregularities in data. Based on an extensive Monte Carlo study, both behavior of the proposed estimator and its relative performance with respect to traditional estimators are assessed. In addition, we study properties of the estimators in presence of jumps, which brings interesting discussion. We find that wavelet-based estimator may become an attractive robust and fast alternative to the traditional methods of estimation. In particular, a localized version of our estimator becomes attractive in small samples.

Acknowledgments

We would like to express our gratitude to Ana Perez, who provided us with the code for MLE and FWE estimation of FIEGARCH processes, and we gratefully acknowledge financial support from the the Czech Science Foundation under project No. 13-32263S. The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007-2013) under grant agreement No. FP7-SSH- 612955 (FinMaP).

A Appendix: Tables and Figures

Table 1:

Energy decomposition.

Coefficientsdωαβθγ
(a) Coefficient sets
 A0.2500.50.5−0.30.5
 B0.4500.50.5−0.30.5
 C−0.2500.50.5−0.30.5
 D0.2500.90.9−0.30.5
 E0.4500.90.9−0.30.5
 F−0.2500.90.9−0.30.5
 G0.2500.90.9−0.90.9
 H0.4500.90.9−0.90.9
ABCDEFGH
(b) Integrals over frequencies respective to levels for the coefficient sets from Table 1
 Level 11.11171.12201.08971.15051.16221.12071.12611.1399
 Level 20.54730.52190.62740.47760.46910.53060.61870.6058
 Level 30.39560.36930.43300.32460.30560.39591.13541.3453
 Level 40.30290.33410.24250.55590.77120.35282.95584.8197
 Level 50.20350.28280.11751.09052.17580.30036.083913.2127
 Level 60.12790.22970.05501.46853.93420.19658.213623.4144
 Level 70.07930.18830.02591.35234.79750.09617.602628.4723
 Level 80.04950.15840.01231.02744.83020.04085.826828.7771
 Level 90.03130.13680.00590.73274.57200.01694.196727.3822
 Level 100.02010.12060.00290.51414.26100.00712.972825.6404
 Level 110.01300.10800.00140.35973.96000.00302.097723.9192
 Level 120.00860.09790.00070.25183.68110.00131.479322.2986
(c) Sample variances of DWT Wavelet Coefficients for the coefficient sets from Table 1
 Level 14.44684.48804.35884.60204.64884.48284.50444.5596
 Level 24.37844.17525.01923.82083.75284.24484.94964.8464
 Level 36.32965.90886.92805.19364.88966.334418.166421.5248
 Level 49.692810.69127.760017.788824.678411.289694.5856154.2304
 Level 513.024018.09927.520069.7920139.251219.2192389.3696845.6128
 Level 616.371229.40167.0400187.9680503.577625.15201051.34082997.0432
 Level 720.300848.20486.6304346.18881228.160024.60161946.26567288.9088
 Level 825.344081.10086.2976526.02882473.062420.88962983.321614733.8752
 Level 932.0512140.08326.0416750.28484681.728017.30564297.420828039.3728
 Level 1041.1648246.98885.93921052.87688726.528014.54086088.294452511.5392
 Level 1153.2480442.36805.73441473.331216220.160012.28808592.179297973.0432
 Level 1270.4512801.99685.73442062.745630155.571210.649612118.4256182670.1312
Table 2:

Monte Carlo No jumps: d=0.25/0.45; MLE, FWE, MODWT(D4), 2: Corrected using Donoho and Johnstone threshold.

PARTrueMethodNo jumps; N=2048No jumps; N=16,384PARNo jumps; N=2048
MeanBiasRMSEMeanBiasRMSEMeanBiasRMSE
d^0.250WWE MODWT0.165−0.0850.2250.2530.0030.0420.4500.362−0.0880.170
WWE MODWT 20.168−0.0820.227
FWE0.212−0.0380.1470.2510.0010.0360.415−0.0350.087
FWE 20.213−0.0370.146
MLE0.220−0.0300.0850.433−0.0170.043
MLE 20.228−0.0220.086
ω^−7.000MLE−7.076−0.0760.174−7.458−0.4580.739
MLE 2−7.083−0.0830.182
OTHER−7.002−0.0020.197−7.003−0.0030.074−6.9990.0010.696
OTHER 2−7.015−0.0150.198
α^20.500WWE MODWT0.434−0.0660.3490.328−0.1720.2290.324−0.1760.395
WWE MODWT 20.426−0.0740.358
FWE0.5270.0270.3430.5120.0120.1680.475−0.0250.348
FWE 20.5210.0210.333
MLE0.5030.0030.1210.487−0.0130.128
MLE 20.464−0.0360.136
β^10.500WWE MODWT0.5590.0590.2490.5230.0230.0780.6100.1100.178
WWE MODWT 20.5610.0610.253
FWE0.5200.0200.1990.499−0.0010.0650.5540.0540.135
FWE 20.5170.0170.214
MLE0.5290.0290.1010.5270.0270.063
MLE 20.5370.0370.109
θ^−0.300WWE MODWT−0.2830.0170.180−0.337−0.0370.078−0.314−0.0140.146
WWE MODWT 2−0.2610.0390.182
FWE−0.2440.0560.182−0.2790.0210.077−0.2420.0580.158
FWE 2−0.2220.0780.189
MLE−0.301−0.0010.026−0.301−0.0010.024
MLE 2−0.2820.0180.031
γ^0.500WWE MODWT0.481−0.0190.1960.489−0.0110.0850.5040.0040.218
WWE MODWT 20.472−0.0280.193
FWE0.5090.0090.1750.5040.0040.0830.5260.0260.202
FWE 20.497−0.0030.174
MLE0.499−0.0010.0450.5070.0070.044
MLE 20.491−0.0090.048
Table 3:

Monte Carlo jumps: d=0.25/0.45; Poisson lambda=0.028; N(0; 0.2); FWE, MODWT (D4), 2: Corrected using Donoho and Johnstone threshold.

PARTrueMethodJump [0.028, N(0, 0.2)]; N=2048Jump [0.028, N(0, 0.2)]; N=16,384PARJump [0.028, N(0, 0.2)] N=2048
MeanBiasRMSEMeanBiasRMSEMeanBiasRMSE
d^0.250WWE MODWT0.145−0.1050.2140.450
WWE MODWT 20.154−0.0960.2250.235−0.0150.0420.347−0.1030.179
FWE0.195−0.0550.142
FWE 20.206−0.0440.1430.231−0.0190.0380.403−0.0470.091
MLE0.018−0.2320.353
MLE 20.099−0.1510.2510.187−0.2630.314
ω^−7.000MLE−5.6621.3381.450
MLE 2−6.2820.7180.801−5.5291.4711.662
OTHER−6.8870.1130.221
OTHER 2−6.9420.0580.203−6.9410.0590.096−6.9460.0540.677
α^20.500WWE MODWT0.475−0.0250.437
WWE MODWT 20.492−0.0080.4020.5570.0570.2430.390−0.1100.447
FWE0.5610.0610.454
FWE 20.5820.0820.4000.7310.2310.2970.5350.0350.428
MLE0.6670.1670.385
MLE 20.6520.1520.2870.6050.1050.308
β^10.500WWE MODWT0.5920.0920.290
WWE MODWT 20.5780.0780.2640.5350.0350.0870.6360.1360.203
FWE0.5460.0460.266
FWE 20.5290.0290.2310.5190.0190.0680.5790.0790.164
MLE0.406−0.0940.452
MLE 20.5030.0030.2500.6190.1190.240
θ^−0.300WWE MODWT−0.491−0.1910.272
WWE MODWT 2−0.385−0.0850.189−0.398−0.0980.108−0.384−0.0840.174
FWE−0.455−0.1550.246
FWE 2−0.348−0.0480.175−0.356−0.0560.065−0.324−0.0240.153
MLE−0.2140.0860.130
MLE 2−0.2110.0890.104−0.1760.1240.137
γ^0.500WWE MODWT0.203−0.2970.365
WWE MODWT 20.322−0.1780.2710.287−0.2130.2310.276−0.2240.322
FWE0.257−0.2430.315
FWE 20.365−0.1350.2310.313−0.1870.2020.317−0.1830.291
MLE0.287−0.2130.256
MLE 20.340−0.1600.1800.347−0.1530.179
Table 4:

Forecasting: N=2048; No jumps; MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone threshold.

CatMethodMain statsMAD quantiles
Mean errMADRMSE0.500.900.950.99
InWWE MODWT6.1308e−050.000390320.0052969
WWE MODWT 22.2383e−050.000407780.0034541
WWE DWT8.3135e−050.000449320.011577
WWE DWT 22.363e−050.000439810.0050438
FWE5.9078e−050.000370640.00087854
FWE 21.4242e−050.000386040.0011961
MLE6.0381e−069.3694e−050.00019804
MLE 2−3.3242e−050.000117340.00028776
OutWWE MODWT105.3851105.38563277.12070.000153610.00105250.00194310.0060853
WWE MODWT 2−7.6112e−050.000582760.00204360.000164820.00105120.00205310.0072711
WWE DWT0.000138170.000669280.00315790.000172190.00121560.00205410.0065611
WWE DWT 20.000870820.00156630.0275580.000171810.00124970.00222710.0072191
FWE2.9498e−050.000507630.00157450.000145660.00108390.00189260.005531
FWE 20.000384990.00103950.0141910.000154250.00113510.0019890.0081017
MLE−1.5041e−060.000122110.000351474.0442e−050.000244830.000435870.001595
MLE 2−0.000104550.000241250.00156054.3599e−050.000305530.000633780.0038043
Error quantiles AError quantiles B
0.010.050.100.900.950.99
OutWWE MODWT−0.0033827−0.0010722−0.00048650.000633850.00103450.0048495
WWE MODWT 2−0.0045312−0.0013419−0.000626980.000535310.000896840.0051791
WWE DWT−0.0040691−0.001223−0.000595880.000655010.00121180.004838
WWE DWT 2−0.003994−0.0013952−0.000711660.000596790.00106160.0050457
FWE−0.0035752−0.0010712−0.000531690.000618220.0010860.004636
FWE 2−0.0042148−0.00129−0.000631940.00056570.00105770.0048622
MLE−0.00079412−0.00024382−0.000133120.000102970.000264810.0013195
MLE 2−0.0019587−0.00046351−0.000217347.5622e−050.000182160.00077541

Not corrected: Mean of N-next true values to be forecasted: 0.0016845; Total valid=967, i.e. 96.7% of M fails-MLE=0%, fails-FWE=0.8%, fails-MODWT=2.1%, fails-DWT=1.5%, Corrected: Mean of N-next true values to be forecasted: 0.0016852; Total valid=959, i.e. 95.9% of M fails-MLE=0%, fails-FWE=1.3%, fails-MODWT=1.7%, fails-DWT=2.7%.

Table 5:

Forecasting: N=16,384, No Jumps; MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone threshold.

CatMethodMain statsMAD quantiles
Mean errMADRMSE0.500.900.950.99
InWWE MODWT7.522e−060.000158890.00032423
WWE DWT8.5378e−060.000177360.00038026
FWE6.3006e−060.000143670.00032474
MLE
OutWWE MODWT9.3951e−060.000183940.000546187.1556e−050.000404380.00073690.0015565
WWE DWT2.1579e−050.00021070.000847057.1483e−050.000418760.000743760.0018066
FWE−3.3569e−060.000177940.000678055.6684e−050.000351320.00059220.001811
MLE
Error quantiles AError quantiles B
0.010.050.100.900.950.99
OutWWE MODWT−0.0011566−0.00040454−0.000215690.000210030.00040250.0013515
WWE DWT−0.0011033−0.00038209−0.000182470.000235870.000490250.0016387
FWE−0.00087002−0.00034408−0.000185710.000185930.000357410.0010787
MLE

Not corrected: Mean of N-next true values to be forecasted: 0.0015516; Total valid=1000, i.e. 100% of M fails-MLE=0%, fails-FWE=0%, fails-MODWT=0%, fails-DWT=0%.

Table 6:

Forecasting: N=2048; d=0.45; No jumps; MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone threshold.

CatMethodMain statsMAD quantiles
Mean errMADRMSE0.500.900.950.99
InWWE MODWT0.000262810.00108410.02023
WWE DWT0.000226390.00112060.013151
FWE0.000271270.00104580.005243
MLE5.7279e−050.000269950.0012167
OutWWE MODWTInfInfInf0.000166530.00245970.0053080.040031
WWE DWT924.8354924.837528648.73730.000177880.00244280.00496790.040403
FWE−0.000106840.00158070.00781180.000160220.00254710.00573880.031548
MLE0.00022890.00048430.00399724.2589e−050.000523070.00101870.0078509
Error quantiles AError quantiles B
0.010.050.100.900.950.99
OutWWE MODWT−0.013427−0.0024269−0.000872960.00105210.00260190.013128
WWE DWT−0.013075−0.0025811−0.00100180.000895450.00230950.0165
FWE−0.012356−0.002209−0.000810630.00100420.0027770.014773
MLE−0.0016025−0.00044789−0.00025680.000171790.000567130.0051968

Not corrected: Mean of N-next true values to be forecasted: 0.0064152; Total valid=962, i.e. 96.2% of M fails-MLE=0%, fails-FWE=1%, fails-MODWT=1.9%, fails-DWT=2.1%.

Table 7:

Forecasting: N=2048; Jumps lambda=0.028, N(0, 0.2); MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone threshold.

CatMethodMain statsMAD quantiles
Mean errMADRMSE0.500.900.950.99
InWWE MODWT0.00242920.00270270.031109
WWE MODWT 20.000498470.000882380.010266
WWE DWT0.00228730.00258330.029094
WWE DWT 20.000517880.000920810.013946
FWE0.00242410.00263980.030474
FWE 20.000468960.000807860.01562
MLE0.000999620.00131360.0022127
MLE 20.000217080.00057670.0011708
OutWWE MODWTInfInfInf0.000279110.00195840.00439370.074726
WWE MODWT 212837.464412837.4647361761.89760.000207550.00129840.00219540.064956
WWE DWT0.0107760.0109670.142330.000323280.00201080.00489510.086811
WWE DWT 2InfInfInf0.000195160.00135940.0026090.08235
FWE0.00988990.0100260.157370.000254160.00195250.00472860.073048
FWE 21.40461.404836.71060.000176220.00120630.00241690.057823
MLE0.00147880.00175730.00667770.000999060.0019510.00273020.019721
MLE 20.00221140.00253860.0534630.000346360.000941870.00163930.0082677
Error quantiles AError quantiles B
0.010.050.100.900.950.99
OutWWE MODWT−0.0014262−0.00061569−0.000235170.00181190.00439370.074726
WWE MODWT 2−0.002004−0.0007648−0.000336090.00103970.00189780.064956
WWE DWT−0.0014902−0.00065937−0.000283710.00189040.00489510.086811
WWE DWT 2−0.002635−0.00076962−0.000314660.000999730.00204340.08235
FWE−0.00097176−0.00039409−0.000210560.00192690.00472860.073048
FWE 2−0.0019851−0.00057545−0.000258780.000874350.00202680.057823
MLE−0.0033888−0.00042850.000160640.00183230.00235360.019688
MLE 2−0.0030739−0.00075814−0.000298360.000662140.000995070.0059062

Corrected: Mean of N-next true values to be forecasted: 0.001324; Total valid=801, i.e. 80.1% of M fails-MLE=0%, fails-FWE=7%, fails-MODWT=13.4%, fails-DWT=12.5% Not Corrected: Mean of N-next true values to be forecasted: 0.001324; Total valid=45.1, i.e. % of M fails-MLE=0%, fails-FWE=35.2%, fails-MODWT=43.4%, fails-DWT=41.6%.

Table 8:

Forecasting: N=16,384, Jumps lambda=0.028, N(0, 0.2); MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone threshold.

CatMethodMain statsMAD quantiles
Mean errMADRMSE0.500.900.950.99
InWWE MODWT0.000796210.00105360.019562
WWE DWT0.000746770.00101650.018346
FWE0.000527050.000747590.0094745
MLE
OutWWE MODWTInfInfInf0.00023940.00150.00376960.088609
WWE DWTInfInfInf0.000221720.00164820.00399520.043464
FWE0.0100340.0102490.239190.000179510.00146850.00376040.04528
MLE
Error quantiles AError quantiles B
0.010.050.100.900.950.99
OutWWE MODWT−0.0025009−0.0006746−0.000285130.00117760.00330890.088609
WWE DWT−0.0025573−0.00057909−0.000288140.00122990.00335470.043464
FWE−0.0018013−0.00048645−0.000225850.00114650.00306390.04528
MLE

Corrected: Mean of N-next true values to be forecasted: 0.0016747; Total valid=948, i.e. 94.8% of M fails-MLE=−%, fails-FWE=0.4%, fails-MODWT=3.1%, fails-DWT=2.5%.

Figure 1: Spectral density estimation (d=0.25/0.45/−0.25), T=2048 (211), level=10, zoom. (A) d=0.25. (B) d=0.45. (C) d=−0.25.
Figure 1:

Spectral density estimation (d=0.25/0.45/−0.25), T=2048 (211), level=10, zoom. (A) d=0.25. (B) d=0.45. (C) d=−0.25.

Figure 2: Energy decomposition: (A) Integrals of FIEGARCH spectral density over frequency intervals, and (B) true variances of wavelet coefficients respective to individual levels of decomposition, assuming various levels of long memory (d=0.25, d=0.45, d=−0.25) and the coefficient sets from Table 1.
Figure 2:

Energy decomposition: (A) Integrals of FIEGARCH spectral density over frequency intervals, and (B) true variances of wavelet coefficients respective to individual levels of decomposition, assuming various levels of long memory (d=0.25, d=0.45, d=−0.25) and the coefficient sets from Table 1.

Figure 3: Spectral density estimation in small samples: Wavelets (Level 5) vs. Fourier. (A) T=512 (29), level=5(D4). (B) T=2048 (211), level=5(D4).
Figure 3:

Spectral density estimation in small samples: Wavelets (Level 5) vs. Fourier. (A) T=512 (29), level=5(D4). (B) T=2048 (211), level=5(D4).

Figure 4: 3D plots guide.
Figure 4:

3D plots guide.

Figure 5: 3D plots: Partial decomposition: d^:$\hat d:$ Bias and RMSE. (A) Bias of d^$\hat d$ (LA8, d=0.25). (B) Bias of d^$\hat d$ (LA8, d=0.45. (C) RMSE of d^$\hat d$ (LA8, d=0.25. (D) RMSE of d^$\hat d$ (LA8, d=0.45).
Figure 5:

3D plots: Partial decomposition: d^: Bias and RMSE. (A) Bias of d^ (LA8, d=0.25). (B) Bias of d^ (LA8, d=0.45. (C) RMSE of d^ (LA8, d=0.25. (D) RMSE of d^ (LA8, d=0.45).

Figure 6: 3D plots: Partial decomposition: α^:$\hat \alpha :$ Bias and RMSE. (A) Bias of α^$\hat \alpha $ (LA8, d=0.25. (B) Bias of α^$\hat \alpha $ (LA8, d=0.45). (C) RMSE of α^$\hat \alpha $ (LA8, d=0.25). (D) RMSE of α^$\hat \alpha $ (LA8, d=0.45).
Figure 6:

3D plots: Partial decomposition: α^: Bias and RMSE. (A) Bias of α^ (LA8, d=0.25. (B) Bias of α^ (LA8, d=0.45). (C) RMSE of α^ (LA8, d=0.25). (D) RMSE of α^ (LA8, d=0.45).

References

Barunik, J., and L. Vacha. 2015. “Realized Wavelet-Based Estimation of Integrated Variance and Jumps in the Presence of Noise.” Quantitative Finance 15: 1347–1364.10.1080/14697688.2015.1032550Search in Google Scholar

Barunik, J., and L. Vacha. 2016. “Do Co-Jumps Impact Correlations in Currency Markets?” Papers 1602.05489, arXiv.org.10.2139/ssrn.2733736Search in Google Scholar

Barunik, J., T. Krehlik, and L. Vacha. 2016. “Modeling and Forecasting Exchange Rate Volatility in Time-Frequency Domain.” European Journal of Operational Reseach 251: 329–340.10.1016/j.ejor.2015.12.010Search in Google Scholar

Beran, J. 1994. Statistics for Long-Memory Processes. Monographs on statistics and applied probability, 61, Chapman & Hall.Search in Google Scholar

Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31: 307–327.10.1016/0304-4076(86)90063-1Search in Google Scholar

Bollerslev, T. 2008. “Glossary to Arch (garch).” CREATES Research Papers 2008-49, School of Economics and Management, University of Aarhus, URL http://ideas.repec.org/p/aah/create/2008-49.html.10.2139/ssrn.1263250Search in Google Scholar

Bollerslev, T., and J. M. Wooldridge. 1992. “Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time-Varying Covariances.” Econometric Reviews 11: 143–172.10.1080/07474939208800229Search in Google Scholar

Bollerslev, T., and H. O. Mikkelsen. 1996. “Modeling and Pricing Long Memory in Stock Market Volatility.” Journal of Econometrics 73: 151–184.10.1016/0304-4076(95)01736-4Search in Google Scholar

Cheung, Y.-W., and F. X. Diebold. 1994. “On Maximum Likelihood Estimation of the Differencing Parameter of Fractionally-Integrated Noise with Unknown Mean.” Journal of Econometrics 62: 301–316.10.1016/0304-4076(94)90026-4Search in Google Scholar

Dahlhaus, R. 1989. “Efficient Parameter Estimation for Self-Similar Processes.” The Annals of Statistics 17: 1749–1766.10.1214/aos/1176347393Search in Google Scholar

Dahlhaus, R. 2006. “Correction: Efficient Parameter Estimation for Self-Similar Processes.” The Annals of Statistics 34: 1045–1047.10.1214/009053606000000182Search in Google Scholar

Donoho, D. L., and I. M. Johnstone. 1994. “Ideal Spatial Adaptation by Wavelet Shrinkage.” Biometrika 81: 425–455.10.1093/biomet/81.3.425Search in Google Scholar

Engle, R. F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica 50: 987–1007.10.2307/1912773Search in Google Scholar

Fan, J., and Y. Wang. 2007. “Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data.” Journal of the American Statistical Association 102: 1349–1362.10.1198/016214507000001067Search in Google Scholar

Fan, Y., and R. Gençay. 2010. “Unit Root Tests with Wavelets.” Econometric Theory 26: 1305–1331.10.1017/S0266466609990594Search in Google Scholar

Faÿ, G., E. Moulines, F. Roueff, and M. S. Taqqu. 2009. “Estimators of Long-Memory: Fourier versus Wavelets.” Journal of Econometrics 151: 159–177.10.1016/j.jeconom.2009.03.005Search in Google Scholar

Fox, R., and M. S. Taqqu. 1986. “Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series.” The Annals of Statistics 14: 517–532.10.1214/aos/1176349936Search in Google Scholar

Frederiksen, P. H., and M. O. Nielsen. 2005. “Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration.” Econometric Reviews 24: 405–443.10.1080/07474930500405790Search in Google Scholar

Gençay, R., and N. Gradojevic. 2011. “Errors-in-Variables Estimation with Wavelets.” Journal of Statistical Computation and Simulation 81: 1545–1564.10.1080/00949655.2010.495073Search in Google Scholar

Gencay, R., and D. Signori. 2015. “Multi-Scale Tests for Serial Correlation.” Journal of Econometrics 184: 62–80.10.1016/j.jeconom.2014.08.002Search in Google Scholar

Gonzaga, A., and M. Hauser. 2011. “A Wavelet Whittle Estimator of Generalized Long-Memory Stochastic Volatility.” Statistical Methods & Applications 20: 23–48.10.1007/s10260-010-0153-9Search in Google Scholar

Heni, B., and B. Mohamed. 2011. “A Wavelet-Based Approach for Modelling Exchange Rates.” Statistical Methods & Applications 20: 201–220.10.1007/s10260-010-0152-xSearch in Google Scholar

Jensen, M. J. 1999. “An Approximate Wavelet Mle of Short- and Long-Memory Parameters.” Studies in Nonlinear Dynamics Econometrics 3: 5.10.2202/1558-3708.1051Search in Google Scholar

Jensen, M. J. 2000. “An Alternative Maximum Likelihood Estimator of Long-Memory Processes using Compactly Supported Wavelets.” Journal of Economic Dynamics and Control 24: 361–387.10.1016/S0165-1889(99)00010-XSearch in Google Scholar

Johnstone, I. M., and B. W. Silverman. 1997. “Wavelet Threshold Estimators for Data with Correlated Noise.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59: 319–351.10.1111/1467-9868.00071Search in Google Scholar

Mancini, C., and F. Calvori. 2012. “Jumps”, in Handbook of Volatility Models and Their Applications, edited by L. Bauwens, C. Hafner and S. Laurent, John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9781118272039.ch17.10.1002/9781118272039.ch17Search in Google Scholar

Moulines, E., F. Roueff, and M. S. Taqqu. 2008. “A Wavelet Whittle Estimator of the Memory Parameter of a Nonstationary Gaussian Time Series.” The Annals of Statistics 36: 1925–1956.10.1214/07-AOS527Search in Google Scholar

Nielsen, M. O., and P. H. Frederiksen. 2005. “Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration.” Econometric Reviews 24: 405–443.10.1080/07474930500405790Search in Google Scholar

Percival, D. P. 1995. “On Estimation of the Wavelet Variance.” Biometrika 82: 619–631.10.1093/biomet/82.3.619Search in Google Scholar

Percival, D. B., and A. T. Walden. 2000. Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press, URL http://www.worldcat.org/isbn/0521685087.Search in Google Scholar

Perez, A., and P. Zaffaroni. 2008. “Finite-Sample Properties of Maximum Likelihood and Whittle Estimators in Egarch and Fiegarch Models.” Quantitative and Qualitative Analysis in Social Sciences 2: 78–97.Search in Google Scholar

Tseng, M. C., and R. Gençay. 2014. “Estimation of Linear Model with One Time-Varying Parameter via Wavelets.”Search in Google Scholar

Whitcher, B. 2004. “Wavelet-Based Estimation for Seasonal Long-Memory Processes.” Technometrics 46: 225–238.10.1198/004017004000000275Search in Google Scholar

Whittle, P. 1962. “Gaussian Estimation in Stationary Time Series.” Bulletin of the International Statistical Institute 39: 105–129.Search in Google Scholar

Wornell, G. W., and A. Oppenheim. 1992. “Estimation of Fractal Signals from Noisy Measurements using Wavelets.” Signal Processing, IEEE Transactions on 40: 611–623.10.1109/78.120804Search in Google Scholar

Xue, Y., R. Gençay, and S. Fagan. 2014. “Jump Detection with Wavelets for High-Frequency Financial Time Series.” Quantitative Finance 14: 1427–1444.10.1080/14697688.2013.830320Search in Google Scholar

Zaffaroni, P. 2009. “Whittle Estimation of Egarch and Other Exponential Volatility Models.” Journal of Econometrics 151: 190–200.10.1016/j.jeconom.2009.03.008Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/snde-2016-0101) offers supplementary material, available to authorized users.


Published Online: 2017-4-6

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2016-0101/html
Scroll to top button