Home Integrative pathway analysis with gene expression, miRNA, methylation and copy number variation for breast cancer subtypes
Article
Licensed
Unlicensed Requires Authentication

Integrative pathway analysis with gene expression, miRNA, methylation and copy number variation for breast cancer subtypes

  • Henry Linder , Yuping Zhang ORCID logo EMAIL logo , Yunqi Wang and Zhengqing Ouyang ORCID logo
Published/Copyright: February 19, 2024

Abstract

Developments in biotechnologies enable multi-platform data collection for functional genomic units apart from the gene. Profiling of non-coding microRNAs (miRNAs) is a valuable tool for understanding the molecular profile of the cell, both for canonical functions and malignant behavior due to complex diseases. We propose a graphical mixed-effects statistical model incorporating miRNA-gene target relationships. We implement an integrative pathway analysis that leverages measurements of miRNA activity for joint analysis with multimodal observations of gene activity including gene expression, methylation, and copy number variation. We apply our analysis to a breast cancer dataset, and consider differential activity in signaling pathways across breast tumor subtypes. We offer discussion of specific signaling pathways and the effect of miRNA integration, as well as publish an interactive data visualization to give public access to the results of our analysis.


Corresponding author: Yuping Zhang, Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA, E-mail:

Funding source: Yuping Zhang acknowledges Faculty Research Excellence Program Award from University of Connecticut

Acknowledgments

The authors acknowledge the suggestions from anonymous reviewers.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for theentire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Yuping Zhang acknowledges Faculty ResearchExcellence Program Award from University of Connecticut.

  5. Data availability: Not applicable.

References

Berger, A.C., Korkut, A., Kanchi, R.S., Hegde, A.M., Lenoir, W., Liu, W., Liu, Y., Fan, H., Shen, H., Ravikumar, V., et al.. (2018). A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33: 690–705. https://doi.org/10.1016/j.ccell.2018.03.014.Search in Google Scholar PubMed PubMed Central

Blenkiron, C., Goldstein, L.D., Thorne, N.P., Spiteri, I., Chin, S.-F., Dunning, M.J., Barbosa-Morais, N.L., Teschendorff, A.E., Green, A.R., Ellis, I.O., et al.. (2007). Microrna expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8: R214. https://doi.org/10.1186/gb-2007-8-10-r214.Search in Google Scholar PubMed PubMed Central

B.V., A., Thieurmel, B., and Robert, T. (2018). visNetwork: network visualization using vis.js library, R package version 2.0.4.Search in Google Scholar

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2018). shiny: web application framework for R, R package version 1.2.0.Search in Google Scholar

Chu, A., Robertson, G., Brooks, D., Mungall, A.J., Birol, I., Coope, R., Ma, Y., Jones, S., and Marra, M.A. (2015). Large-scale profiling of micrornas for the cancer genome atlas. Nucleic Acids Res. 44: e3. https://doi.org/10.1093/nar/gkv808.Search in Google Scholar PubMed PubMed Central

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. Int. J. Complex Syst. 1695: 1–9.Search in Google Scholar

Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015). Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5: 2929.Search in Google Scholar

Danielsen, S.A., Eide, P.W., Nesbakken, A., Guren, T., Leithe, E., and Lothe, R.A. (2015). Portrait of the pi3k/akt pathway in colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 1855: 104–121. https://doi.org/10.1016/j.bbcan.2014.09.008.Search in Google Scholar PubMed

Eroles, P., Bosch, A., Pérez-Fidalgo, J.A., and Lluch, A. (2012). Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 38: 698–707. https://doi.org/10.1016/j.ctrv.2011.11.005.Search in Google Scholar PubMed

Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., et al.. (2018). Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 5: 77–106. https://doi.org/10.1016/j.gendis.2018.05.001.Search in Google Scholar PubMed PubMed Central

Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A., and Staudt, L.M. (2016). Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375: 1109–1112. https://doi.org/10.1056/nejmp1607591.Search in Google Scholar PubMed PubMed Central

Hachim, I.Y., Villatoro, M., Canaff, L., Hachim, M.Y., Boudreault, J., Haiub, H., Ali, S., and Lebrun, J.-J. (2017). Transforming growth factor-beta regulation of ephrin type-a receptor 4 signaling in breast cancer cellular migration. Sci. Rep. 7: 14976. https://doi.org/10.1038/s41598-017-14549-9.Search in Google Scholar PubMed PubMed Central

Helczynska, K., Larsson, A.-M., Mengelbier, L.H., Bridges, E., Fredlund, E., Borgquist, S., Landberg, G., Påhlman, S., and Jirström, K. (2008). Hypoxia-inducible factor-2α correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 68: 9212–9220. https://doi.org/10.1158/0008-5472.can-08-1135.Search in Google Scholar PubMed

Hsu, J.B.-K., Chiu, C.-M., Hsu, S.-D., Huang, W.-Y., Chien, C.-H., Lee, T.-Y., and Huang, H.-D. (2011). mirtar: an integrated system for identifying mirna-target interactions in human. BMC Bioinf. 12: 300. https://doi.org/10.1186/1471-2105-12-300.Search in Google Scholar PubMed PubMed Central

Hua, L., Zhou, P., Li, L., Liu, H., and Yang, Z. (2013). Prioritizing breast cancer subtype related mirnas using mirna–mrna dysregulated relationships extracted from their dual expression profiling. J. Theor. Biol. 331: 1–11. https://doi.org/10.1016/j.jtbi.2013.04.008.Search in Google Scholar PubMed

Jarman, E.J., Ward, C., Turnbull, A.K., Martinez-Perez, C., Meehan, J., Xintaropoulou, C., Sims, A.H., and Langdon, S.P. (2019). Her2 regulates hif-2α and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 21: 10. https://doi.org/10.1186/s13058-019-1097-0.Search in Google Scholar PubMed PubMed Central

Jiang, Z., Lin, J., Dong, H., Zheng, X., Marjani, S.L., Duan, J., Ouyang, Z., Chen, J., and Tian, X. (2018). Dna methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol. Reprod. 99: 949–959. https://doi.org/10.1093/biolre/ioy138.Search in Google Scholar PubMed PubMed Central

Kim, S. (2015). ppcor: an r package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22: 665. https://doi.org/10.5351/csam.2015.22.6.665.Search in Google Scholar PubMed PubMed Central

Kolesnikov, N., Veryaskina, Y.A., Titov, S., Rodionov, V., Gening, T., Abakumova, T., Kometova, V., Torosyan, M.K., and Zhimulev, I. (2016). Expression of micrornas in molecular genetic breast cancer subtypes. Cancer Treat. Res. Commun. 2019: 100026, https://doi.org/10.1016/j.ctarc.2016.08.006.Search in Google Scholar PubMed

Kou, C.-T.J. and Kandpal, R.P. (2018). Differential expression patterns of eph receptors and ephrin ligands in human cancers. BioMed Res. Int. 2018: 7390104, https://doi.org/10.1155/2018/7390104.Search in Google Scholar PubMed PubMed Central

Krämer, N., Schäfer, J., and Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinf. 10: 384. https://doi.org/10.1186/1471-2105-10-384.Search in Google Scholar PubMed PubMed Central

Kurozumi, S., Yamaguchi, Y., Kurosumi, M., Ohira, M., Matsumoto, H., and Horiguchi, J. (2017). Recent trends in microrna research into breast cancer with particular focus on the associations between micrornas and intrinsic subtypes. J. Hum. Genet. 62: 15. https://doi.org/10.1038/jhg.2016.89.Search in Google Scholar PubMed

Linder, H. and Zhang, Y. (2019). Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes. Commun. Stat. Appl. Methods 26: 411–430. https://doi.org/10.29220/csam.2019.26.4.411.Search in Google Scholar

Linder, H. and Zhang, Y. (2020). A pan-cancer integrative pathway analysis of multi-omics data. Quant. Biol. 8: 130–142. https://doi.org/10.1007/s40484-019-0185-6.Search in Google Scholar

Linder, H. and Zhang, Y. (2021). A pan-cancer network analysis with integration of mirna-gene targeting for multiomics datasets. J. Data Sci. 19: 555–568, https://doi.org/10.6339/21-jds1019.Search in Google Scholar

Linder, H. and Zhang, Y. (2022). Mirna–gene activity interaction networks (migain): integrated joint models of mirna–gene targeting and disturbance in signaling pathways. In: Advances and innovations in statistics and data science. Springer, Cham, Switzerland, pp. 3–21.10.1007/978-3-031-08329-7_1Search in Google Scholar

Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V., et al.. (2018). An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173: 400–416. https://doi.org/10.1016/j.cell.2018.02.052.Search in Google Scholar PubMed PubMed Central

Moreno Roig, E., Yaromina, A., Houben, R., Groot, A.J., Dubois, L., and Vooijs, M. (2018). Prognostic role of hypoxia-inducible factor-2α tumor cell expression in cancer patients: a meta-analysis. Front. Oncol. 8: 224. https://doi.org/10.3389/fonc.2018.00224.Search in Google Scholar PubMed PubMed Central

Oztemur Islakoglu, Y., Noyan, S., Aydos, A., and Gur Dedeoglu, B. (2018). Meta-microrna biomarker signatures to classify breast cancer subtypes. Omics: A J. Integr. Biol. 22: 709–716. https://doi.org/10.1089/omi.2018.0157.Search in Google Scholar PubMed

Qi, F., Qin, W.-X., and Zang, Y.-S. (2019). Molecular mechanism of triple-negative breast cancer-associated brca1 and the identification of signaling pathways. Oncol. Lett. 17: 2905–2914. https://doi.org/10.3892/ol.2019.9884.Search in Google Scholar PubMed PubMed Central

Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow, K.H. (2008). Pid: the pathway interaction database. Nucleic Acids Res. 37: D674–D679. https://doi.org/10.1038/npre.2008.2243.1.Search in Google Scholar

Shojaie, A. and Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. J. Comput. Biol. 16: 407–426. https://doi.org/10.1089/cmb.2008.0081.Search in Google Scholar PubMed PubMed Central

Shojaie, A. and Michailidis, G. (2010). Network enrichment analysis in complex experiments. Stat. Appl. Genet. Mol. Biol. 9, https://doi.org/10.2202/1544-6115.1483.Search in Google Scholar PubMed PubMed Central

Søkilde, R., Persson, H., Ehinger, A., Pirona, A.C., Fernö, M., Hegardt, C., Larsson, C., Loman, N., Malmberg, M., Rydén, L., et al.. (2019). Refinement of breast cancer molecular classification by mirna expression profiles. BMC Genom. 20: 503. https://doi.org/10.1186/s12864-019-5887-7.Search in Google Scholar PubMed PubMed Central

Stokowy, T., Eszlinger, M., Swierniak, M., Fujarewicz, K., Jarzab, B., Paschke, R., and Krohn, K. (2014). Analysis options for high-throughput sequencing in mirna expression profiling. BMC Res. Notes 7: 1–12. https://doi.org/10.1186/1756-0500-7-144.Search in Google Scholar PubMed PubMed Central

Taylor, H., Campbell, J., and Nobes, C.D. (2017). Ephs and ephrins. Curr. Biol. 27: R90–R95. https://doi.org/10.1016/j.cub.2017.01.003.Search in Google Scholar PubMed

Tokar, T., Pastrello, C., Rossos, A.E., Abovsky, M., Hauschild, A.-C., Tsay, M., Lu, R., and Jurisica, I. (2017). Mirdip 4.1—integrative database of human microrna target predictions. Nucleic Acids Res. 46: D360–D370. https://doi.org/10.1093/nar/gkx1144.Search in Google Scholar PubMed PubMed Central

Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer genome atlas (tcga): an immeasurable source of knowledge. Contemp. Oncol. 19: A68. https://doi.org/10.5114/wo.2014.47136.Search in Google Scholar PubMed PubMed Central

Tsai, H.-P., Huang, S.-F., Li, C.-F., Chien, H.-T., and Chen, S.-C. (2018). Differential microrna expression in breast cancer with different onset age. PloS One 13: e0191195. https://doi.org/10.1371/journal.pone.0191195.Search in Google Scholar PubMed PubMed Central

Wang, D.-Y., Gendoo, D.M., Ben-David, Y., Woodgett, J.R., and Zacksenhaus, E. (2019). A subgroup of micrornas defines pten-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in rb1, myc, and wnt signaling. Breast Cancer Res. 21: 18. https://doi.org/10.1186/s13058-019-1098-z.Search in Google Scholar PubMed PubMed Central

Wei, L., Jin, Z., Yang, S., Xu, Y., Zhu, Y., and Ji, Y. (2017). Tcga-assembler 2: software pipeline for retrieval and processing of tcga/cptac data. Bioinformatics 34: 1615–1617. https://doi.org/10.1093/bioinformatics/btx812.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Linder, M.H., Shojaie, A., Ouyang, Z., Shen, R., Baggerly, K.A., Baladandayuthapani, V., and Zhao, H. (2017). Dissecting pathway disturbances using network topology and multi-platform genomics data. Stat. Biosci. 10: 86–106, https://doi.org/10.1007/s12561-017-9193-0.Search in Google Scholar PubMed PubMed Central

Zhu, Y., Qiu, P., and Ji, Y. (2014). Tcga-assembler: open-source software for retrieving and processing tcga data. Nat. Methods 11: 599. https://doi.org/10.1038/nmeth.2956.Search in Google Scholar PubMed PubMed Central

Received: 2019-10-06
Accepted: 2024-01-27
Published Online: 2024-02-19

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/sagmb-2019-0050/html
Scroll to top button