Abstract
Developments in biotechnologies enable multi-platform data collection for functional genomic units apart from the gene. Profiling of non-coding microRNAs (miRNAs) is a valuable tool for understanding the molecular profile of the cell, both for canonical functions and malignant behavior due to complex diseases. We propose a graphical mixed-effects statistical model incorporating miRNA-gene target relationships. We implement an integrative pathway analysis that leverages measurements of miRNA activity for joint analysis with multimodal observations of gene activity including gene expression, methylation, and copy number variation. We apply our analysis to a breast cancer dataset, and consider differential activity in signaling pathways across breast tumor subtypes. We offer discussion of specific signaling pathways and the effect of miRNA integration, as well as publish an interactive data visualization to give public access to the results of our analysis.
Funding source: Yuping Zhang acknowledges Faculty Research Excellence Program Award from University of Connecticut
Acknowledgments
The authors acknowledge the suggestions from anonymous reviewers.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for theentire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Yuping Zhang acknowledges Faculty ResearchExcellence Program Award from University of Connecticut.
-
Data availability: Not applicable.
References
Berger, A.C., Korkut, A., Kanchi, R.S., Hegde, A.M., Lenoir, W., Liu, W., Liu, Y., Fan, H., Shen, H., Ravikumar, V., et al.. (2018). A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33: 690–705. https://doi.org/10.1016/j.ccell.2018.03.014.Search in Google Scholar PubMed PubMed Central
Blenkiron, C., Goldstein, L.D., Thorne, N.P., Spiteri, I., Chin, S.-F., Dunning, M.J., Barbosa-Morais, N.L., Teschendorff, A.E., Green, A.R., Ellis, I.O., et al.. (2007). Microrna expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8: R214. https://doi.org/10.1186/gb-2007-8-10-r214.Search in Google Scholar PubMed PubMed Central
B.V., A., Thieurmel, B., and Robert, T. (2018). visNetwork: network visualization using vis.js library, R package version 2.0.4.Search in Google Scholar
Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2018). shiny: web application framework for R, R package version 1.2.0.Search in Google Scholar
Chu, A., Robertson, G., Brooks, D., Mungall, A.J., Birol, I., Coope, R., Ma, Y., Jones, S., and Marra, M.A. (2015). Large-scale profiling of micrornas for the cancer genome atlas. Nucleic Acids Res. 44: e3. https://doi.org/10.1093/nar/gkv808.Search in Google Scholar PubMed PubMed Central
Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. Int. J. Complex Syst. 1695: 1–9.Search in Google Scholar
Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015). Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5: 2929.Search in Google Scholar
Danielsen, S.A., Eide, P.W., Nesbakken, A., Guren, T., Leithe, E., and Lothe, R.A. (2015). Portrait of the pi3k/akt pathway in colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 1855: 104–121. https://doi.org/10.1016/j.bbcan.2014.09.008.Search in Google Scholar PubMed
Eroles, P., Bosch, A., Pérez-Fidalgo, J.A., and Lluch, A. (2012). Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 38: 698–707. https://doi.org/10.1016/j.ctrv.2011.11.005.Search in Google Scholar PubMed
Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., et al.. (2018). Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 5: 77–106. https://doi.org/10.1016/j.gendis.2018.05.001.Search in Google Scholar PubMed PubMed Central
Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A., and Staudt, L.M. (2016). Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375: 1109–1112. https://doi.org/10.1056/nejmp1607591.Search in Google Scholar PubMed PubMed Central
Hachim, I.Y., Villatoro, M., Canaff, L., Hachim, M.Y., Boudreault, J., Haiub, H., Ali, S., and Lebrun, J.-J. (2017). Transforming growth factor-beta regulation of ephrin type-a receptor 4 signaling in breast cancer cellular migration. Sci. Rep. 7: 14976. https://doi.org/10.1038/s41598-017-14549-9.Search in Google Scholar PubMed PubMed Central
Helczynska, K., Larsson, A.-M., Mengelbier, L.H., Bridges, E., Fredlund, E., Borgquist, S., Landberg, G., Påhlman, S., and Jirström, K. (2008). Hypoxia-inducible factor-2α correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 68: 9212–9220. https://doi.org/10.1158/0008-5472.can-08-1135.Search in Google Scholar PubMed
Hsu, J.B.-K., Chiu, C.-M., Hsu, S.-D., Huang, W.-Y., Chien, C.-H., Lee, T.-Y., and Huang, H.-D. (2011). mirtar: an integrated system for identifying mirna-target interactions in human. BMC Bioinf. 12: 300. https://doi.org/10.1186/1471-2105-12-300.Search in Google Scholar PubMed PubMed Central
Hua, L., Zhou, P., Li, L., Liu, H., and Yang, Z. (2013). Prioritizing breast cancer subtype related mirnas using mirna–mrna dysregulated relationships extracted from their dual expression profiling. J. Theor. Biol. 331: 1–11. https://doi.org/10.1016/j.jtbi.2013.04.008.Search in Google Scholar PubMed
Jarman, E.J., Ward, C., Turnbull, A.K., Martinez-Perez, C., Meehan, J., Xintaropoulou, C., Sims, A.H., and Langdon, S.P. (2019). Her2 regulates hif-2α and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 21: 10. https://doi.org/10.1186/s13058-019-1097-0.Search in Google Scholar PubMed PubMed Central
Jiang, Z., Lin, J., Dong, H., Zheng, X., Marjani, S.L., Duan, J., Ouyang, Z., Chen, J., and Tian, X. (2018). Dna methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol. Reprod. 99: 949–959. https://doi.org/10.1093/biolre/ioy138.Search in Google Scholar PubMed PubMed Central
Kim, S. (2015). ppcor: an r package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22: 665. https://doi.org/10.5351/csam.2015.22.6.665.Search in Google Scholar PubMed PubMed Central
Kolesnikov, N., Veryaskina, Y.A., Titov, S., Rodionov, V., Gening, T., Abakumova, T., Kometova, V., Torosyan, M.K., and Zhimulev, I. (2016). Expression of micrornas in molecular genetic breast cancer subtypes. Cancer Treat. Res. Commun. 2019: 100026, https://doi.org/10.1016/j.ctarc.2016.08.006.Search in Google Scholar PubMed
Kou, C.-T.J. and Kandpal, R.P. (2018). Differential expression patterns of eph receptors and ephrin ligands in human cancers. BioMed Res. Int. 2018: 7390104, https://doi.org/10.1155/2018/7390104.Search in Google Scholar PubMed PubMed Central
Krämer, N., Schäfer, J., and Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinf. 10: 384. https://doi.org/10.1186/1471-2105-10-384.Search in Google Scholar PubMed PubMed Central
Kurozumi, S., Yamaguchi, Y., Kurosumi, M., Ohira, M., Matsumoto, H., and Horiguchi, J. (2017). Recent trends in microrna research into breast cancer with particular focus on the associations between micrornas and intrinsic subtypes. J. Hum. Genet. 62: 15. https://doi.org/10.1038/jhg.2016.89.Search in Google Scholar PubMed
Linder, H. and Zhang, Y. (2019). Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes. Commun. Stat. Appl. Methods 26: 411–430. https://doi.org/10.29220/csam.2019.26.4.411.Search in Google Scholar
Linder, H. and Zhang, Y. (2020). A pan-cancer integrative pathway analysis of multi-omics data. Quant. Biol. 8: 130–142. https://doi.org/10.1007/s40484-019-0185-6.Search in Google Scholar
Linder, H. and Zhang, Y. (2021). A pan-cancer network analysis with integration of mirna-gene targeting for multiomics datasets. J. Data Sci. 19: 555–568, https://doi.org/10.6339/21-jds1019.Search in Google Scholar
Linder, H. and Zhang, Y. (2022). Mirna–gene activity interaction networks (migain): integrated joint models of mirna–gene targeting and disturbance in signaling pathways. In: Advances and innovations in statistics and data science. Springer, Cham, Switzerland, pp. 3–21.10.1007/978-3-031-08329-7_1Search in Google Scholar
Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V., et al.. (2018). An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173: 400–416. https://doi.org/10.1016/j.cell.2018.02.052.Search in Google Scholar PubMed PubMed Central
Moreno Roig, E., Yaromina, A., Houben, R., Groot, A.J., Dubois, L., and Vooijs, M. (2018). Prognostic role of hypoxia-inducible factor-2α tumor cell expression in cancer patients: a meta-analysis. Front. Oncol. 8: 224. https://doi.org/10.3389/fonc.2018.00224.Search in Google Scholar PubMed PubMed Central
Oztemur Islakoglu, Y., Noyan, S., Aydos, A., and Gur Dedeoglu, B. (2018). Meta-microrna biomarker signatures to classify breast cancer subtypes. Omics: A J. Integr. Biol. 22: 709–716. https://doi.org/10.1089/omi.2018.0157.Search in Google Scholar PubMed
Qi, F., Qin, W.-X., and Zang, Y.-S. (2019). Molecular mechanism of triple-negative breast cancer-associated brca1 and the identification of signaling pathways. Oncol. Lett. 17: 2905–2914. https://doi.org/10.3892/ol.2019.9884.Search in Google Scholar PubMed PubMed Central
Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow, K.H. (2008). Pid: the pathway interaction database. Nucleic Acids Res. 37: D674–D679. https://doi.org/10.1038/npre.2008.2243.1.Search in Google Scholar
Shojaie, A. and Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. J. Comput. Biol. 16: 407–426. https://doi.org/10.1089/cmb.2008.0081.Search in Google Scholar PubMed PubMed Central
Shojaie, A. and Michailidis, G. (2010). Network enrichment analysis in complex experiments. Stat. Appl. Genet. Mol. Biol. 9, https://doi.org/10.2202/1544-6115.1483.Search in Google Scholar PubMed PubMed Central
Søkilde, R., Persson, H., Ehinger, A., Pirona, A.C., Fernö, M., Hegardt, C., Larsson, C., Loman, N., Malmberg, M., Rydén, L., et al.. (2019). Refinement of breast cancer molecular classification by mirna expression profiles. BMC Genom. 20: 503. https://doi.org/10.1186/s12864-019-5887-7.Search in Google Scholar PubMed PubMed Central
Stokowy, T., Eszlinger, M., Swierniak, M., Fujarewicz, K., Jarzab, B., Paschke, R., and Krohn, K. (2014). Analysis options for high-throughput sequencing in mirna expression profiling. BMC Res. Notes 7: 1–12. https://doi.org/10.1186/1756-0500-7-144.Search in Google Scholar PubMed PubMed Central
Taylor, H., Campbell, J., and Nobes, C.D. (2017). Ephs and ephrins. Curr. Biol. 27: R90–R95. https://doi.org/10.1016/j.cub.2017.01.003.Search in Google Scholar PubMed
Tokar, T., Pastrello, C., Rossos, A.E., Abovsky, M., Hauschild, A.-C., Tsay, M., Lu, R., and Jurisica, I. (2017). Mirdip 4.1—integrative database of human microrna target predictions. Nucleic Acids Res. 46: D360–D370. https://doi.org/10.1093/nar/gkx1144.Search in Google Scholar PubMed PubMed Central
Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer genome atlas (tcga): an immeasurable source of knowledge. Contemp. Oncol. 19: A68. https://doi.org/10.5114/wo.2014.47136.Search in Google Scholar PubMed PubMed Central
Tsai, H.-P., Huang, S.-F., Li, C.-F., Chien, H.-T., and Chen, S.-C. (2018). Differential microrna expression in breast cancer with different onset age. PloS One 13: e0191195. https://doi.org/10.1371/journal.pone.0191195.Search in Google Scholar PubMed PubMed Central
Wang, D.-Y., Gendoo, D.M., Ben-David, Y., Woodgett, J.R., and Zacksenhaus, E. (2019). A subgroup of micrornas defines pten-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in rb1, myc, and wnt signaling. Breast Cancer Res. 21: 18. https://doi.org/10.1186/s13058-019-1098-z.Search in Google Scholar PubMed PubMed Central
Wei, L., Jin, Z., Yang, S., Xu, Y., Zhu, Y., and Ji, Y. (2017). Tcga-assembler 2: software pipeline for retrieval and processing of tcga/cptac data. Bioinformatics 34: 1615–1617. https://doi.org/10.1093/bioinformatics/btx812.Search in Google Scholar PubMed PubMed Central
Zhang, Y., Linder, M.H., Shojaie, A., Ouyang, Z., Shen, R., Baggerly, K.A., Baladandayuthapani, V., and Zhao, H. (2017). Dissecting pathway disturbances using network topology and multi-platform genomics data. Stat. Biosci. 10: 86–106, https://doi.org/10.1007/s12561-017-9193-0.Search in Google Scholar PubMed PubMed Central
Zhu, Y., Qiu, P., and Ji, Y. (2014). Tcga-assembler: open-source software for retrieving and processing tcga data. Nat. Methods 11: 599. https://doi.org/10.1038/nmeth.2956.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Empirically adjusted fixed-effects meta-analysis methods in genomic studies
- A CNN-CBAM-BIGRU model for protein function prediction
- A heavy-tailed model for analyzing miRNA-seq raw read counts
- Flexible model-based non-negative matrix factorization with application to mutational signatures
- Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data
- Assessing the feasibility of statistical inference using synthetic antibody-antigen datasets
- A global test of hybrid ancestry from genome-scale data
- Integrative pathway analysis with gene expression, miRNA, methylation and copy number variation for breast cancer subtypes
- Bayesian LASSO for population stratification correction in rare haplotype association studies
Articles in the same Issue
- Frontmatter
- Research Articles
- Empirically adjusted fixed-effects meta-analysis methods in genomic studies
- A CNN-CBAM-BIGRU model for protein function prediction
- A heavy-tailed model for analyzing miRNA-seq raw read counts
- Flexible model-based non-negative matrix factorization with application to mutational signatures
- Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data
- Assessing the feasibility of statistical inference using synthetic antibody-antigen datasets
- A global test of hybrid ancestry from genome-scale data
- Integrative pathway analysis with gene expression, miRNA, methylation and copy number variation for breast cancer subtypes
- Bayesian LASSO for population stratification correction in rare haplotype association studies