Home Optional strong semimartingale inequalities for the strong Snell envelopes
Article
Licensed
Unlicensed Requires Authentication

Optional strong semimartingale inequalities for the strong Snell envelopes

  • Mouna Haddadi EMAIL logo and Youssef Ouknine
Published/Copyright: August 3, 2024

Abstract

On finite time interval [ 0 , T ] , let X be an optional semimartingale of class ( D ) , and Z its strong Snell envelope, which is the smallest optional strong supermartingale bounding X above (except on evanescent set). In this article, we provide the several characterizations of strong Snell envelopes to establish the main result which is the following inequality:

Z 1 - Z 2 p C p X 1 - X 2 p ,

where X 1 and X 2 are two optional semimartingales of class ( D ) belonging to the space p ( p > 1 ), Z 1 and Z 2 are their Snell envelopes, C p is an absolute constant.

MSC 2020: 60G07

Communicated by Vyacheslav L. Girko


Acknowledgements

The authors would like to thank the Editor-in-chief as well as the two anonymous referees for their comments and remarks.

References

[1] M. N. Abdelghani and A. V. Melnikov, Financial markets in the context of the general theory of optional processes, Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer, Cham (2016), 519–528. 10.1007/978-3-319-30379-6_47Search in Google Scholar

[2] C. Czichowsky and W. Schachermayer, Strong supermartingales and limits of nonnegative martingales, Ann. Probab. 44 (2016), no. 1, 171–205. 10.1214/14-AOP970Search in Google Scholar

[3] A. Danelia, B. Dochviri and M. Shashiashvili, Stochastic variational inequalities and optimal stopping: Applications to the robustness of the portfolio/consumption processes, Stochachstics Stochachstics Rep. 75 (2003), no. 6, 407–423. 10.1080/10451120310001641135Search in Google Scholar

[4] C. Dellacherie and P.-A. Meyer, Probabilities and Potential. B, North-Holland Math. Stud. 72, North-Holland, Amsterdam, 1982. Search in Google Scholar

[5] N. El Karoui, Une propriété de domination de l’enveloppe de Snell des semimartingales fortes, Seminar on Probability. XVI, Lecture Notes in Math. 920, Springer, Berlin (1982), 400–408. 10.1007/BFb0092803Search in Google Scholar

[6] E. H. Essaky, M. Hassani and Y. Ouknine, Generalized Snell envelope as a minimal solution of BSDE with lower barriers, Bull. Sci. Math. 137 (2013), no. 4, 498–508. 10.1016/j.bulsci.2012.11.004Search in Google Scholar

[7] L. I. Gal’čuk, On the existence of optional modifications for martingales, Theory Probab. Appl. 22 (1977), 572–573. 10.1137/1122068Search in Google Scholar

[8] L. I. Gal’čuk, Optional martingale, Math. USSR-Sb. 40 (1981), 435–468. 10.1070/SM1981v040n04ABEH001838Search in Google Scholar

[9] L. I. Gal’čuk, Decomposition of optional supermartingales, Math. USSR-Sb. 43 (1982), 145–158. 10.1070/SM1982v043n02ABEH002440Search in Google Scholar

[10] M. Grigorova, P. Imkeller, E. Offen, Y. Ouknine and M.-C. Quenez, Reflected BSDEs when the obstacle is not right-continuous and optimal stopping, Ann. Appl. Probab. 27 (2017), no. 5, 3153–3188. 10.1214/17-AAP1278Search in Google Scholar

[11] M. Kobylanski and M.-C. Quenez, Optimal stopping time problem in a general framework, Electron. J. Probab. 17 (2012), 1–28. 10.1214/EJP.v17-2262Search in Google Scholar

[12] E. Lenglart, Tribus de Meyer et théorie des processus, Seminar on Probability. XIV, Lecture Notes in Math. 784, Springer, Berlin (1980), 500–546. 10.1007/BFb0089512Search in Google Scholar

[13] J.-F. Mertens, Théorie des processus stochastiques généraux applications aux surmartingales, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 22 (1972), 45–68. 10.1007/BF00538905Search in Google Scholar

[14] P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités. X, Lecture Notes in Math. 511, Springer, Berlin (1976), 245–400. Search in Google Scholar

[15] S. Peng and M. Xu, The smallest g-supermartingale and reflected BSDE with single and double L 2 obstacles, Ann. Inst. H. Poincaré Probab. Stat. 41 (2005), no. 3, 605–630. 10.1016/j.anihpb.2004.12.002Search in Google Scholar

[16] M. Shashiashvili, Semimartingale inequalities for the Snell envelopes, Stochastics Stochastics Rep. 43 (1993), no. 1–2, 65–72. 10.1080/17442509308833827Search in Google Scholar

Received: 2023-07-15
Accepted: 2024-04-04
Published Online: 2024-08-03
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rose-2024-2014/html
Scroll to top button