Home Mathematics L 1 and L ∞ stability of transition densities of perturbed diffusions
Article
Licensed
Unlicensed Requires Authentication

L 1 and L stability of transition densities of perturbed diffusions

  • Ilya Bitter ORCID logo EMAIL logo and Valentin Konakov ORCID logo
Published/Copyright: November 20, 2021

Abstract

In this paper, we derive a stability result for L 1 and L perturbations of diffusions under weak regularity conditions on the coefficients. In particular, the drift terms we consider can be unbounded with at most linear growth, and the estimates reflect the transport of the initial condition by the unbounded drift through the corresponding flow. Our approach is based on the study of the distance in L 1 - L 1 metric between the transition densities of a given diffusion and the perturbed one using the McKean–Singer parametrix expansion. In the second part, we generalize the well-known result on the stability of diffusions with bounded coefficients to the case of at most linearly growing drift.

MSC 2010: 60H20; 60H15; 60G22

Communicated by Stanislav Molchanov


Award Identifier / Grant number: 20-11-20119

Funding statement: The study has been funded by the Russian Science Foundation (project 20-11-20119).

A Appendix

A.1 Proof of Lemma 3.1

Let us consider the case when | ν | = 0 . Let us now identify the transition densities p ~ ( t , s , x , y ) and p ~ ε ( t , s , x , y ) with ( d + 1 ) × d matrices Ω and Ω ε consisting of the first rows that are the components of the respective mean vectors

θ t , s ( y ) = ( θ t , s 1 ( y ) , , θ t , s d ( y ) ) and θ t , s ε ( y ) = ( θ t , s 1 , ε ( y ) , , θ t , s d , ε ( y ) ) ,

and the d × d covariance matrices, namely

Ω i j = t s a i j ( u , θ u , s ( y ) ) 𝑑 u and Ω i j ε = t s a ε i j ( u , θ u , s ε ( y ) ) 𝑑 u ,

where i > 1 .

For ( d + 1 ) × d matrix A, we will denote by A 1 the first row and by A 2 : d + 1 the square matrix composed of the rows from 2 to d + 1 .

We can rewrite p ~ ( t , s , x , y ) and p ~ ε ( t , s , x , y ) in terms of Ω and Ω ε :

p ~ ( t , s , x , y ) = f ( Ω ) ,
p ~ ε ( t , s , x , y ) = f ( Ω ε ) ,

where

f : ( d + 1 ) × d ,
A f ( A ) = 1 ( 2 π ) d / 2 det ( A 2 : d + 1 ) 1 / 2 exp ( - 1 2 ( A 2 : d + 1 ) - 1 ( A 1 - x ) , A 1 - x ) .

So, applying the Taylor expansion and (2.8) combined with the consequence of (A3) gives

| p ~ ε - p ~ | ( t , s , x , y )
= | f ( Ω ) - f ( Ω ε ) |
= | | ν | = 1 ( Ω ε - Ω ) ν 0 1 ( 1 - λ ) 𝒟 ν f { Ω + λ ( Ω ε - Ω ) } 𝑑 λ |
= | i = 1 d ( θ t , s i , ε ( y ) - θ t , s i ( y ) ) 0 1 ( 1 - λ ) 𝒟 ν 1 i f { Ω + λ ( Ω ε - Ω ) } d λ
    + i , j = 1 d ( t s a i j ε ( u , θ u , s ε ( y ) ) d u - t s a i j ( u , θ u , s ε ( y ) ) d u ) 0 1 ( 1 - λ ) 𝒟 ν 2 : d + 1 i j f { Ω + λ ( Ω ε - Ω ) } d λ |
C ( s - t ) ( 1 + d ) / 2 exp ( - | θ t , s ( y ) + c ( θ t , s ε ( y ) - θ t , s ( y ) ) - x | 2 C ( s - t ) ) ( | θ t , s ε ( y ) - θ t , s ( y ) | )
    + C ( s - t ) 1 + d / 2 exp ( - | θ t , s ( y ) + c ( θ t , s ε ( y ) - θ t , s ( y ) ) - x | 2 C ( s - t ) )
    × ( t s | a ( u , θ u , s ( y ) ) - a ε ( u , θ u , s ε ( y ) ) | d u )
C ( s - t ) 1 / 2 p ¯ ( t , s , x , y ) exp ( c | θ t , s ε ( y ) - θ t , s ( y ) | 2 C ( s - t ) ) ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 𝑑 u )
    + C ( s - t ) p ¯ ( t , s , x , y ) exp ( c | θ t , s ε ( y ) - θ t , s ( y ) | 2 C ( s - t ) ) ( ( s - t ) ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | d u ) γ
    + t s | ( σ - σ ε ) ( u , θ u , s ( y ) ) | d u )
C p ¯ ( t , s , x , y ) ( ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 𝑑 u ) γ ( s - t ) γ / 2 + ( t s | ( σ - σ ε ) ( u , θ u , s ( y ) ) | 𝑑 u ) γ ( s - t ) γ ) .

We will use a slightly different bound:

| p ~ ε - p ~ | ( t , s , x , y )
(A.1) C p ¯ ( t , s , x , y ) ( ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 𝑑 u ) γ - δ ( s - t ) γ / 2 - δ / 2 + ( t s | ( σ - σ ε ) ( u , θ u , s ( y ) ) | 𝑑 u ) γ - δ ( s - t ) γ - δ ) .

Now the upper bound on the difference in the L 1 - L 1 norm easily follows from (A.1) and Jensen’s inequality:

( p ~ ε - p ~ ) ( t , s , x , y ) L 1 μ ( d , L 1 ( d ) )
C ( s - t ) γ - δ d d p ¯ ( t , s , x , y ) ϕ ( t , s ; y ) 𝑑 y μ ( d x )
C [ ( d d t s 𝔅 ( u ; 1 , γ 2 ) | ( b - b ε ) ( u , θ u , s ( y ) ) | 1 p ¯ ( t , s , x , y ) d u d y μ ( d x ) ) γ - δ
    + ( d d t s 𝔅 ( u ; 1 , γ 2 ) | ( σ - σ ε ) ( u , θ u , s ( y ) ) | γ p ¯ ( t , s , x , y ) d u d y μ ( d x ) ) γ - δ ]
= C [ ( Δ ε , b ) γ - δ + ( Δ ε , σ ) γ - δ ] .

The bounds for | ν | 1 follow from differentiation of the Taylor expansion and similar bounds (2.8) for the derivatives of the Gaussian densities p ~ and p ~ ε .

A.2 Proof of Lemma 3.2

In order to prove Lemma 3.2, we decompose the difference | H - H ε | ( t , s , x , y ) into six parts in the following way:

| H - H ε | ( t , s , x , y ) 1 2 i , j = 1 d | a i j ( t , x ) - a i j ε ( t , x ) - a i j ( t , θ t , s ( y ) ) + a i j ε ( t , θ t , s ( y ) ) | | 2 p ~ ( t , s , x , y ) x i x j |
+ 1 2 i , j = 1 d | a i j ε ( t , θ t , s ε ( y ) ) - a i j ε ( t , θ t , s ( y ) ) | | 2 p ~ ( t , s , x , y ) x i x j |
+ 1 2 i , j = 1 d | a i j ε ( t , x ) - a i j ε ( t , θ t , s ε ( y ) ) | | 2 ( p ~ ( t , s , x , y ) - p ~ ε ( t , s , x , y ) ) x i x j |
+ i = 1 d | b i ( t , x ) - b i ( t , θ t , s ( y ) ) - b i ε ( t , x ) + b i ε ( t , θ t , s ( y ) ) | | p ~ ( t , s , x , y ) x i |
+ i = 1 d | b i ε ( t , θ t , s ε ( y ) ) - b i ε ( t , θ t , s ( y ) ) | | p ~ ( t , s , x , y ) x i |
+ i = 1 d | b i ε ( t , x ) - b i ε ( t , θ t , s ε ( y ) ) | | ( p ~ - p ~ ε ) ( t , s , x , y ) x i |
= : I + II + III + IV + V + VI .

For II and V , by regularity assumptions and (2.8), we have

II C s - t p ¯ ( t , s , x , y ) | θ t , s ε ( y ) - θ t , s ( y ) | γ C ( s - t ) 1 - δ / 2 p ¯ ( t , s , x , y ) ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 1 𝑑 u ) γ - δ ,
V C ( s - t ) 1 / 2 p ¯ ( t , s , x , y ) | θ t , s ε ( y ) - θ t , s ( y ) | C ( s - t ) 1 / 2 p ¯ ( t , s , x , y ) ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 1 𝑑 u ) .

To obtain an upper bound for I , we first estimate the first part of the corresponding expression:

| a ( t , x ) - a ε ( t , x ) - a ( t , θ t , s ( y ) ) + a ε ( t , θ t , s ( y ) ) |
= | σ σ * ( t , x ) - σ ε ( σ ε ) * ( t , x ) - σ σ * ( t , θ t , s ( y ) ) + σ ε ( σ ε ) * ( t , θ t , s ( y ) ) |
[ | σ ( t , x ) - σ ε ( t , x ) - ( σ ( t , θ t , s ( y ) ) - σ ε ( t , θ t , s ( y ) ) ) | | σ * ( t , x ) |
    + | σ ( t , x ) - σ ε ( t , x ) - ( σ ( t , θ t , s ( y ) ) - σ ε ( t , θ t , s ( y ) ) ) | | ( σ ε ) * ( t , x ) |
    + | σ * ( t , x ) - ( σ ε ) * ( t , x ) - ( σ * ( t , θ t , s ( y ) ) - ( σ ε ) * ( t , θ t , s ( y ) ) ) | | σ ( t , θ t , s ( y ) ) |
    + | σ ( t , θ t , s ( y ) ) - σ ε ( t , θ t , s ( y ) ) | | ( σ ε ) * ( t , x ) - ( σ ε ) * ( t , θ t , s ( y ) ) |
    + | σ ε ( t , x ) - σ ε ( t , θ t , s ( y ) ) | | σ * ( t , x ) - ( σ ε ) * ( t , x ) | ]
C ( | x - θ t , s ( y ) | γ + | x - θ t , s ( y ) | 2 γ ) | ( σ - σ ε ) ( t , θ t , s ( y ) ) | γ .

Combining the estimate above and Lemma 2.8 with the semigroup property of the flows, we have

I C s - t p ¯ ( t , s , x , y ) | a ( t , x ) - a ε ( t , x ) - a ( t , θ t , s ( y ) ) + a ε ( t , θ t , s ( y ) ) |
C s - t p ¯ ( t , s , x , y ) ( | x - θ t , s ( y ) | γ + | x - θ t , s ( y ) | 2 γ ) | ( σ - σ ε ) ( t , θ t , s ( y ) ) | γ
C p ¯ ( t , s , x , y ) ( s - t ) 1 - γ / 2 | ( σ - σ ε ) ( t , θ t , s ( y ) ) | γ ,

and

IV C p ¯ ( t , s , x , y ) ( s - t ) 1 / 2 | ( b - b ε ) ( t , θ t , s ( y ) ) | 1 .

Finally, using the control Lemma 3.1 for III and VI , we get

III C p ¯ ( t , s , x , y ) ( ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 1 𝑑 u ) γ - δ ( s - t ) 1 - δ / 2 + ( t s | ( σ - σ ε ) ( u , θ u , s ( y ) ) | γ 𝑑 u ) γ - δ ( s - t ) 1 + γ / 2 - δ ) ,
VI ( ( t s | ( b - b ε ) ( u , θ u , s ( y ) ) | 1 𝑑 u ) γ - δ ( s - t ) γ / 2 - δ / 2 + ( t s | ( σ - σ ε ) ( u , θ u , s ( y ) ) | γ 𝑑 u ) γ - δ ( s - t ) γ - δ ) .

Summing up the bounds derived above, we complete the proof.

References

[1] F. Anceschi, S. Muzzioli and S. Polidoro, Existence of a fundamental solution of partial differential equations associated to Asian options, Nonlinear Anal. Real World Appl. 62 (2021), Paper No. 103373. 10.1016/j.nonrwa.2021.103373Search in Google Scholar

[2] D. G. Aronson, The fundamental solution of a linear parabolic equation containing a small parameter, Illinois J. Math. 3 (1959), 580–619. 10.1215/ijm/1255455463Search in Google Scholar

[3] D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896. 10.1090/S0002-9904-1967-11830-5Search in Google Scholar

[4] R. F. Bass, Diffusions and Elliptic Operators, Springer, New York, 1997. Search in Google Scholar

[5] O. Bencheikh and B. Jourdain, Convergence in total variation of the Euler–Maruyama. Scheme applied to diffusion processes with measurable drift coefficient and additive noise, preprint (2020), https://arxiv.org/abs/2005.09354. 10.1137/20M1371774Search in Google Scholar

[6] E. Benhamou, E. Gobet and M. Miri, Expansion formulas for European options in a local volatility model, Int. J. Theor. Appl. Finance 13 (2010), no. 4, 603–634. 10.1142/S0219024910005887Search in Google Scholar

[7] V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations, J. Funct. Anal. 271 (2016), no. 5, 1262–1300. 10.1016/j.jfa.2016.05.016Search in Google Scholar

[8] V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, The Poisson equation and estimates for distances between stationary distributions of diffusions, J. Math. Sci. (N. Y.) 232 (2018), no. 3, 254–282. 10.1007/s10958-018-3872-3Search in Google Scholar

[9] F. Corielli, P. Foschi and A. Pascucci, Parametrix approximation of diffusion transition densities, SIAM J. Financial Math. 1 (2010), no. 1, 833–867. 10.1137/080742336Search in Google Scholar

[10] J.-M. Coron, Control and Nonlinearity, Math. Surveys Monogr. 136, American Mathematical Society, Providence, 2007. Search in Google Scholar

[11] T. Deck and S. Kruse, Parabolic differential equations with unbounded coefficients—a generalization of the parametrix method, Acta Appl. Math. 74 (2002), no. 1, 71–91. 10.1023/A:1020560427405Search in Google Scholar

[12] F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal. 259 (2010), no. 6, 1577–1630. 10.1016/j.jfa.2010.05.002Search in Google Scholar

[13] M. Di Francesco and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express (2005), no. 3, 77–116. 10.1155/AMRX.2005.77Search in Google Scholar

[14] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964. Search in Google Scholar

[15] A. M. Il’in, A. S. Kalašnikov and O. A. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 3–146. 10.1070/RM1962v017n03ABEH004115Search in Google Scholar

[16] V. Konakov, A. Kozhina and S. Menozzi, Stability of densities for perturbed diffusions and Markov chains, ESAIM Probab. Stat. 21 (2017), 88–112. 10.1051/ps/2016028Search in Google Scholar

[17] V. Konakov and S. Menozzi, Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients, Electron. J. Probab. 22 (2017), Paper No. 46. 10.1214/17-EJP53Search in Google Scholar

[18] V. Konakov, S. Menozzi and S. Molchanov, Explicit parametrix and local limit theorems for some degenerate diffusion processes, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 4, 908–923. 10.1214/09-AIHP207Search in Google Scholar

[19] H. P. McKean, Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geom. 1 (1967), no. 1, 43–69. 10.4310/jdg/1214427880Search in Google Scholar

[20] S. Menozzi, A. Pesce and X. Zhang, Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift, J. Differential Equations 272 (2021), 330–369. 10.1016/j.jde.2020.09.004Search in Google Scholar

[21] A. Pesce, The parametrix method for SPDEs and conditional transition densities, Alma Mater Studiorum Universita di Bologna, Dottorato di ricerca in Matematica, Università di Bologna, 2021. Search in Google Scholar

[22] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type, Matematiche (Catania) 49 (1994), no. 1, 53–105. Search in Google Scholar

[23] S. J. Sheu, Some estimates of the transition density of a nondegenerate diffusion Markov process, Ann. Probab. 19 (1991), no. 2, 538–561. 10.1214/aop/1176990440Search in Google Scholar

[24] D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren Math. Wiss. 233, Springer, Berlin, 1979. Search in Google Scholar

Received: 2021-07-22
Accepted: 2021-10-05
Published Online: 2021-11-20
Published in Print: 2021-12-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/rose-2021-2067/html
Scroll to top button