Startseite Patient specific numerical hemodynamics for postoperative risk assessment: series case study of EC-IC cerebral bypass
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Patient specific numerical hemodynamics for postoperative risk assessment: series case study of EC-IC cerebral bypass

  • Iuliia Kuianova EMAIL logo , Anatoliy Bervitskiy , Andrei Dubovoy und Daniil Parshin
Veröffentlicht/Copyright: 31. Oktober 2024

Abstract

The study is devoted to the hemodynamics during cerebral vascular bypass surgery for the treatment of cerebral aneurysms in two patients. The location, morphological characteristics and treatment approaches of the patients were similar, but different outcomes were observed as a result of the performed microsurgical procedures . Computational approach was used to analyze the hemodynamic differences of aneurysms, treated via extra-intra cranial (EC-IC) cerebral bypass shunt. The paper presents a new criterion based on the energy parameters of healthy compartment of cerebral circulation. The applied approach demonstrates a new effective method of preoperative risk modelling for medical decision-making.

MSC 2010: 76Z05; 92C55; 76M12; 74B05; 65M08; 35B30

Funding statement: The study was supported by the Russian Science Foundation grant No. 20-71-10034.

Abbreviations
AComA

anterior communicating artery

COW

circle of Willis

CT

computed tomography

EC-IC bypass

extracranial–intracranial bypass

FSI

fluid–solid interface

IA

intracranial aneurysms

ICA

internal carotid artery

M1

segment of middle cerebral artery

MCA

middle cerebral artery

MCAP

middle cerebral artery pressure

TA

temporal artery

VA

vertebral artery

WSS

wall shear stress

References

[1] O. Baskurt, M. Hardeman, M. Rampling, and H. Meiselman, Handbook of Hemorheology and Hemodynamics. Biomedical and Health Research, IOS Press, 2007.Suche in Google Scholar

[2] J. Boyd, J. Buick, and S. Green, Analysis of the Casson and Carreau–Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Physics of Fluids 19 (2007), No. 9.10.1063/1.2772250Suche in Google Scholar

[3] I. Campbell, L. Timmins, D. Giddens, R. Virmani, A. Veneziani, S. Rab, H. Samady, M. McDaniel, A. Finn, W. Taylor, and J. Oshinski, Computational fluid dynamics simulations of hemodynamics in plaque erosion. Cardiovascular Engineering and Technology 4 (2013), No. 4, 464–473.10.1007/s13239-013-0165-3Suche in Google Scholar PubMed PubMed Central

[4] O. Choudhri, N. Mukerji, and G. Steinberg, Combined endovascular and microsurgical management of complex cerebral aneurysms. Frontiers in Neurology 4 (2013), 108.10.3389/fneur.2013.00108Suche in Google Scholar PubMed PubMed Central

[5] J. Davies and M. Lawton, Advances in open microsurgery for cerebral aneurysms. Neurosurgery 74 (Supplement 1) (2014), S7–S16.10.1227/NEU.0000000000000193Suche in Google Scholar PubMed

[6] I. Despotović, B. Goossens, and W. Philips, MRI segmentation of the human brain: Challenges, methods, and applications. Computational and Mathematical Methods in Medicine (2015), No. 1, 450341.10.1155/2015/450341Suche in Google Scholar PubMed PubMed Central

[7] G. Esposito, J. Fierstra, and L. Regli, Partial Trapping Strategies for Managing Complex Intracranial Aneurysms. Springer International Publishing, 2016.10.1007/978-3-319-29887-0_10Suche in Google Scholar PubMed

[8] G. Esposito, M. Sebök, S. Amin-Hanjani, and L. Regli, Cerebral bypass surgery: level of evidence and grade of recommendation. In: Trends in the Management of Cerebrovascular Diseases, Springer, 2018, pp. 73–77.10.1007/978-3-319-73739-3_10Suche in Google Scholar PubMed

[9] A. Geers, I. Larrabide, H. Morales, and A. Frangi, Approximating hemodynamics of cerebral aneurysms with steady flow simulations Journal of Biomechanics 47 (2014), No. 1, 178–185.10.1016/j.jbiomech.2013.09.033Suche in Google Scholar PubMed

[10] D. Griswold, A. Benet, H. Tabani, M. Lawton, and A. Meybodi, ‘To operate’ versus ‘not to operate' in low-resource settings: Example of aneurysm surgery in rural iran and impact of mastery of neurosurgical anatomy. World Neurosurgery 100 (2017), 628–631.10.1016/j.wneu.2017.01.111Suche in Google Scholar PubMed

[11] B. Grüter, I. Mendelowitsch, M. Diepers, L. Remonda, J. Fandino, and S. Marbacher, Combined endovascular and microsurgical treatment of arteriovenous malformations in the hybrid operating room. World Neurosurgery 117 (2018), e204–e214.10.1016/j.wneu.2018.05.241Suche in Google Scholar PubMed

[12] O. Hajati, K. Zarrabi, R. Karimi, and A. Hajati, CFD simulation of hemodynamics in sequential and individual coronary bypass grafts based on multislice ct scan datasets. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012, pp. 641–644.10.1109/EMBC.2012.6346013Suche in Google Scholar PubMed

[13] J. Hathcock, Flow effects on coagulation and thrombosis, Arteriosclerosis. Thrombosis, and Vascular Biology 26 (2006), No. 8, 1729–1737.10.1161/01.ATV.0000229658.76797.30Suche in Google Scholar PubMed

[14] What is an aneurysm? American association of neurological surgeons. http://www.aans.org/patients/neurosurgical-conditionsand-treatments/cerebral-aneurysmSuche in Google Scholar

[15] L. Kivipelto, M. Niemelä, T. Meling, M. Lehecka, H. Lehto, and J. Hernesniemi, Bypass surgery for complex middle cerebral artery aneurysms: Impact of the exact location in the MCA tree: Clinical article. Journal of Neurosurgery 120 (2014), No. 2, 398–408.10.3171/2013.10.JNS13738Suche in Google Scholar PubMed

[16] A. Khe, A. Chupakhin, A. Cherevko, S. Eliava, and Y. Pilipenko, Viscous dissipation energy as a risk factor in multiple cerebral aneurysms. Russian Journal of Numerical Analysis and Mathematical Modelling 30 (2015), No. 5, 277–287.10.1515/rnam-2015-0025Suche in Google Scholar

[17] Y. Kuyanova, S. Presnyakov, A. Dubovoi, A. Chupakhin, and D. Parshin, Numerical study of the tee hydrodynamics in the model problem of optimizing the low-flow vascular bypass angle. Journal of Applied Mechanics and Technical Physics 60 (2019), No. 6, 1038–1045.10.1134/S0021894419060087Suche in Google Scholar

[18] S. Maltseva, A. Cherevko, A. Khe, A. Akulov, A. Savelov, A. Tulupov, E. Derevtsov, M. Moshkin, and A. Chupakhin, Reconstruction of complex vasculature by varying the slope of the scan plane in high-field magnetic resonance imaging. Applied Magnetic Resonance 47 (2015), No. 1, 23–39.10.1007/s00723-015-0726-8Suche in Google Scholar

[19] H. Matsukawa, S. Miyata, T. Tsuboi, K. Noda, N. Ota, O. Takahashi, R. Takeda, S. Tokuda, H. Kamiyama, and R. Tanikawa, Rationale for graft selection in patients with complex internal carotid artery aneurysms treated with extracranial to intracranial high-flow bypass and therapeutic internal carotid artery occlusion. Journal of Neurosurgery 128 (2018), No. 6, 1753–1761.10.3171/2016.11.JNS161986Suche in Google Scholar PubMed

[20] H. Matsukawa, R. Tanikawa, H. Kamiyama, T. Tsuboi, K. Noda, N. Ota, S. Miyata, R. Takeda, and S. Tokuda, Graft occlusion and graft size changes in complex internal carotid artery aneurysm treated by extracranial to intracranial bypass using high-flow grafts with therapeutic internal carotid artery occlusion. Neurosurgery 81 (2017), No. 4, 672–679.10.1093/neuros/nyx075Suche in Google Scholar PubMed

[21] K. Matsuura, W. Jin, H. Liu, and G. Matsumiya, Computational fluid dynamic study of different incision length of coronary artery bypass grafting in a native coronary stenosis model. Journal of Thoracic Disease 11 (2019), No. 2, 393–399.10.21037/jtd.2019.01.35Suche in Google Scholar PubMed PubMed Central

[22] D. Parshin, Y. Kuyanova, D. Kislitsin, U. Windberger, and A. Chupakhin, On the impact of flow-diverters on the hemodynamics of human cerebral aneurysms. Journal of Applied Mechanics and Technical Physics 59 (2018), No. 6, 963–970.10.1134/S0021894418060019Suche in Google Scholar

[23] L. Pierot and A. Wakhloo, Endovascular treatment of intracranial aneurysms: Current status. Stroke 44 (2013), No. 7, 2046–2054.10.1161/STROKEAHA.113.000733Suche in Google Scholar PubMed

[24] G. Rinkel, M. Djibuti, A. Algra, and J. van Gijn, Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 29 (1998), No. 1, 251–256.10.1161/01.STR.29.1.251Suche in Google Scholar

[25] J. Russin, H. Babiker, J. Ryan, L. Rangel-Castilla, D. Frakes, and P. Nakaji, Computational fluid dynamics to evaluate the management of a giant internal carotid artery aneurysm. World Neurosurgery 83 (2015), No. 6, 1057–1065.10.1016/j.wneu.2014.12.038Suche in Google Scholar PubMed

[26] L. Sekhar, S. Natarajan, R. Ellenbogen, and B. Ghodke, Cerebral revascularization for ischemia, aneurysms, and cranial base tumors. Neurosurgery 62 (2008), No. 6, SHC1373–SHC1410.10.1227/01.NEU.0000315873.41953.74Suche in Google Scholar

[27] S. Sia, Y. Qian, W. Matsuda, A. Avolio, and M. Morgan, Evaluation of Brain Extracranial-to-Intracranial (EC-IC) Bypass Treatments by Using Computational Hemodynamic Technology. Springer, Berlin–Heidelberg, 2010.10.1007/978-3-642-14515-5_393Suche in Google Scholar

[28] N. Slyozkin, Dynamics of Viscous Incompressible Fluid. GITTL, 1955.Suche in Google Scholar

[29] I. Tagiltsev, D. Parshin, and A. Shutov, Rational choice of modelling assumptions for simulation of blood vessel end-to-side anastomosis. Mathematical Modelling of Natural Phenomena 17 (2022), 20.10.1051/mmnp/2022022Suche in Google Scholar

[30] S. Thanapal, S. Duvuru, T. Sae-Ngow, Y. Kato, and K. Takizawa, Direct cerebral revascularization: Extracranial-intracranial bypass. Asian Journal of Neurosurgery 13 (2018), No. 1, 9–17.10.4103/ajns.AJNS_76_17Suche in Google Scholar PubMed PubMed Central

[31] G. Toth and R. Cerejo, Intracranial aneurysms: Review of current science and management. Vascular Medicine 23 (2018), No. 3, 276–288.10.1177/1358863X18754693Suche in Google Scholar PubMed

[32] B. Walcott, C. Reinshagen, C. Stapleton, O. Choudhri, V. Rayz, D. Saloner, and M. Lawton, Predictive modeling and in vivo assessment of cerebral blood flow in the management of complex cerebral aneurysms. Journal of Cerebral Blood Flow Metabolism 36 (2016), No. 6, 998–1003.10.1177/0271678X16641125Suche in Google Scholar PubMed PubMed Central

[33] P. Yushkevich, J. Piven, H. Hazlett, R. Smith, S. Ho, J. Gee, and G. Gerig, User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 31 (2006), No. 3, 1116–1128.10.1016/j.neuroimage.2006.01.015Suche in Google Scholar PubMed

[34] L. Zarrinkoob, K. Ambarki, A. Wåhlin, R. Birgander, A. Eklund, and J. Malm, Blood flow distribution in cerebral arteries. Journal of Cerebral Blood Flow Metabolism 35 (2015), No. 4, 648–654.10.1038/jcbfm.2014.241Suche in Google Scholar PubMed PubMed Central

[35] H. Zhang, T. Schneider, C. Wheeler-Kingshott, and D. Alexander, Noddi: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61 (2012), No. 4, 1000–1016.10.1016/j.neuroimage.2012.03.072Suche in Google Scholar PubMed

[36] M. Zhang, F. Peng, Y. Li, L. He, A. Liu, and R. Li, Associations between morphology and hemodynamics of intracranial aneurysms based on 4D flow and black-blood magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery 11 (2021), No. 2, 597–607.10.21037/qims-20-440Suche in Google Scholar PubMed PubMed Central

[37] F. Zhu, Y. Qian, B. Xu, Y. Gu, K. Karunanithi, W. Zhu, L. Chen, Y. Mao, and M. Morgan, Quantitative assessment of changes in hemodynamics of the internal carotid artery after bypass surgery for moyamoya disease. Journal of Neurosurgery 129 (2018), No. 3, 677–683.10.3171/2017.5.JNS163112Suche in Google Scholar PubMed

[38] F.-P. Zhu, Y. Zhang, M. Higurashi, B. Xu, Y.-X. Gu, Y. Mao, M. Morgan, and Y. Qian, Haemodynamic analysis of vessel remodelling in STA-MCA bypass for moyamoya disease and its impact on bypass patency. Journal of Biomechanics 47 (2014), No. 8, 1800–1805.10.1016/j.jbiomech.2014.03.032Suche in Google Scholar PubMed

[39] J. Zilberman-Rudenko, J. Sylman, H. Lakshmanan, O. McCarty, and J. Maddala, Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cellular and Molecular Bioengineering 10 (2016), No. 1, 16–29.10.1007/s12195-016-0470-7Suche in Google Scholar PubMed PubMed Central

Received: 2024-05-22
Revised: 2024-06-17
Accepted: 2024-08-29
Published Online: 2024-10-31
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2024-0026/pdf
Button zum nach oben scrollen