Abstract
We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the p-Laplace equation and an equilibrated a posteriori error estimator. The IPDG method can be derived from a discretization of the associated minimization problem involving appropriately defined reconstruction operators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W1,p norm and relies on the construction of an equilibrated flux in terms of a numerical flux function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results illustrate the performance of both estimators.
-
funding The work has been supported by the NSF grant DMS-1520886.
References
[1] C. Amrouche and N. E. H. Seloula, Lp-theory for vector potentials and Sobolev’s inequalities for vector fields: Application to the Stokes equations with pressure boundary conditions. Math. Models Meth. Appl. Sci. 23 (2013), 37–92.10.1142/S0218202512500455Search in Google Scholar
[2] T. Ando, Contractive projections in Lp spaces. Pacific J. Math. 17 (1966), 391–405.10.2140/pjm.1966.17.391Search in Google Scholar
[3] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749–1779.10.1137/S0036142901384162Search in Google Scholar
[4] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian. Math. Comput. 61 (1993), 523–537.10.2307/2153239Search in Google Scholar
[5] L. Belenki, L. Diening, and C. Kreuzer, Optimality of an adaptive finite element method for the p-Laplacian equation. IMA J. Numer. Anal. 32 (2012), 484–510.10.1093/imanum/drr016Search in Google Scholar
[6] C. Bi and Y. Lin, Discontinuous Galerkin method for monotone nonlinear elliptic problems. Int. J. Numer. Anal. Mod. 4 (2012), 999–1024.10.1002/num.21747Search in Google Scholar
[7] M. Bildhauer and S. Repin, Estimates for the deviation from exact solutions of variational problems with power growth functionals. Zapiski Nauchnych Seminarov POMI 336 (2006), 5–24.Search in Google Scholar
[8] D. Braess, Finite Elements, Theory, Fast Solvers and Applications in Solid Mechanics. 3rd edition. Cambridge University Press, Cambridge, 2007.10.1017/CBO9780511618635Search in Google Scholar
[9] D. Braess, T. Fraunholz, and R. H. W. Hoppe, An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52 (2014), 2121–2136.10.1137/130916540Search in Google Scholar
[10] D. Braess, R. H. W. Hoppe, and C. Linsenmann, A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: M2AN 52 (2019), 2479–2504.10.1051/m2an/2016074Search in Google Scholar
[11] D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are p-robust. Comp. Meth. Applied Mech. Engrg. 198 (2009), 1189–1197.10.1016/j.cma.2008.12.010Search in Google Scholar
[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, Berlin–Heidelberg–New York, 1991.10.1007/978-1-4612-3172-1Search in Google Scholar
[13] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009), 827–855.10.1093/imanum/drn038Search in Google Scholar
[14] E. Burman and A. Ern, Discontinuous Galerkin approximations with discrete variational principle for the nonlinear Laplacian. C. R. Acad. Sci. Paris Ser. I 346 (2008), 1013–1016.10.1016/j.crma.2008.07.005Search in Google Scholar
[15] R. Bustinza, G.N. Gatica, and B. Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. J. Sci. Comput. 22/23 (2005), 147–185.10.1007/s10915-004-4137-5Search in Google Scholar
[16] Z. Cai and S. Zhang, Flux recovery and a posteriori error estimators: Conforming elements for scalar elliptic equations. SIAM J. Numer. Anal. 48 (2010), 578–602.10.1137/080742993Search in Google Scholar
[17] Z. Cai and S. Zhang, Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50 (2012), 151–170.10.1137/100803857Search in Google Scholar
[18] C. Carstensen and R. Klose, A posteriori finite element control for the p-Laplace problem. SIAM J. Sci. Comput. 25 (2003), 792–814.10.1137/S1064827502416617Search in Google Scholar
[19] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, 2002.10.1137/1.9780898719208Search in Google Scholar
[20] S. Cochez-Dhondt and S. Nicaise, Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equations 24 (2008), 1236–1252.10.1002/num.20315Search in Google Scholar
[21] B. Cockburn and J. Shen, A hybridizable discontinuous Galerkin method for the p-Laplacian. SIAM J. Sci. Comput. 38 (2016), 545–566.10.1137/15M1008014Search in Google Scholar
[22] L. M. Del Pezzo, A. L. Lombardi, and S. Martinez, Interior Penalty Discontinuous Galerkin FEM for the p(x)-Laplacian. SIAM J. Numer. Anal. 50 (2012), 2497–2521.10.1137/110820324Search in Google Scholar
[23] L. Diening, D. Kröner, M. Ruzicka, and I. Toulopoulos, A local discontinuous Galerkin approximation for systems with p-structure. IMA J. Numer. Anal. 34 (2013), 1447–1488.10.1093/imanum/drt040Search in Google Scholar
[24] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46 (2008), 614–638.10.1137/070681508Search in Google Scholar
[25] D. A. DiPietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin–Heidelberg–New York, 2012.10.1007/978-3-642-22980-0Search in Google Scholar
[26] M. Dobrowolski, On finite element methods for nonlinear elliptic problems with corners. In: Springer Lecture Notes in Mathematics, Vol. 1121. Springer, Berlin–Heidelberg–New York, 1986, pp. 85–103.10.1007/BFb0076264Search in Google Scholar
[27] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996), 1106–1124.10.1137/0733054Search in Google Scholar
[28] M. R. Dostanić, Inequality of Poincaré–Friedrichs on Lp spaces. Matematički Vesnik 57 (2005), 11–14.Search in Google Scholar
[29] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM, Philadelphia, 1999.10.1137/1.9781611971088Search in Google Scholar
[30] A. Ern and J. L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017), 1367–1385.10.1051/m2an/2016066Search in Google Scholar
[31] A. Ern, S. Nicaise, and M. Vohralík, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Acad. Sci. Paris Ser. I 345 (2007), 709–712.10.1016/j.crma.2007.10.036Search in Google Scholar
[32] A. Ern and M. Vohralík, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. C. R. Acad. Sci. Paris Ser. I 347 (2009), 4441–4444.10.1016/j.crma.2009.01.017Search in Google Scholar
[33] R. Eymard and C. Guichard, Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput. Appl. Math. 37 (2018), 4023–4054.10.1007/s40314-017-0558-2Search in Google Scholar
[34] M. Fuchs and S. Repin, Estimates for the deviation from the exact solutions of variational problems modeling certian classes of generalized Newtonian fluids. Math. Methods Appl. Sci. 29 (2010), 2225–2244.10.1002/mma.773Search in Google Scholar
[35] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.Search in Google Scholar
[36] R. H. W. Hoppe, G. Kanschat, and T. Warburton, Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47 (2009), 534–550.10.1137/070704599Search in Google Scholar
[37] P. Huston, J. Robson, and E. Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J. Numer. Anal. 25 (2005), 726–749.10.1093/imanum/dri014Search in Google Scholar
[38] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003), 2374–2399.10.1137/S0036142902405217Search in Google Scholar
[39] O. A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007), 641–665.10.1137/05063979XSearch in Google Scholar
[40] R. Lazarov, S. Repin, and S. Tomar, Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems. Numer. Methods Partial Differ. Equ. 25 (2009), 952–971.10.1002/num.20386Search in Google Scholar
[41] W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal. 39 (2001), 100–127.10.1137/S0036142999351613Search in Google Scholar
[42] W. Liu and N. Yan; On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian. SIAM J. Numer. Anal. 40 (2002), 1870–1895.10.1137/S0036142901393589Search in Google Scholar
[43] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45 (2007), 1370–1395.10.1137/06067119XSearch in Google Scholar
[44] W. Qiu and K. Shi, Analysis on an HDG method for the p-Laplacian equations. J. Sci. Comp. 80 (2019), 1019–1032.10.1007/s10915-019-00967-6Search in Google Scholar
[45] S. I. Repin, A posteriori error estimation for variational problems with power growth functionals based on duality theory. Zapiski Nauchnych Seminarov POMI 249 (1997), 244–255.Search in Google Scholar
[46] S. I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp. 69 (2000), 481–500.10.1090/S0025-5718-99-01190-4Search in Google Scholar
[47] S. I. Repin, A Posteriori Estimates for Partial Differential Equations. De Gruyter, Berlin, 2008.10.1515/9783110203042Search in Google Scholar
[48] S. I. Repin and S. Tomar, Guaranteed and robust error bounds for nonconforming approximations of elliptic problems. IMA J. Numer. Anal. 31 (2011), 597–615.10.1093/imanum/drp037Search in Google Scholar
[49] L. Tartar, Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin–Heidelberg–New York, 2007.Search in Google Scholar
[50] A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92 (2002), 743–770.10.1007/s002110100377Search in Google Scholar
[51] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford, 2013.10.1093/acprof:oso/9780199679423.001.0001Search in Google Scholar
[52] M. Vohralik, A posteriori error estimates for efficiency and error control in numerical simulations. Lecture Notes NM 497. Université Pierre et Marie Curie, Paris, 2015.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- An equilibrated a posteriori error estimator for an Interior Penalty Discontinuous Galerkin approximation of the p-Laplace problem
- Numerical-statistical study of the prognostic efficiency of the SEIR model
- Stability analysis of functionals in variational data assimilation with respect to uncertainties of input data for a sea thermodynamics model
- General finite-volume framework for saddle-point problems of various physics
Articles in the same Issue
- Frontmatter
- An equilibrated a posteriori error estimator for an Interior Penalty Discontinuous Galerkin approximation of the p-Laplace problem
- Numerical-statistical study of the prognostic efficiency of the SEIR model
- Stability analysis of functionals in variational data assimilation with respect to uncertainties of input data for a sea thermodynamics model
- General finite-volume framework for saddle-point problems of various physics