Abstract
The paper deals with the problem of the equatorial ionization anomaly (EIA) modelling and its representation in the global dynamical models of Earth’s ionosphere and thermosphere. A new version of the coupled thermosphere-ionosphere global dynamical model which reproduce the equatorial anomaly considerably well is presented. Key processes responsible for the EIA formation are outlined and their representation in the model is indicated. It was shown that the developed coupled thermosphere-ionosphere model with additional accounting of vertical electromagnetic drift at the equator realistically represents the EIA characteristics.
Funding: This research was supported by Russian Science Foundation project 17-17-01305.
References
[1] R. A. Akmaev, Whole atmosphere modeling: Connecting terrestrial and space weather. Reviews of Geophysics49 (2011), No. 4.10.1029/2011RG000364Suche in Google Scholar
[2] D. N. Anderson, A theoretical study of the ionospheric F region equatorial anomaly. I. Theory. Planet. Space Sci. 21 (1973), No. 3, 409–419. https://doi.org/10.1016/0032-0633(73)90040-8.10.1016/0032-0633(73)90040-8Suche in Google Scholar
[3] E. V. Appleton, Two anomalies in the ionosphere. Nature157(3995), (1946), 691. https://doi.org/10.1038/157691a0.10.1038/157691a0Suche in Google Scholar
[4] N. Balan, L. B. Liu, and H. J. Le, A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2 (2018), No. 4, 257–275. http://doi.org/10.26464/epp2018025.10.26464/epp2018025Suche in Google Scholar
[5] F. S. Bessarab et al., E-region ionospheric storm on May 1-3, 2010: GSM TIP model representation and suggestions for IRI improvement. Advances in Space Research55 (2015), No. 8, 2124–2130.10.1016/j.asr.2014.08.003Suche in Google Scholar
[6] V. P. Dymnikov, D. V. Kulyamin, and P. A. Ostanin, Coupled model of Earth’s thermosphere and ionosphere global dynamics. Izvestiya - Atmospheric and Oceanic Physics56 (2020), No. 4 (in print).10.1134/S0001433820030068Suche in Google Scholar
[7] B. G. Fejer, E. R. de Paula, S. A. Gonzales, and R. F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res. 96 (1991), No. A8, 13901–13906. https://doi.org/10.1029/91JA01171.10.1029/91JA01171Suche in Google Scholar
[8] T. J. Fuller-Rowell et al., Dynamics of the low-latitude thermosphere: Quiet and disturbed conditions. J. Atmos. Terr. Phys. 59 (1997), No. 13, 1533–1540.10.1016/S1364-6826(96)00154-XSuche in Google Scholar
[9] G. V. Givishvili, G. S. Ivanov-Kholodny, N. A. Kochenova, Yu. V. Kushnerevsky, V. V. Migulin, etc., On large-scale zones of anomalies of region F of the ionosphere. Soviet Physics. Doklady295 (1987), 1330.Suche in Google Scholar
[10] W. B. Hanson and R. J. Moffett, Ionization transport effects in the equatorial F region. J. Geophys. Res. 71 (1966), No. 23, 5559–5572. https://doi.org/10.1029/JZ071i023p05559.10.1029/JZ071i023p05559Suche in Google Scholar
[11] D. V. Kulyamin and V. P. Dymnikov, A three-dimensional model of general thermospheric circulation. Russ. J. Numer. Anal. Math. Modelling28 (2013), No. 4, 353–380.10.1515/rnam-2013-0021Suche in Google Scholar
[12] D. V. Kulyamin, V. Ya. Galin, and A. I. Pogoreltsev, The thermosphere general circulation modeling with the parametrization of radiative processes, Russian Meteorology and Hydrology40 (2013), No. 6, 392–399. 10.3103/S1068373915060059.Suche in Google Scholar
[13] D. V. Kulyamin, V. P. Dymnikov, and P. A. Ostanin, Modeling the F layer of the Earth’s ionosphere: Solution of the ambipolar diffusion equations. Math. Models and Comp. Sim. 11 (2019), No. 6, 940–950.10.1134/S2070048219060115Suche in Google Scholar
[14] S. V. Kostrykin, D. V. Kulyamin, V. P. Dymnikov, and P. A. Ostanin, Model of the Earth’s Ionosphere F layer based on solution of advection and ambipolar diffusion equation. Math. Models and Comp. Sim. (2020), (in print).Suche in Google Scholar
[15] D. F. Martyn, Theory of height and ionization density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion, and total drift. Proceedings, Cambridge Conference (1955), pp. 254. London: Physical Society.Suche in Google Scholar
[16] S. E. McDonald, F. Sassi, and A. J. Mannucci, SAMI3/SD-WACCM-X simulations of ionospheric variability during Northern winter 2009. Space Weather13 (2015), No. 9, 568–584.10.1002/2015SW001223Suche in Google Scholar
[17] S. K. Mitra, Geomagnetic control of region F2 of the ionosphere. Nature158 (1946), No. {4019}, 668–669. https://doi.org/10.1038/158668a0.10.1038/158668a0Suche in Google Scholar
[18] R. J. Moffett, The equatorial anomaly in the electron distribution of the terrestrial F-region. Fund. Cosmic Phys. 4, (1979), 313.Suche in Google Scholar
[19] N. M. Pedatella et al., Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming. Journal of Geophysical Research: Space Physics121 (2016), No. 7, 7204–7225.10.1002/2016JA022859Suche in Google Scholar
[20] G. O. Rajaram, Structure of the equatorial F-region, topside and bottomside – A review. J. Atmos. Terr. Phys. 39 (1977), No. 9–10, 1125–1144. https://doi.org/10.1016/0021-9169(77)90021-6.10.1016/0021-9169(77)90021-6Suche in Google Scholar
[21] A. D. Richmond, E. C. Ridley, and R. G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19 (1992), No. 6, 601–604.10.1029/92GL00401Suche in Google Scholar
[22] H. Rishbeth, A. J. Lyon, and M. Peart, Diffusion in the equatorial F layer. J. Geophys. Res. 68 (1963), No. 9, 2559–2569. https://doi.org/10.1029/JZ068i009p02559.10.1029/JZ068i009p02559Suche in Google Scholar
[23] J. H. Sastri, Equatorial anomaly in F-region - a review. Indian J. Radio and Space Physics19 (1990), No. 4, 225–240.Suche in Google Scholar
[24] R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, 5th ed. Cambridge University Press, 2009.10.1017/CBO9780511635342Suche in Google Scholar
[25] R. J. Stening, Modelling the low latitude F region. J. Geophys. Res. 54 (1992), No. 11–12, 1387–1412. https://doi.org/10.1016/0021-9169(92)90147-D.Suche in Google Scholar
[26] G. O. Walker, Longitudinal structure of the F-region equatorial anomaly: A review. J. Atmos. Terr. Phys. 43 (1981), No. 8, 763–774.10.1016/0021-9169(81)90052-0Suche in Google Scholar
[27] H. Wang et al., First forecast of a sudden stratospheric warming with a coupled whole-atmosphere/ionosphere model IDEA. J. Geophys. Res. Space Physics119 (2014), No. 3, 2079–2089.10.1002/2013JA019481Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Modelling of equatorial ionospheric anomaly in the INM RAS coupled thermosphere-ionosphere model
- The study of time dependence of particle flux with multiplication in a random medium
- 2D turbulence closures for the barotropic jet instability simulation
- Large-scale structures in stratified turbulent Couette flow and optimal disturbances
Artikel in diesem Heft
- Frontmatter
- Modelling of equatorial ionospheric anomaly in the INM RAS coupled thermosphere-ionosphere model
- The study of time dependence of particle flux with multiplication in a random medium
- 2D turbulence closures for the barotropic jet instability simulation
- Large-scale structures in stratified turbulent Couette flow and optimal disturbances