Home Comparative analysis of vector algorithms for statistical modelling of polarized radiative transfer process
Article
Licensed
Unlicensed Requires Authentication

Comparative analysis of vector algorithms for statistical modelling of polarized radiative transfer process

  • Gennady A. Mikhailov EMAIL logo , Sergei M. Prigarin and Sergey A. Rozhenko
Published/Copyright: August 2, 2018

Abstract

The comparative efficiency of different algorithms of statistical modelling of polarized radiation transfer process is studied for the problem with molecular matrix of scattering. The vector illumination and brightness are calculated for passing and reflected radiation. A statistical nuclear estimator is developed for evaluation of the corresponding angular distributions taking into account the weights of registered quanta.

MSC 2010: 65C05; 65C35; 82C80; 82C70
  1. Funding: The work was supported by the Russian Foundation for Basic Research (projects 16–01–0530 a, 17–01–00823 a, 18–01–00356 a, 18–31–00213 mol, 16–01–00145 a, 18–01–00609 a).

References

[1] S. Bartel and A. H. Hielscher, Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Applied Optics39 (2000), No. 10, 1580–1588.10.1364/AO.39.001580Search in Google Scholar

[2] A. A. Borovkov, Mathematical Statistic. Nauka, Novosibirsk, 1997 (in Russian).Search in Google Scholar

[3] S. Chandrasekhar, Radiative Transfer. Oxford, 1950.Search in Google Scholar

[4] H. Cramer, Mathematical Methods of Statistics. Princeton Univ. Press, USA, 1946.10.1515/9781400883868Search in Google Scholar

[5] G. W. Kattawar and G. N. Plass, Radiance and polarization of multiple scattered light from haze and clouds. Applied Optics7 (1968), No. 8, 1519–1527.10.1364/AO.7.001519Search in Google Scholar PubMed

[6] M. Kerscher, W. Krichbaumer, M. Noormohammadian, and U. G. Oppel, Polarized multiply scattered LIDAR signals. Optical Review2 (1995), Issue 4, 304–307.10.1007/s10043-995-0304-7Search in Google Scholar

[7] G. Z. Lotova, Monte Carlo algorithms for calculation of diffusive characteristics of an electron avalanche in gases. Russ. J. Numer. Anal. Math. Modelling31 (2011), No. 6, 369–377.10.1515/rnam-2016-0034Search in Google Scholar

[8] G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, The Monte Carlo Methods in Atmospheric Optics. Springer, Berlin–Heidelberg, 1980.10.1007/978-3-540-35237-2Search in Google Scholar

[9] G. A. Mikhailov, Optimization of Weighted Monte Carlo Methods. Springer, Berlin–Heidelbetg, 1992.10.1007/978-3-642-75981-9Search in Google Scholar

[10] G. A. Mikhailov, Parametric Estimates by the Monte Carlo Method. VSP, Utrecht, The Netherlands, 1999.10.1515/9783110941951Search in Google Scholar

[11] G. A. Mikhailov and S. A. Rozhenko, Minimax optimization of numerical-statistical ‘method of similar trajectories’. Doklady Rus. Akad. Nauk446 (2012), No. 1, 15–17 (in Russian).10.1134/S1064562412050055Search in Google Scholar

[12] G. A. Mikhailov and A. V. Voitishek, Numerical Statistical Modelling. Monte Carlo Methods: A Tutorial. Akademiya, Moscow, 2006 (in Russian).Search in Google Scholar

[13] G. A. Mikhailov, S. A. Ukhinov, and A. S. Chimaeva, Variance of the standard vector Monte Carlo estimator in the theory of polarized radiation transfer. Zh. Vychisl. Matem. Matem. Fiz. 46 (2006), No. 11, 2199–2212 (in Russian).10.1134/S0965542506110145Search in Google Scholar

[14] S. M. Prigarin, Fundamentals of Statistical Modelling of Polarized Optical Radiation Transfer. Novosibirsk State Univ., Novosibirsk, 2010 (in Russian).Search in Google Scholar

[15] J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: Part I. Optics Express13 (2005), No. 12, 4420–4438.10.1364/OPEX.13.004420Search in Google Scholar

[16] G. V. Rozenberg, Stokes vector-parameter. Uspekhi Fiz. NaukLVI (1955), No. 1, 77–110 (in Russian).10.3367/UFNr.0056.195505c.0077Search in Google Scholar

[17] V. V. Sobolev, Transfer of Radiant Energy in Atmospheres of Stars and Planets. GITTL, Moscow, 1956 (in Russian).Search in Google Scholar

Received: 2018-04-06
Accepted: 2018-05-25
Published Online: 2018-08-02
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2018-0021/pdf
Scroll to top button