Abstract
One of the relatively new modalities in treatment of cancer is antiangiogenic therapy (AAT), which stops the formation of new blood vessels, thus leading to nutrient deprivation of a tumor. It has been discovered that it can cause transient alleviation of intratumoral hypoxia, which has induced interest in investigation of its combination with radiotherapy (RT), since presence of oxygen stimulates efficiency of the latter. Preclinical and clinical studies have shown ambiguous results concerning such combined treatment, indicating a need for theoretical investigation. For that purpose, we have developed a spatially-distributed mathematical model of tumor growth and combined RT with AAT. Model simulations in a physiologically justified range of parameters suggest that outcome of addition of AAT to RT should depend on the tumor radiosensitivity: under its low values, when RT de facto serves as a palliative therapy, inclusion of AAT may prolong patient’s survival; however, under high tumor radiosensitivity, AAT may compromise curative effect of RT.
Funding: This study was supported by the Russian Science Foundation, research grant No. 14–31–00024.
References
[1] American Diabetes Association and others, Screening for type 2 diabetes. Diabetes Care27 (2004), No. 1, s11–s14.10.2337/diacare.27.2007.S11Search in Google Scholar
[2] J. C. L. Alfonso, A. Köhn-Luque, T. Stylianopoulos, F. Feuerhake, A. Deutsch, and H. Hatzikirou, Why one-size-fits-all vasomodulatory interventions fail to control glioma invasion: in silico insights. Scientific Reports6 (2016) 37283.10.1038/srep37283Search in Google Scholar
[3] C. Androjna, J. E. Gatica, J. M. Belovich, and K. A. Derwin, Oxygen diffusion through natural extracellular matrices: implications for estimating ‘critical thickness’ values in tendon tissue engineering. Tissue Engineering Part A14 (2008), No. 4, 559–569.10.1089/tea.2006.0361Search in Google Scholar
[4] R. Ansiaux, C. Baudelet, B. Jordan, N. Beghein, P. Sonveaux, J. De Wever, Ph. Martinive, V. Grégoire, O. Feron, and B. Gallez, Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clinical Cancer Research11 (2005), No. 2, 743–750.10.1158/1078-0432.743.11.2Search in Google Scholar
[5] R. P. Araujo and D.L.S. McElwain, New insights into vascular collapse and growth dynamics in solid tumors. J. Theoretical Biology228 (2004), No. 3, 335–346.10.1016/j.jtbi.2004.01.009Search in Google Scholar
[6] P.G.B. Baker and R. F. Mottram, Metabolism of exercising and resting human skeletal muscle, in the post-prandial and fasting states. Clinical Sci. 44 (1973), No. 5, 479–491.10.1042/cs0440479Search in Google Scholar
[7] T. T. Batchelor, E. R. Gerstner, K. E. Emblem, D. G. Duda, J. Kalpathy-Cramer, M. Snuderl, M. Ancukiewicz, P. Polaskova, M. C. Pinho, D. Jennings et al, Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. National Acad. Sci. 110 (2013), No. 47, 19059–19064.10.1073/pnas.1318022110Search in Google Scholar
[8] J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11 (1973), No. 1, 38–69.10.1016/0021-9991(73)90147-2Search in Google Scholar
[9] K. Borkenstein, S. Levegrün, and P. Peschke, Modelling and computer simulations of tumor growt and tumor response to radiotherapy. Radiation Research162 (2004), No. 1, 71–83.10.1667/RR3193Search in Google Scholar
[10] D. J. Brenner, L. R. Hlatky, P. J. Hahnfeldt, E. J. Hall, R. K. and Sachs, A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int. J. Radiation Oncology Biology Physics32 (1995), No. 2, 379–390.10.1016/0360-3016(95)00544-9Search in Google Scholar
[11] W.E.L. Brown and A. V. Hill, The oxygen-dissociation curve of blood, and its thermodynamical basis. Proc. R. Soc. Lond. B94 (1923), No. 661, 297–334.10.1098/rspb.1923.0006Search in Google Scholar
[12] A. Carreau, B. El Hafny-Rahbi, A. Matejuk, C. Grillon, and C. Kieda, Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.J. Cellular and Molecular Medicine15 (2011), No. 6, 1239–1253.10.1111/j.1582-4934.2011.01258.xSearch in Google Scholar PubMed PubMed Central
[13] J. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Proliferation25 (1992), No. 1, 1–22.10.1111/j.1365-2184.1992.tb01433.xSearch in Google Scholar
[14] J. D. Chapman, D. L. Dugle, A. P. Reuvers, B. E. Meeker, and J. Borsa, Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int. J. Radiation Biology and Related Studies in Physics, Chemistry and Medicine26 (1974), No. 4, 383–389.10.1080/09553007414551361Search in Google Scholar
[15] Th. Clerbaux, P. Gustin, B. Detry, M. L. Cao, and A. Frans, Comparative study of the oxyhaemoglobin dissociation curve of four mammals: man, dog, horse, and cattle. Comparative Biochemistry and Physiology Part A: Physiology106 (1993), No. 4, 687–694.10.1016/0300-9629(93)90382-ESearch in Google Scholar
[16] R.P.M. Dings, M. Loren, H. Heun, E. McNiel, A. W. Griffioen, K. H. Mayo, and R. J. Griffin, Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clinical Cancer Research13 (2007), No. 11, 3395–3402.10.1158/1078-0432.CCR-06-2441Search in Google Scholar
[17] A. Ergun, K. Camphausen, and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors. Bulletin of Mathematical Biology65 (2003), No. 3, 407–424.10.1016/S0092-8240(03)00006-5Search in Google Scholar
[18] M. J. Eymontt, G. Gwinup, F. A. Kruger, D. E. Maynard, and G. J. Hamwi, Cushing’ syndrome with hypoglycemia caused by adrenocortical carcinoma. J. Clinical Endocrinology & Metabolism25 (1965), No. 1, 46–52.10.1210/jcem-25-1-46Search in Google Scholar PubMed
[19] J. F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy. The British J. of Radiology62 (1989), No. 740, 679–694.10.1259/0007-1285-62-740-679Search in Google Scholar PubMed
[20] J. P. Freyer and R. M. Sutherland, A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J. Cellular Physiology124 (1985), No. 3, 516–524.10.1002/jcp.1041240323Search in Google Scholar PubMed
[21] B. M. Fu and S. Shen, Structural mechanisms of acute VEGF effect on microvessel permeability. American J. of Physiology-Heart and Circulatory Physiology284 (2003), No. 6, H2124–H2135.10.1152/ajpheart.00894.2002Search in Google Scholar PubMed
[22] A. Giese, R. Bjerkvig, M. E. Berens, and M. Westphal, Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clinical Oncology21 (2003), No. 8, 1624–1636.10.1200/JCO.2003.05.063Search in Google Scholar PubMed
[23] D. Hanahan and R. Weinberg, Hallmarks of cancer: the next generation. Cell144 (2011), No. 5, 646–674.10.1016/j.cell.2011.02.013Search in Google Scholar PubMed
[24] Y. Harima, K. Nagata, K. Harima, V. V. Ostapenko, Y. Tanaka, and S. Sawada, A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int. J. Hyperthermia17 (2001), No. 2, 97–105.10.1080/02656730010001333Search in Google Scholar PubMed
[25] J. M. P. C. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science284 (1999), No. 5422, 1994–1998.10.1126/science.284.5422.1994Search in Google Scholar PubMed
[26] K. Izuishi, K. Kato, T. Ogura, T. Kinoshita, and H. Esumi, Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Research60 (2000), No. 21, 6201–6207.Search in Google Scholar
[27] R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307 (2005), No. 5706, 58–62.10.1126/science.1104819Search in Google Scholar PubMed
[28] J. M. Kelm, C. D. Sanchez-Bustamante, E. Ehler, S. P. Hoerstrup, V. Djonov, L. Ittner, and M. Fussenegger, VEGF profiling and angiogenesis in human microtissues. J. Biotechnology118 (2005), No. 2, 213–229.10.1016/j.jbiotec.2005.03.016Search in Google Scholar PubMed
[29] A. V. Kolobov, V. V. Gubernov, and M. B. Kuznetsov, The study of antitumor efficacy of bevacizumab antiangiogenic therapy using a mathematical model. Russ. J. Numer. Anal. Math. Modelling30 (2015), No. 5, 289–298.10.1515/rnam-2015-0026Search in Google Scholar
[30] M. B. Kuznetsov, N. O. Gorodnova, S. S. Simakov, and A. V. Kolobov, Multiscale modelling of angiogenic tumor growth, progression, and therapy. Biophysics61 (2016), No. 6, 1042–1051.10.1134/S0006350916050183Search in Google Scholar
[31] M. B. Kuznetsov and A. V. Kolobov, Mathematical modelling of chemotherapy combined with bevacizumab. Russ. J. Numer. Anal. Math. Modelling32 (2017), No. 5, 293–304.10.1515/rnam-2017-0028Search in Google Scholar
[32] M. B. Kuznetsov and A. V. Kolobov, Transient alleviation of tumor hypoxia during first days of antiangiogenic therapy as a result of therapy-induced alterations in nutrient supply and tumor metabolism–analysis by mathematical modelling. J. Theoretical Biology, (2018).10.1016/j.jtbi.2018.04.035Search in Google Scholar PubMed
[33] A. Köhn-Luque, W. De Back, Y. Yamaguchi, K. Yoshimura, M. A. Herrero, and T. Miura, Dynamics of VEGF matrix-retention in vascular network patterning. Phys. Biology10 (2013), No. 6, 066007.10.1088/1478-3975/10/6/066007Search in Google Scholar PubMed
[34] R. J. Levick, An Introduction to Cardiovascular Physiology. Butterworth–Heinemann, 2013.10.1201/9780429300219Search in Google Scholar
[35] C. Liu, Q. Lin, and Z. Yun, Cellular and molecular mechanisms underlying oxygen-dependent radiosensitivity. Radiation Research183 (2015), No. 5, 487–496.10.1667/RR13959.1Search in Google Scholar PubMed PubMed Central
[36] R. Mazeron, B. Anderson, S. Supiot, F. Paris, and E. Deutsch, Current state of knowledge regarding the use of antiangiogenic agents with radiation therapy. Cancer Treatment Reviews37 (2011), No. 6, 476–486.10.1016/j.ctrv.2011.03.004Search in Google Scholar PubMed
[37] F. Mac Gabhann and A. S. Popel, Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. American J. Physiology-Heart and Circulatory Physiology292 (2007), No. 1, H459–H474.10.1152/ajpheart.00637.2006Search in Google Scholar PubMed
[38] R. Mathew, V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nature Reviews Cancer7 (2007), No. 12, 961–967.10.1038/nrc2254Search in Google Scholar PubMed PubMed Central
[39] F. L. Meng, Q. H. Zhou, L. L. Zhang, Q. Ma, Y. Shao, and Y. Y. Ren, Antineoplastic therapy combined with whole brain radiation compared with whole brain radiation alone for brain metastases: a systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci., 17 (2013), No. 6, 777–787.Search in Google Scholar
[40] L. M. Phan, S.-C. J. Yeung, and M.-H. Lee, Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biology & Medicine11 (2014), No. 1, 1–19.Search in Google Scholar
[41] R. N. Pittman, Regulation of tissue oxygenation. In: Colloquium Series on Integrated Systems Physiology: From Molecule to Function. 3 (2011), No. 3, 1–100.10.4199/C00029ED1V01Y201103ISP017Search in Google Scholar
[42] G. Powathil, M. Kohandel, S. Sivaloganathan, A. Oza, and M. Milosevic, Mathematical modelling of brain tumors: effects of radiotherapy and chemotherapy Physics in Medicine & Biology52 (2007), No. 11, 3291.10.1088/0031-9155/52/11/023Search in Google Scholar PubMed
[43] M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15 (2009), No. 3, 220–231.10.1016/j.ccr.2009.01.027Search in Google Scholar PubMed PubMed Central
[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, The Art of Scientific Computing. Cambridge Univ. Press., Cambridge–New York–Melbourne–Madrid, 2007.Search in Google Scholar
[45] O. N. Pyaskovskaya, D. L. Kolesnik, A. V. Kolobov, S. I. Vovyanko, and G. I. Solyanik, Analysis of growth kinetics and proliferative heterogeneity of lewis lung carcinoma cells growing as unfed culture. Exp. Oncol. 30 (2008), No. 4, 269–275.Search in Google Scholar
[46] R. S. Richardson, S. Duteil, C. Wary, D. W. Wray, J. Hoff, and P. G. Carlier, Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J. Physiology571 (2006), No. 2, 415–424.10.1113/jphysiol.2005.102327Search in Google Scholar PubMed PubMed Central
[47] R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord Jr., and K. R. Swanson, Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modelling approach. Physics in Medicine & Biology55 (2010), No. 12, 3271–3285.10.1088/0031-9155/55/12/001Search in Google Scholar PubMed PubMed Central
[48] D. H. Schanne, A.-L. Grosu, and D. G. Duda, Anti-angiogenics and radiation therapy. Tumor Angiogenesis: A Key Target for Cancer Therapy (2017), 1–10.10.1007/978-3-319-31215-6_13-1Search in Google Scholar
[49] H. Schmidt, W. Siems, M. Müller, R. Dumdey, and S. M. Rapoport, ATP-producing and consuming processes of Ehrlich mouse ascites tumor cells in proliferating and resting phases. Experimental Cell Research194 (1991), No. 1, 122–127.10.1016/0014-4827(91)90140-PSearch in Google Scholar
[50] D. Shweiki, M. Neeman, A. Itin, and E. Keshet, Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc. National Acad. Sci. 92 (1995), No. 3, 768–772.10.1073/pnas.92.3.768Search in Google Scholar
[51] L. D. Skarsgard, M. W. Skwarchuk, B. G. Wouters, and R. E. Durand, Substructure in the radiation survival response at low dose in cells of human tumor cell lines. Radiation Research146 (1996), No. 4, 388–398.10.2307/3579301Search in Google Scholar
[52] S. K. Stamatelos, E. Kim, A. P. Pathak, and A. S. Popel, A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvascular Research91 (2014), 8–21.10.1016/j.mvr.2013.12.003Search in Google Scholar
[53] A. Stéphanou, A. C. Lesart, J. Deverchère, A. Juhem, A. Popov, and F. Estève, How tumour-induced vascular changes alter angiogenesis: Insights from a computational model. J. Theoretical Biology419 (2017), 211–226.10.1016/j.jtbi.2017.02.018Search in Google Scholar
[54] P. Sonveaux, F. Végran, T. Schroeder, M. C. Wergin, J. Verrax, Z. N. Rabbani, C. J. De Saedeleer, K. M. Kennedy, C. Diepart, B. F. Jordan et al., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clinical Investigation118 (2008), No. 12, 3930–3942.10.1172/JCI36843Search in Google Scholar
[55] V. V. Tuchin, A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and N. A. Lakodina, In vivo investigation of the immersion-liquid-induced human skin clearing dynamics. Technical Physics Letters27 (2001), No. 6, 489–490.10.1134/1.1383834Search in Google Scholar
[56] M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324 (2009), No. 5930, 1029–1033.10.1126/science.1160809Search in Google Scholar
[57] H. Wang, M. Naghavi, C. Allen, R. M. Barber, A. Carter, D. C. Casey, F. J. Charlson, A. Z. Chen, M. M. Coates, M. Coggeshall et al., Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet388 (2016), No. 10053, 1459–1544.10.1016/S0140-6736(16)31012-1Search in Google Scholar
[58] O. Warburg, F. Wind, and E. Negelein, The metabolism of tumors in the body. J. General Physiology8 (1927), No. 6, 519–530.10.1085/jgp.8.6.519Search in Google Scholar PubMed PubMed Central
[59] B. G. Wouters and J. M. Brown, Cells at intermediate oxygen levels can be more important than the ‘hypoxic fraction’ in determining tumor response to fractionated radiotherapy. Radiation Research147 (1997), No. 5, 541–550.10.2307/3579620Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The approach of ‘successive approximations over characteristic interactions’ for inverse problems of nuclear-geophysical technologies
- Analysis of anticancer efficiency of combined fractionated radiotherapy and antiangiogenic therapy via mathematical modelling
- Preconditioning for diffusion problem with small size high resolution inclusions
- Comparative analysis of vector algorithms for statistical modelling of polarized radiative transfer process
Articles in the same Issue
- Frontmatter
- The approach of ‘successive approximations over characteristic interactions’ for inverse problems of nuclear-geophysical technologies
- Analysis of anticancer efficiency of combined fractionated radiotherapy and antiangiogenic therapy via mathematical modelling
- Preconditioning for diffusion problem with small size high resolution inclusions
- Comparative analysis of vector algorithms for statistical modelling of polarized radiative transfer process