Startseite Variational assimilation of mean daily observation data for the problem of sea hydrothermodynamics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Variational assimilation of mean daily observation data for the problem of sea hydrothermodynamics

  • Eugene I. Parmuzin EMAIL logo , Valery I. Agoshkov , Natalia B. Zakharova und Victor P. Shutyaev
Veröffentlicht/Copyright: 21. Juni 2017

Abstract

The mathematical model of hydrothermodynamics of the Baltic Sea is considered with the pole moved to a neighbourhood of St. Petersburg in order to improve the horizontal resolution in the Gulf of Finland. The problem of variational assimilation of mean daily data for sea surface temperature (SST) is formulated and studied for the given type of calculation grid of this model. A new algorithm of solution of the inverse problem for reconstruction of the heat flux on the interface of two media is proposed on the base of variational assimilation of satellite observation data. Results of numerical experiments are presented for reconstruction of heat fluxes in the problem of variational assimilation of mean daily observations of SST data.

MSC 2010: 49K20; 65K10

Award Identifier / Grant number: 14–11–00609

Funding statement: The work was supported by the Russian Science Foundation (project no. 14–11–00609).

References

[1] V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian).Suche in Google Scholar

[2] V. I. Agoshkov, A. V. Gusev, N. A. Dianskii, and R. V. Oleinikov, An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data. Russ. J. Numer. Anal. Math. Modelling22 (2007), No. 2, 1–10.10.1515/RJNAMM.2007.007Suche in Google Scholar

[3] V. I. Agoshkov, E. I. Parmuzin, V. P. Shutyaev, Numerical algorithm for variational assimilation of sea surface temperature data. Comp. Math. Math. Phys. 48 (2008), No. 8, 1293–1312.10.1134/S0965542508080046Suche in Google Scholar

[4] V. I. Agoshkov, E. I. Parmuzin, V. B. Zalesny, V. P. Shutyaev, N. B. Zakharova, and A. V. Gusev, Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math. Modelling30 (2015), No. 4, 203–212.10.1515/rnam-2015-0018Suche in Google Scholar

[5] V. V. Alekseev and V. B. Zalesny, Numerical model of large-scale ocean dynamics. In Computational Processes and Systems, Nauka, Moscow, 1993.Suche in Google Scholar

[6] I. Karagali, J. Hoyer, and C. B. Hasager, SST diurnal variability in the North Sea and the Baltic Sea. Remote Sensing of Environment121 (2012), 159–170, 10.1016/j.rse.2012.01.016Suche in Google Scholar

[7] G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesny, Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods for Their Implementation. Gidrometeoizdat, Leningrad, 1987.Suche in Google Scholar

[8] G. I. Marchuk, Splitting and alternative direction methods. In: Handbook of Numerical Analysis (Eds. P. G. Ciarlet and J. L. Lions). North-Holland, Amsterdam, 1990, Vol. 1, pp 197–462.10.1016/S1570-8659(05)80035-3Suche in Google Scholar

[9] G. I. Marchuk, A. S. Rusakov, V. B. Zalesny, N. A. Dianskii, Splitting numerical technique with application to the high resolution simulation of the Indian ocean circulation. In: Pure Appl. Geophys. Birkhauser Verlag, Basel, 2005. Vol. 162, pp. 1407–1429.10.1007/3-7643-7376-8_3Suche in Google Scholar

[10] E. I. Parmuzin and V. I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black sea dynamics. Russ. J. Numer. Anal. Math. Modelling27 (2012), No. 1, 69–94.10.1515/rnam-2012-0005Suche in Google Scholar

[11] G. U. Roll’, Physics of Atmospheric Processes over Sea. Gidrometeoizdat, Moscow, 1968 (in Russian).Suche in Google Scholar

[12] N. B. Zakharova and S. A. Lebedev, ARGO floats data interpolation for data assimilation in World ocean circulation models. Modern Problems of Remote Sensing of the Earth from Space7 (2010), No. 4, 104–111.Suche in Google Scholar

[13] N. B. Zakharova, V. I. Agoshkov, and E. I. Parmuzin, The new method of ARGO buoys system observation data interpolation. Russ. J. Numer. Anal. Math. Modelling28 (2013), No. 1, 67–84.10.1515/rnam-2013-0005Suche in Google Scholar

[14] V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, A. V. Bagno, A. V. Gusev, N. A. Dianskii, S. N. Moshonkin, R. Tamsalu, and E. M. Volodin, Numerical simulation of large-scale ocean circulation based on multicomponent splitting method. Russ. J. Numer. Anal. Math. Modelling25 (2010), No. 6, 581–609.10.1515/rjnamm.2010.036Suche in Google Scholar

[15] V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, and R. Aps, Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Modelling28 (2013), No. 1, 85–100.10.1515/rnam-2013-0006Suche in Google Scholar

[16] V. B. Zalesny, A. V. Gusev, S. Yu. Chernobai, R. Aps, R. E. Tamsalu, P. Kujala, and J. Rytkönen, The Baltic Sea circulation modelling and assessment of marine pollution. Russ. J. Numer. Anal. Math. Modelling29 (2014), No. 2, 129–138.10.1515/rnam-2014-0010Suche in Google Scholar

Received: 2017-2-15
Accepted: 2017-3-21
Published Online: 2017-6-21
Published in Print: 2017-6-27

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2017-0016/html
Button zum nach oben scrollen