Abstract
This paper considers some aspects of the early conception and use of the infinite in ancient Greece, in the spirit of recent results in the history of ancient mathematics. It follows aspects of the practice of reasoning ad infinitum from the extant corpus of and about Zeno of Elea up to early Hellenistic examples in Aristotle and Euclid. Starting with the idea of ‘reasoning from indefinite iteration’, based on the metalogical recognition of the unachievability of an inference process, it identifies several different classes of more or less sophisticated arguments that make use of this idea, and examines the logical devices and notions required for their acceptance in the philosophical practice. Those include ‘Infinite regress’ properly speaking, where Non-Contradiction is used in the formation of indirect infinitary arguments.
References
DK = Diels, H. & Kranz, W., eds. (1951): Die Fragmente der Vorsokratiker, 3 vols. Berlin: Weidmann.Search in Google Scholar
LM = Laks, A. & Most, G. W., eds. (2016): Early Greek Philosophy, 9 vols (Loeb Classical Library). Cambridge, MA-London: Harvard University Press.Search in Google Scholar
Acerbi, F. (2000): “Plato: Parmenides 149a7-c3. A proof by Complete Induction?”, Archive for History of Exact Sciences 55 (1), pp. 57–76.10.1007/s004070000020Search in Google Scholar
Chemla, K., ed. (2012): The History of Mathematical Proof in Ancient Traditions. Cambridge, Cambridge University Press.Search in Google Scholar
Chemla, K. (2012a): “Historiography and history of mathematical proof: a research programme”. In: Chemla (2012), pp. 1–68.Search in Google Scholar
Chemla, K. (2021): “From reading rules to reading algorithms: textual anachronisms in the history of mathematics and their effects on interpretation”. In: Niccolò Guicciardini (ed.): Anachronisms in the History of Mathematics, Essays on the Historical Interpretation of Mathematical Texts. Cambridge, Cambridge University Press, 2021.10.1017/9781108874564.003Search in Google Scholar
Federspiel, M. (2004): “Sur les emplois et les sens de l’adverbe aei dans les mathématiques grecques”, Les Études Classiques 72, pp. 289–311.Search in Google Scholar
Knorr, W. R. (1975): The Evolution of the Euclidean Elements. Dordrecht: D. Reidel.10.1007/978-94-010-1754-1Search in Google Scholar
Knuth, D. (1972): “Ancient Babylonian algorithms”, Communications of the ACM 15, pp. 671–677.10.1145/361454.361514Search in Google Scholar
Moore, A.W. (1990): The Infinite. New York: Routledge.Search in Google Scholar
Mugler, C. (1958): Dictionnaire historique de la terminologie géométrique des grecs, vol. I. Paris: Klincksieck.Search in Google Scholar
Netz, R. (1999): The Shaping of Deduction in Greek Mathematics. Cambridge: Cambridge University Press.10.1017/CBO9780511543296Search in Google Scholar
Netz, R. (2001): “The Aristotelian Paragraph”, The Cambridge Classical Journal 47, pp. 211–32.10.1017/S006867350000078XSearch in Google Scholar
Netz, R. (2020): Scale, Space and Canon in Ancient Literary Culture. Cambridge: Cambridge University Press.10.1017/9781108686945Search in Google Scholar
Saito, K. (1998): “Mathematical Reconstructions Out, Textual Studies In: 30 Years in The Historiography of Greek Mathematics”, Revue d’histoire des mathématiques 4, pp. 131–42.Search in Google Scholar
Saito, K. (2013): “Toolbox”, published 17 August 2013, https://www.greekmath.org/toolbox/index.htmlSearch in Google Scholar
Schaffer, S. and Shapin, S. (1985): Leviathan and the Air-Pump. Hobbes, Boyle, and the Experimental Life. Princeton: Princeton University Press.Search in Google Scholar
Seban, P. (forthcoming): Le temps et l’infini. Sur les paradoxes de Zénon d’Élée (MétaphysiqueS). Paris: Presses Universitaires de France.Search in Google Scholar
Sourvinou-Inwood, C. (1986): “Crime and Punishment: Tityos Tantalos and Sisyphos in Odyssey 11”, Bulletin of the Institute of Classical Studies 33, pp. 37–58.10.1111/j.2041-5370.1986.tb00183.xSearch in Google Scholar
Ugaglia, M. (2009): “Boundlessness and Iteration: Some Observations about the Meaning of άεί in Aristotle”, Rhizai. A Journal for Ancient Philosophy and Science 6, pp. 193–213.Search in Google Scholar
Vitrac, B. (2012): “Les démonstrations par l’absurde dans les Éléments d’Euclide: inventaire, formulation, usages. Séminaire d’épistémologie et d’histoire des idées mathématiques” <hal-00496748v2>, submitted 5 April 2012, https://hal.archives-ouvertes.fr/hal-00496748v2Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Titelseiten
- Articles
- Heraclitus on the Question of a Common Measure
- From Zeno ad infinitum: Iterative Reasonings in Early Greek Philosophy
- Between Poetry, Philosophy and Medicine: Body, Soul and Dreams in Pindar, Heraclitus and the Hippocratic On Regimen.
- Reconsidering the Essential Nature and Indestructibility of the Soul in the Affinity Argument of the Phaedo
- Believing for Practical Reasons in Plato’s Gorgias
- Aristotle as an Astronomer? Sosigenes’ Account of Metaphysics Λ.8
Articles in the same Issue
- Titelseiten
- Articles
- Heraclitus on the Question of a Common Measure
- From Zeno ad infinitum: Iterative Reasonings in Early Greek Philosophy
- Between Poetry, Philosophy and Medicine: Body, Soul and Dreams in Pindar, Heraclitus and the Hippocratic On Regimen.
- Reconsidering the Essential Nature and Indestructibility of the Soul in the Affinity Argument of the Phaedo
- Believing for Practical Reasons in Plato’s Gorgias
- Aristotle as an Astronomer? Sosigenes’ Account of Metaphysics Λ.8