Home From Zeno ad infinitum: Iterative Reasonings in Early Greek Philosophy
Article
Licensed
Unlicensed Requires Authentication

From Zeno ad infinitum: Iterative Reasonings in Early Greek Philosophy

  • Pierrot Seban EMAIL logo
Published/Copyright: August 17, 2023
Become an author with De Gruyter Brill

Abstract

This paper considers some aspects of the early conception and use of the infinite in ancient Greece, in the spirit of recent results in the history of ancient mathematics. It follows aspects of the practice of reasoning ad infinitum from the extant corpus of and about Zeno of Elea up to early Hellenistic examples in Aristotle and Euclid. Starting with the idea of ‘reasoning from indefinite iteration’, based on the metalogical recognition of the unachievability of an inference process, it identifies several different classes of more or less sophisticated arguments that make use of this idea, and examines the logical devices and notions required for their acceptance in the philosophical practice. Those include ‘Infinite regress’ properly speaking, where Non-Contradiction is used in the formation of indirect infinitary arguments.

References

DK = Diels, H. & Kranz, W., eds. (1951): Die Fragmente der Vorsokratiker, 3 vols. Berlin: Weidmann.Search in Google Scholar

LM = Laks, A. & Most, G. W., eds. (2016): Early Greek Philosophy, 9 vols (Loeb Classical Library). Cambridge, MA-London: Harvard University Press.Search in Google Scholar

Acerbi, F. (2000): “Plato: Parmenides 149a7-c3. A proof by Complete Induction?”, Archive for History of Exact Sciences 55 (1), pp. 57–76.10.1007/s004070000020Search in Google Scholar

Chemla, K., ed. (2012): The History of Mathematical Proof in Ancient Traditions. Cambridge, Cambridge University Press.Search in Google Scholar

Chemla, K. (2012a): “Historiography and history of mathematical proof: a research programme”. In: Chemla (2012), pp. 1–68.Search in Google Scholar

Chemla, K. (2021): “From reading rules to reading algorithms: textual anachronisms in the history of mathematics and their effects on interpretation”. In: Niccolò Guicciardini (ed.): Anachronisms in the History of Mathematics, Essays on the Historical Interpretation of Mathematical Texts. Cambridge, Cambridge University Press, 2021.10.1017/9781108874564.003Search in Google Scholar

Federspiel, M. (2004): “Sur les emplois et les sens de l’adverbe aei dans les mathématiques grecques”, Les Études Classiques 72, pp. 289–311.Search in Google Scholar

Knorr, W. R. (1975): The Evolution of the Euclidean Elements. Dordrecht: D. Reidel.10.1007/978-94-010-1754-1Search in Google Scholar

Knuth, D. (1972): “Ancient Babylonian algorithms”, Communications of the ACM 15, pp. 671–677.10.1145/361454.361514Search in Google Scholar

Moore, A.W. (1990): The Infinite. New York: Routledge.Search in Google Scholar

Mugler, C. (1958): Dictionnaire historique de la terminologie géométrique des grecs, vol. I. Paris: Klincksieck.Search in Google Scholar

Netz, R. (1999): The Shaping of Deduction in Greek Mathematics. Cambridge: Cambridge University Press.10.1017/CBO9780511543296Search in Google Scholar

Netz, R. (2001): “The Aristotelian Paragraph”, The Cambridge Classical Journal 47, pp. 211–32.10.1017/S006867350000078XSearch in Google Scholar

Netz, R. (2020): Scale, Space and Canon in Ancient Literary Culture. Cambridge: Cambridge University Press.10.1017/9781108686945Search in Google Scholar

Saito, K. (1998): “Mathematical Reconstructions Out, Textual Studies In: 30 Years in The Historiography of Greek Mathematics”, Revue d’histoire des mathématiques 4, pp. 131–42.Search in Google Scholar

Saito, K. (2013): “Toolbox”, published 17 August 2013, https://www.greekmath.org/toolbox/index.htmlSearch in Google Scholar

Schaffer, S. and Shapin, S. (1985): Leviathan and the Air-Pump. Hobbes, Boyle, and the Experimental Life. Princeton: Princeton University Press.Search in Google Scholar

Seban, P. (forthcoming): Le temps et l’infini. Sur les paradoxes de Zénon d’Élée (MétaphysiqueS). Paris: Presses Universitaires de France.Search in Google Scholar

Sourvinou-Inwood, C. (1986): “Crime and Punishment: Tityos Tantalos and Sisyphos in Odyssey 11”, Bulletin of the Institute of Classical Studies 33, pp. 37–58.10.1111/j.2041-5370.1986.tb00183.xSearch in Google Scholar

Ugaglia, M. (2009): “Boundlessness and Iteration: Some Observations about the Meaning of άεί in Aristotle”, Rhizai. A Journal for Ancient Philosophy and Science 6, pp. 193–213.Search in Google Scholar

Vitrac, B. (2012): “Les démonstrations par l’absurde dans les Éléments d’Euclide: inventaire, formulation, usages. Séminaire d’épistémologie et d’histoire des idées mathématiques” <hal-00496748v2>, submitted 5 April 2012, https://hal.archives-ouvertes.fr/hal-00496748v2Search in Google Scholar

Published Online: 2023-08-17
Published in Print: 2023-08-14

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rhiz-2023-0002/html
Scroll to top button