Home Reproducibility of developmental neuroplasticity in in vitro brain tissue models
Article
Licensed
Unlicensed Requires Authentication

Reproducibility of developmental neuroplasticity in in vitro brain tissue models

  • Alla B. Salmina EMAIL logo , Natalia A. Malinovskaya , Andrey V. Morgun , Elena D. Khilazheva , Yulia A. Uspenskaya and Sergey N. Illarioshkin
Published/Copyright: January 5, 2022
Become an author with De Gruyter Brill

Abstract

The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood–brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.


Corresponding author: Alla B. Salmina, Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow 125367, Russia; and Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia, E-mail:

Award Identifier / Grant number: 20-015-00472

  1. Author contributions: ABS – writing: general design, original draft preparation; NAM, AVM, EDK, YAU – writing: text editing and figures drawing, SNI – writing: text editing, supervision.

  2. Research funding: The study was funded by the Russian Foundation for Basic Research (RFBR), project number 20-015-00472 (ABS, NAM, AVM, EDK).

  3. Conflict of interest statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Akerman, C.J. and Cline, H.T. (2007). Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 30: 382–389, https://doi.org/10.1016/j.tins.2007.06.002.Search in Google Scholar PubMed

Álvarez, Z., Hyroššová, P., Perales, J.C., and Alcántara, S. (2014). Neuronal progenitor maintenance requires lactate metabolism and PEPCK-M-directed cataplerosis. Cerebr. Cortex 26: 1046–1058.10.1093/cercor/bhu281Search in Google Scholar PubMed

Anderson, W.A., Bosak, A., Hogberg, H.T., Hartung, T., and Moore, M.J. (2021). Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cell. Dev. Biol. Anim. 57: 191–206, https://doi.org/10.1007/s11626-020-00532-8.Search in Google Scholar PubMed PubMed Central

Ashton, R.S., Conway, A., Pangarkar, C., Bergen, J., Lim, K.-I., Shah, P., Bissell, M., and Schaffer, D.V. (2012). Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat. Neurosci. 15: 1399–1406, https://doi.org/10.1038/nn.3212.Search in Google Scholar PubMed PubMed Central

Avan, A., Digaleh, H., Di Napoli, M., Stranges, S., Behrouz, R., Shojaeianbabaei, G., Amiri, A., Tabrizi, R., Mokhber, N., Spence, J.D., et al.. (2019). Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: an ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 17: 191, https://doi.org/10.1186/s12916-019-1397-3.Search in Google Scholar PubMed PubMed Central

Bao, H., Asrican, B., Li, W., Gu, B., Wen, Z., Lim, S.A., Haniff, I., Ramakrishnan, C., Deisseroth, K., Philpot, B., et al.. (2017). Long-range GABAergic inputs regulate neural stem cell quiescence and control adult hippocampal neurogenesis. Cell Stem Cell 21: 604–617 e605, https://doi.org/10.1016/j.stem.2017.10.003.Search in Google Scholar PubMed PubMed Central

Beck, A.P. and Meyerholz, D.K. (2020). Evolving challenges to model human diseases for translational research. Cell Tissue Res. 380: 305–311, https://doi.org/10.1007/s00441-019-03134-3.Search in Google Scholar PubMed

Belle, A.M., Enright, H.A., Sales, A.P., Kulp, K., Osburn, J., Kuhn, E.A., Fischer, N.O., and Wheeler, E.K. (2018). Evaluation of in vitro neuronal platforms as surrogates for in vivo whole brain systems. Sci. Rep. 8: 10820, https://doi.org/10.1038/s41598-018-28950-5.Search in Google Scholar PubMed PubMed Central

Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., and Adams, R.H. (2009). The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137: 1124–1135, https://doi.org/10.1016/j.cell.2009.03.025.Search in Google Scholar PubMed

Berdugo-Vega, G., Arias-Gil, G., López-Fernández, A., Artegiani, B., Wasielewska, J.M., Lee, C.-C., Lippert, M.T., Kempermann, G., Takagaki, K., and Calegari, F. (2020). Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat. Commun. 11: 135, https://doi.org/10.1038/s41467-019-14026-z.Search in Google Scholar PubMed PubMed Central

Berg, D.A., Bond, A.M., Ming, G.L. and Song, H. (2018). Radial glial cells in the adult dentate gyrus: what are they and where do they come from? F1000Res 7: 277, https://doi.org/10.12688/f1000research.12684.1.Search in Google Scholar PubMed PubMed Central

Berra, E., Benizri, E., Ginouvès, A., Volmat, V., Roux, D., and Pouysségur, J. (2003). HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1α in normoxia. EMBO J. 22: 4082–4090, https://doi.org/10.1093/emboj/cdg392.Search in Google Scholar PubMed PubMed Central

Besnard, A. and Sahay, A. (2021). Enhancing adult neurogenesis promotes contextual fear memory discrimination and activation of hippocampal-dorsolateral septal circuits. Behav. Brain Res. 399: 112917, https://doi.org/10.1016/j.bbr.2020.112917.Search in Google Scholar PubMed PubMed Central

Bhalerao, A., Sivandzade, F., Archie, S.R., Chowdhury, E.A., Noorani, B., and Cucullo, L. (2020). In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 17: 22, https://doi.org/10.1186/s12987-020-00183-7.Search in Google Scholar PubMed PubMed Central

Biron, K.E., Dickstein, D.L., Gopaul, R., and Jefferies, W.A. (2011). Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One 6: e23789, https://doi.org/10.1371/journal.pone.0023789.Search in Google Scholar PubMed PubMed Central

Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B., Stankov, A., Arango, V., Dwork, A.J., et al.. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22: 589–599 e585, https://doi.org/10.1016/j.stem.2018.03.015.Search in Google Scholar PubMed PubMed Central

Bressan, C. and Saghatelyan, A. (2020). Intrinsic mechanisms regulating neuronal migration in the postnatal brain. Front. Cell. Neurosci. 14: 620379, https://doi.org/10.3389/fncel.2020.620379.Search in Google Scholar PubMed PubMed Central

Cakir, B., Xiang, Y., Tanaka, Y., Kural, M.H., Parent, M., Kang, Y.-J., Chapeton, K., Patterson, B., Yuan, Y., and He, C.-S. (2019). Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16: 1169–1175, https://doi.org/10.1038/s41592-019-0586-5.Search in Google Scholar PubMed PubMed Central

Campisi, M., Shin, Y., Osaki, T., Hajal, C., Chiono, V., and Kamm, R.D. (2018). 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180: 117–129, https://doi.org/10.1016/j.biomaterials.2018.07.014.Search in Google Scholar PubMed PubMed Central

Cassé, F., Richetin, K., and Toni, N. (2018). Astrocytes’ contribution to adult neurogenesis in physiology and Alzheimer’s disease. Front. Cell. Neurosci. 12: 432.10.3389/fncel.2018.00432Search in Google Scholar PubMed PubMed Central

Chen, H., Winiwarter, S., Fridén, M., Antonsson, M., and Engkvist, O. (2011). In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. J. Mol. Graph. Model. 29: 985–995, https://doi.org/10.1016/j.jmgm.2011.04.004.Search in Google Scholar

Chen, W., Xia, P., Wang, H., Tu, J., Liang, X., Zhang, X., and Li, L. (2019). The endothelial tip-stalk cell selection and shuffling during angiogenesis. J. Cell Commun. Signal. 13: 291–301, https://doi.org/10.1007/s12079-019-00511-z.Search in Google Scholar

Copland, D.A., Calder, C.J., Raveney, B.J., Nicholson, L.B., Phillips, J., Cherwinski, H., Jenmalm, M., Sedgwick, J.D., and Dick, A.D. (2007). Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am. J. Pathol. 171: 580–588, https://doi.org/10.2353/ajpath.2007.070272.Search in Google Scholar

Cucullo, L., Hossain, M., Rapp, E., Manders, T., Marchi, N., and Janigro, D. (2007). Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48: 505–516, https://doi.org/10.1111/j.1528-1167.2006.00960.x.Search in Google Scholar

Cutler, R.R. and Kokovay, E. (2020). Rejuvenating subventricular zone neurogenesis in the aging brain. Curr. Opin. Pharmacol. 50: 1–8, https://doi.org/10.1016/j.coph.2019.10.005.Search in Google Scholar

d’Uscio, L.V., He, T., and Katusic, Z.S. (2017). Expression and processing of amyloid precursor protein in vascular endothelium. Physiology 32: 20–32, https://doi.org/10.1152/physiol.00021.2016.Search in Google Scholar

Deisseroth, K., Singla, S., Toda, H., Monje, M., Palmer, T.D., and Malenka, R.C. (2004). Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42: 535–552, https://doi.org/10.1016/s0896-6273(04)00266-1.Search in Google Scholar

Denayer, T., Stöhr, T., and Van Roy, M. (2014). Animal models in translational medicine: validation and prediction. New Horizons Transl. Med. 2: 5–11, https://doi.org/10.1016/j.nhtm.2014.08.001.Search in Google Scholar

Denieffe, S., Kelly, R.J., McDonald, C., Lyons, A., and Lynch, M.A. (2013). Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav. Immun. 34: 86–97, https://doi.org/10.1016/j.bbi.2013.07.174.Search in Google Scholar PubMed

Di Marco, A., Gonzalez Paz, O., Fini, I., Vignone, D., Cellucci, A., Battista, M.R., Auciello, G., Orsatti, L., Zini, M., Monteagudo, E., et al.. (2019). Application of an in vitro blood–brain barrier model in the selection of experimental drug candidates for the treatment of Huntington’s disease. Mol. Pharm. 16: 2069–2082, https://doi.org/10.1021/acs.molpharmaceut.9b00042.Search in Google Scholar PubMed

Di Marco, A., Vignone, D., Gonzalez Paz, O., Fini, I., Battista, M.R., Cellucci, A., Bracacel, E., Auciello, G., Veneziano, M., Khetarpal, V., et al.. (2020). Establishment of an in vitro human blood–brain barrier model derived from induced pluripotent stem cells and comparison to a porcine cell-based system. Cells 9: 994, https://doi.org/10.3390/cells9040994.Search in Google Scholar PubMed PubMed Central

Duan, L., Peng, C.Y., Pan, L., and Kessler, J.A. (2015). Human pluripotent stem cell-derived radial glia recapitulate developmental events and provide real-time access to cortical neurons and astrocytes. Stem Cells Transl. Med. 4: 437–447, https://doi.org/10.5966/sctm.2014-0137.Search in Google Scholar PubMed PubMed Central

Durrant, C.S., Ruscher, K., Sheppard, O., Coleman, M.P., and Özen, I. (2020). Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 11: 98, https://doi.org/10.1038/s41419-020-2288-4.Search in Google Scholar PubMed PubMed Central

Eliasson, P. and Jönsson, J.I. (2010). The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell. Physiol. 222: 17–22, https://doi.org/10.1002/jcp.21908.Search in Google Scholar PubMed

Enright, H.A., Lam, D., Sebastian, A., Sales, A.P., Cadena, J., Hum, N.R., Osburn, J.J., Peters, S.K.G., Petkus, B., Soscia, D.A., et al.. (2020). Functional and transcriptional characterization of complex neuronal co-cultures. Sci. Rep. 10: 11007, https://doi.org/10.1038/s41598-020-67691-2.Search in Google Scholar PubMed PubMed Central

Esworthy, T.J., Miao, S., Lee, S.-J., Zhou, X., Cui, H., Zuo, Y.Y., and Zhang, L.G. (2019). Advanced 4D bioprinting technologies for brain tissue modeling and study. Int. J. Soc. Netw. Min. 10: 177–204, https://doi.org/10.1080/19475411.2019.1631899.Search in Google Scholar PubMed PubMed Central

Fan, Q., Mao, H., Xie, L., and Pi, X. (2019). Prolyl hydroxylase domain-2 protein regulates lipopolysaccharide-induced vascular inflammation. Am. J. Pathol. 189: 200–213, https://doi.org/10.1016/j.ajpath.2018.09.012.Search in Google Scholar PubMed PubMed Central

Ford, M.C., Bertram, J.P., Hynes, S.R., Michaud, M., Li, Q., Young, M., Segal, S.S., Madri, J.A., and Lavik, E.B. (2006). A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc. Natl. Acad. Sci. U.S.A. 103: 2512–2517, https://doi.org/10.1073/pnas.0506020102.Search in Google Scholar PubMed PubMed Central

Francis, K. and Wei, L. (2010). Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 1: e22, https://doi.org/10.1038/cddis.2009.22.Search in Google Scholar PubMed PubMed Central

Friese, A., Ursu, A., Hochheimer, A., Schöler, H.R., Waldmann, H., and Bruder, J.M. (2019). The convergence of stem cell technologies and phenotypic drug discovery. Cell Chem. Biol. 26: 1050–1066, https://doi.org/10.1016/j.chembiol.2019.05.007.Search in Google Scholar PubMed

Funamoto, K., Yoshino, D., Matsubara, K., Zervantonakis, I.K., Funamoto, K., Nakayama, M., Masamune, J., Kimura, Y., and Kamm, R.D. (2017). Endothelial monolayer permeability under controlled oxygen tension. Integr. Biol. 9: 529–538, https://doi.org/10.1039/c7ib00068e.Search in Google Scholar PubMed

Gasparrini, M., Sorci, L., and Raffaelli, N. (2021). Enzymology of extracellular NAD metabolism. Cell. Mol. Life Sci. 78: 3317–3331, https://doi.org/10.1007/s00018-020-03742-1.Search in Google Scholar PubMed PubMed Central

Gebara, E., Bonaguidi, M.A., Beckervordersandforth, R., Sultan, S., Udry, F., Gijs, P.J., Lie, D.C., Ming, G.L., Song, H., and Toni, N. (2016). Heterogeneity of radial glia-like cells in the adult Hippocampus. Stem Cell. 34: 997–1010, https://doi.org/10.1002/stem.2266.Search in Google Scholar PubMed PubMed Central

Gerasimenko, M., Cherepanov, S.M., Furuhara, K., Lopatina, O., Salmina, A.B., Shabalova, A.A., Tsuji, C., Yokoyama, S., Ishihara, K., Brenner, C., et al.. (2020). Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder. Sci. Rep. 10: 10035, https://doi.org/10.1038/s41598-019-57236-7.Search in Google Scholar PubMed PubMed Central

Ghersi-Egea, J.F., Saudrais, E., and Strazielle, N. (2018). Barriers to drug distribution into the perinatal and postnatal brain. Pharm. Res. 35: 84, https://doi.org/10.1007/s11095-018-2375-8.Search in Google Scholar PubMed

Gorba, T. and Conti, L. (2013). Neural stem cells as tools for drug discovery: novel platforms and approaches. Expet Opin. Drug Discov. 8: 1083–1094, https://doi.org/10.1517/17460441.2013.805199.Search in Google Scholar PubMed

Gorina, Y.V.K.Y.K., Osipova, E.D., Morgun, A.V., Malinovskaya, N.A., Lopatina, O.L., and Salmina, A.B. (2020). Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bull. Siberian Med. 19: 46–52.10.20538/1682-0363-2020-4-46-52Search in Google Scholar

Götz, M., Nakafuku, M., and Petrik, D. (2016). Neurogenesis in the developing and adult brain-similarities and key differences. Cold Spring Harbor Perspect. Biol. 8: a018853.10.1101/cshperspect.a018853Search in Google Scholar PubMed PubMed Central

Heymans, M., Sevin, E., Gosselet, F., Lundquist, S., and Culot, M. (2018). Mimicking brain tissue binding in an in vitro model of the blood–brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration. Eur. J. Pharm. Biopharm. 127: 453–461, https://doi.org/10.1016/j.ejpb.2018.03.007.Search in Google Scholar PubMed

Higashida, H., Hashii, M., Tanaka, Y., Matsukawa, S., Higuchi, Y., Gabata, R., Tsubomoto, M., Seishima, N., Teramachi, M., Kamijima, T., et al.. (2019). CD38, CD157, and RAGE as molecular determinants for social behavior. Cells 9: 62, https://doi.org/10.3390/cells9010062.Search in Google Scholar PubMed PubMed Central

Higashida, H., Liang, M., Yoshihara, T., Akther, S., Fakhrul, A., Stanislav, C., Nam, T.-S., Kim, U.-H., Kasai, S., and Nishimura, T. (2017). An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator. BMC Neurosci. 18: 1–12, https://doi.org/10.1186/s12868-017-0350-7.Search in Google Scholar PubMed PubMed Central

Hongjin, W., Han, C., Baoxiang, J., Shiqi, Y., and Xiaoyu, X. (2020). Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Rev. Neurosci. 31: 143–159, https://doi.org/10.1515/revneuro-2019-0023.Search in Google Scholar PubMed

Hook, L., Fulton, N., Russell, G., and Allsopp, T. (2008). Human neural stem cells for biopharmaceutical applications. In: Shi, Y., and Clegg, D.O. (Eds.), Stem cell research and therapeutics. Dordrecht: Springer Netherlands, pp. 123–140.10.1007/978-1-4020-8502-4_7Search in Google Scholar

Hsieh, F.-Y., Lin, H.-H., and Hsu, S.-h. (2015). 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71: 48–57, https://doi.org/10.1016/j.biomaterials.2015.08.028.Search in Google Scholar PubMed

Hui, Z., Sha, D.-J., Wang, S.-L., Li, C.-S., Qian, J., Wang, J.-Q., Zhao, Y., Zhang, J.-H., Cheng, H.-Y., Yang, H., et al.. (2017). Panaxatriol saponins promotes angiogenesis and enhances cerebral perfusion after ischemic stroke in rats. BMC Compl. Alternative Med. 17: 70, https://doi.org/10.1186/s12906-017-1579-5.Search in Google Scholar PubMed PubMed Central

Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., and Kageyama, R. (2010). Essential roles of notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 30: 3489–3498, https://doi.org/10.1523/jneurosci.4987-09.2010.Search in Google Scholar PubMed PubMed Central

Jang, S., Kim, H., Kim, H.J., Lee, S.K., Kim, E.W., Namkoong, K., and Kim, E. (2018). Long-term culture of organotypic hippocampal slice from old 3xTg-AD mouse: an ex vivo model of Alzheimer’s disease. Psychiatr. Investig. 15: 205–213, https://doi.org/10.30773/pi.2017.04.02.Search in Google Scholar PubMed PubMed Central

Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 99: 11946–11950, https://doi.org/10.1073/pnas.182296499.Search in Google Scholar PubMed PubMed Central

Johanson, C. (2018). Choroid plexus blood-CSF barrier: major player in brain disease modeling and neuromedicine. J. Neurol. Neuromed. 3: 39–58, https://doi.org/10.29245/2572.942x/2018/4.1194.Search in Google Scholar

Johnson, S.E., McKnight, C.D., Lants, S.K., Juttukonda, M.R., Fusco, M., Chitale, R., Donahue, P.C., Claassen, D.O., and Donahue, M.J. (2020). Choroid plexus perfusion and intracranial cerebrospinal fluid changes after angiogenesis. J. Cerebr. Blood Flow Metabol. 40: 1658–1671, https://doi.org/10.1177/0271678x19872563.Search in Google Scholar

Karakatsani, A., Shah, B., and Ruiz de Almodovar, C. (2019). Blood vessels as regulators of neural stem cell properties. Front. Mol. Neurosci. 12: 85, https://doi.org/10.3389/fnmol.2019.00085.Search in Google Scholar PubMed PubMed Central

Katoh, M. and Katoh, M. (2019). CD157 and CD200 at the crossroads of endothelial remodeling and immune regulation. Stem Cell Invest. 6: 10, https://doi.org/10.21037/sci.2019.04.01.Search in Google Scholar PubMed PubMed Central

Kaushik, G., Gupta, K., Harms, V., Torr, E., Evans, J., Johnson, H.J., Soref, C., Acevedo-Acevedo, S., Antosiewicz-Bourget, J., Mamott, D., et al.. (2020). Engineered perineural vascular plexus for modeling developmental toxicity. Adv. Healthc. Mater. 9: 2000825, https://doi.org/10.1002/adhm.202000825.Search in Google Scholar PubMed PubMed Central

Kerr, A.L., Steuer, E.L., Pochtarev, V., and Swain, R.A. (2010). Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 171: 214–226, https://doi.org/10.1016/j.neuroscience.2010.08.008.Search in Google Scholar PubMed

Khader, S., Nayarisseri, A., Romero Durán, F., and Díaz, H.G. (2017). Editorial: improving neuropharmacology using big data, machine learning and computational algorithms. Curr. Neuropharmacol. 15: 1058–1061.10.2174/1570159X1508171114113425Search in Google Scholar

Khilazheva, E.D., Boytsova, E.B., Pozhilenkova, E.A., Solonchuk, Y.R., and Salmina, A.B. (2015). Obtaining a three-cell model of a neurovascular unit in vitro. Cell Tissue Biol. 9: 447–451, https://doi.org/10.1134/s1990519x15060048.Search in Google Scholar

Khilazheva, E.D., Pisareva, N.V., Morgun, A.V., Boitsova, E.B., Taranushenko, T.E., Frolova, O.V., and Salmina, A.B. (2017). Activation of GPR81 lactate receptors stimulates mitochondrial biogenesis in cerebral microvessel endothelial cells. Ann. Clin. Exp. Neurol. 11: 34–39.Search in Google Scholar

Kimura, W. and Sadek, H.A. (2012). The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc. Diagn. Ther. 2: 278–289, https://doi.org/10.3978/j.issn.2223-3652.2012.12.02.Search in Google Scholar PubMed PubMed Central

Kitambi, S.S. and Chandrasekar, G. (2011). Stem cells: a model for screening, discovery and development of drugs. Stem Cell. Clon Adv. Appl. 4: 51–59, https://doi.org/10.2147/sccaa.s16417.Search in Google Scholar PubMed PubMed Central

Kriegstein, A. and Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32: 149–184, https://doi.org/10.1146/annurev.neuro.051508.135600.Search in Google Scholar PubMed PubMed Central

Kume, T. (2009). Novel insights into the differential functions of Notch ligands in vascular formation. J. Angiogenesis Res. 1: 8, https://doi.org/10.1186/2040-2384-1-8.Search in Google Scholar PubMed PubMed Central

Kunze, R., Zhou, W., Veltkamp, R., Wielockx, B., Breier, G., and Marti, H.H. (2012). Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia. Stroke 43: 2748–2756, https://doi.org/10.1161/strokeaha.112.669598.Search in Google Scholar PubMed

La Rosa, C., Ghibaudi, M., and Bonfanti, L. (2019). Newly generated and non-newly generated “immature” neurons in the mammalian brain: a possible reservoir of young cells to prevent brain aging and disease? J. Clin. Med. 8: 685, https://doi.org/10.3390/jcm8050685.Search in Google Scholar PubMed PubMed Central

Lange, C., Turrero Garcia, M., Decimo, I., Bifari, F., Eelen, G., Quaegebeur, A., Boon, R., Zhao, H., Boeckx, B., Chang, J., et al.. (2016). Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J. 35: 924–941, https://doi.org/10.15252/embj.201592372.Search in Google Scholar PubMed PubMed Central

Lau, M., Li, J., and Cline, H.T. (20172017). In vivo analysis of the neurovascular niche in the developing Xenopus brain. eNeuro 4: ENEURO.0030-0017, https://doi.org/10.1523/ENEURO.0030-17.2017.Search in Google Scholar PubMed PubMed Central

Lee, H.R., Pelaez, F., Silbaugh, A.M., Leslie, F., Racila, E., and Azarin, S.M. (2019). Biomaterial platform to establish a hypoxic metastatic niche in vivo. ACS Appl. Bio Mater. 2: 1549–1560, https://doi.org/10.1021/acsabm.8b00837.Search in Google Scholar PubMed

Leenaars, C.H.C., Kouwenaar, C., Stafleu, F.R., Bleich, A., Ritskes-Hoitinga, M., De Vries, R.B.M., and Meijboom, F.L.B. (2019). Animal to human translation: a systematic scoping review of reported concordance rates. J. Transl. Med. 17: 223, https://doi.org/10.1186/s12967-019-1976-2.Search in Google Scholar PubMed PubMed Central

Lev-Vachnish, Y., Cadury, S., Rotter-Maskowitz, A., Feldman, N., Roichman, A., Illouz, T., Varvak, A., Nicola, R., Madar, R., and Okun, E. (2019). L-lactate promotes adult hippocampal neurogenesis. Front. Neurosci. 13: 403, https://doi.org/10.3389/fnins.2019.00403.Search in Google Scholar PubMed PubMed Central

Lin, R., Cai, J., Kenyon, L., Iozzo, R., Rosenwasser, R., and Iacovitti, L. (2019). Systemic factors trigger vasculature cells to drive notch signaling and neurogenesis in neural stem cells in the adult brain. Stem Cells (Dayton) 37: 395–406, https://doi.org/10.1002/stem.2947.Search in Google Scholar PubMed PubMed Central

Lin, R., Cai, J., Nathan, C., Wei, X., Schleidt, S., Rosenwasser, R., and Iacovitti, L. (2015). Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol. Dis. 74: 229–239, https://doi.org/10.1016/j.nbd.2014.11.016.Search in Google Scholar PubMed

Lin, R., Lang, M., Heinsinger, N., Stricsek, G., Zhang, J., Iozzo, R., Rosenwasser, R., and Iacovitti, L. (2018). Stepwise impairment of neural stem cell proliferation and neurogenesis concomitant with disruption of blood–brain barrier in recurrent ischemic stroke. Neurobiol. Dis. 115: 49–58, https://doi.org/10.1016/j.nbd.2018.03.013.Search in Google Scholar PubMed

Liu, F., Li, D., Yu, Y.Y.L., Kang, I., Cha, M.-J., Kim, J.Y., Park, C., Watson, D.K., Wang, T., and Choi, K. (2015). Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2. EMBO Rep. 16: 654–669, https://doi.org/10.15252/embr.201439939.Search in Google Scholar PubMed PubMed Central

Liu, Q., Hou, J., Chen, X., Liu, G., Zhang, D., Sun, H., and Zhang, J. (2014). P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson’s disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models. PLoS One 9: e102442, https://doi.org/10.1371/journal.pone.0102442.Search in Google Scholar PubMed PubMed Central

Liu, X.-B., Wang, J.-A., Ji, X.-Y., Yu, S.P., and Wei, L. (2014). Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res. Ther. 5: 111, https://doi.org/10.1186/scrt499.Search in Google Scholar PubMed PubMed Central

Lopatina, O.L., Komleva, Y.K., Malinovskaya, N.A., Panina, Y.A., Morgun, A.V., and Salmina, A.B. (2020). CD157 and brain immune system in (patho)physiological conditions: focus on brain plasticity. Front. Immunol. 11: 585294, https://doi.org/10.3389/fimmu.2020.585294.Search in Google Scholar PubMed PubMed Central

Lopatina, O.L., Malinovskaya, N.A., Komleva, Y.K., Gorina, Y.V., Shuvaev, A.N., Olovyannikova, R.Y., Belozor, O.S., Belova, O.A., Higashida, H., and Salmina, A.B. (2019). Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev. Neurosci. 30: 807–820, https://doi.org/10.1515/revneuro-2019-0014.Search in Google Scholar PubMed

Lopatina, O.L., Panina, Y.A., Malinovskaya, N.A., and Salmina, A.B. (2021). Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior. Rev. Neurosci. 32: 131–142, https://doi.org/10.1515/revneuro-2020-0077.Search in Google Scholar PubMed

Lopez Sanchez, M.I.G., Waugh, H.S., Tsatsanis, A., Wong, B.X., Crowston, J.G., Duce, J.A., and Trounce, I.A. (2017). Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta. Sci. Rep. 7: 9835, https://doi.org/10.1038/s41598-017-10233-0.Search in Google Scholar PubMed PubMed Central

Lu, T.M., Houghton, S., Magdeldin, T., Durán, J.G.B., Minotti, A.P., Snead, A., Sproul, A., Nguyen, D.-H.T., Xiang, J., Fine, H.A., et al.. (2021). Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc. Natl. Acad. Sci. U.S.A. 118: e2016950118, https://doi.org/10.1073/pnas.2016950118.Search in Google Scholar PubMed PubMed Central

Ma, K., Deng, X., Xia, X., Fan, Z., Qi, X., Wang, Y., Li, Y., Ma, Y., Chen, Q., Peng, H., et al.. (2018). Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl. Neurodegener. 7: 29, https://doi.org/10.1186/s40035-018-0132-x.Search in Google Scholar PubMed PubMed Central

Machado, L., Relaix, F., and Mourikis, P. (2021). Stress relief: emerging methods to mitigate dissociation-induced artefacts. Trends Cell Biol. 31: 888–897, https://doi.org/10.1016/j.tcb.2021.05.004.Search in Google Scholar PubMed

Madl, C.M., LeSavage, B.L., Dewi, R.E., Dinh, C.B., Stowers, R.S., Khariton, M., Lampe, K.J., Nguyen, D., Chaudhuri, O., and Enejder, A. (2017). Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16: 1233–1242, https://doi.org/10.1038/nmat5020.Search in Google Scholar PubMed PubMed Central

Magnusson, J.P., Zamboni, M., Santopolo, G., Mold, J.E., Barrientos-Somarribas, M., Talavera-Lopez, C., Andersson, B., and Frisén, J. (2020). Activation of a neural stem cell transcriptional program in parenchymal astrocytes. Elife 9: e59733, https://doi.org/10.7554/eLife.59733.Search in Google Scholar PubMed PubMed Central

Malakhova, A.A., Grigor’eva, E.V., Malankhanova, T.B., Pavlova, S.V., Valetdinova, K.R., Abramycheva, N.Y., Vetchinova, A.S., Illarioshkin, S.N., and Zakian, S.M. (2020). Generation of induced pluripotent stem cell line ICGi018-A from peripheral blood mononuclear cells of a patient with Huntington’s disease. Stem Cell Res. 44: 101743, https://doi.org/10.1016/j.scr.2020.101743.Search in Google Scholar PubMed

Malatesta, P., Appolloni, I., and Calzolari, F. (2008). Radial glia and neural stem cells. Cell Tissue Res. 331: 165–178, https://doi.org/10.1007/s00441-007-0481-8.Search in Google Scholar PubMed

Malinovskaya, N.A., Komleva, Y.K., Salmin, V.V., Morgun, A.V., Shuvaev, A.N., Panina, Y.A., Boitsova, E.B., and Salmina, A.B. (2016). Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood–brain barrier modeling. Front. Physiol. 7: 599, https://doi.org/10.3389/fphys.2016.00599.Search in Google Scholar PubMed PubMed Central

Mansour, A.A., Gonçalves, J.T., Bloyd, C.W., Li, H., Fernandes, S., Quang, D., Johnston, S., Parylak, S.L., Jin, X., and Gage, F.H. (2018). An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36: 432–441, https://doi.org/10.1038/nbt.4127.Search in Google Scholar PubMed PubMed Central

Maoz, B.M., Herland, A., FitzGerald, E.A., Grevesse, T., Vidoudez, C., Pacheco, A.R., Sheehy, S.P., Park, T.-E., Dauth, S., and Mannix, R. (2018). A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36: 865–874, https://doi.org/10.1038/nbt.4226.Search in Google Scholar PubMed

Matsui, T.K., Tsuru, Y., Hasegawa, K., and Kuwako, K.-i. (2021). Vascularization of human brain organoids. Stem Cell. 39: 1017–1024, https://doi.org/10.1002/stem.3368.Search in Google Scholar PubMed

Matta, R. and Gonzalez, A.L. (2019). Engineered biomimetic neural stem cell niche. Curr. Stem Cell Rep. 5: 109–114, https://doi.org/10.1007/s40778-019-00161-2.Search in Google Scholar PubMed PubMed Central

Mayerl, S. and Ffrench-Constant, C. (2021). Establishing an adult mouse brain hippocampal organotypic slice culture system that allows for tracing and pharmacological manipulation of ex vivo neurogenesis. Bio Protoc. 11: e3869, https://doi.org/10.21769/BioProtoc.3869.Search in Google Scholar PubMed PubMed Central

McCaughey-Chapman, A. and Connor, B. (2017). Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system. J. Neurosci. Methods 277: 83–87, https://doi.org/10.1016/j.jneumeth.2016.12.012.Search in Google Scholar PubMed

Milosevic, J., Maisel, M., Wegner, F., Leuchtenberger, J., Wenger, R.H., Gerlach, M., Storch, A., and Schwarz, J. (2007). Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J. Neurosci. 27: 412–421, https://doi.org/10.1523/jneurosci.2482-06.2007.Search in Google Scholar PubMed PubMed Central

Mira, H. and Morante, J. (2020). Neurogenesis from embryo to adult – lessons from flies and mice. Front. Cell Dev. Biol. 8: 533, https://doi.org/10.3389/fcell.2020.00533.Search in Google Scholar PubMed PubMed Central

Moelgg, K., Jummun, F., and Humpel, C. (2021). Spreading of beta-amyloid in organotypic mouse brain slices and microglial elimination and effects on cholinergic neurons. Biomolecules 11: 434, https://doi.org/10.3390/biom11030434.Search in Google Scholar PubMed PubMed Central

Moss, J., Gebara, E., Bushong, E.A., Sánchez-Pascual, I., O’Laoi, R., El M’Ghari, I., Kocher-Braissant, J., Ellisman, M.H., and Toni, N. (2016). Fine processes of Nestin-GFP–positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature. Proc. Natl. Acad. Sci. 113: E2536–E2545, https://doi.org/10.1073/pnas.1514652113.Search in Google Scholar PubMed PubMed Central

Nakamura, N., Shi, X., Darabi, R., and Li, Y. (2021). Hypoxia in cell reprogramming and the epigenetic regulations. Front. Cell Dev. Biol. 9: 609984, https://doi.org/10.3389/fcell.2021.609984.Search in Google Scholar PubMed PubMed Central

Nalivaeva, N.N. and Turner, A.J. (2013). The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett. 587: 2046–2054, https://doi.org/10.1016/j.febslet.2013.05.010.Search in Google Scholar PubMed

Nasyrov, E., Nolan, K.A., Wenger, R.H., Marti, H.H., and Kunze, R. (2019). The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain. FASEB J. 33: 12812–12824, https://doi.org/10.1096/fj.201901385rr.Search in Google Scholar

Nielsen, S.F.V., Madsen, K.H., Vinberg, M., Kessing, L.V., Siebner, H.R., and Miskowiak, K.W. (2019). Whole-brain exploratory analysis of functional task response following erythropoietin treatment in mood disorders: a supervised machine learning approach. Front. Neurosci. 13: 1246, https://doi.org/10.3389/fnins.2019.01246.Search in Google Scholar PubMed PubMed Central

Nikolakopoulou, P., Rauti, R., Voulgaris, D., Shlomy, I., Maoz, B.M., and Herland, A. (2020). Recent progress in translational engineered in vitro models of the central nervous system. Brain 143: 3181–3213, https://doi.org/10.1093/brain/awaa268.Search in Google Scholar PubMed PubMed Central

Niu, H., Álvarez-Álvarez, I., Guillén-Grima, F., and Aguinaga-Ontoso, I. (2017). Prevalence and incidence of Alzheimer’s disease in Europe: a meta-analysis. Neurologia 32: 523–532, https://doi.org/10.1016/j.nrleng.2016.02.009.Search in Google Scholar

Novosadova, E.V., Nenasheva, V.V., Makarova, I.V., Dolotov, O.V., Inozemtseva, L.S., Arsenyeva, E.L., Chernyshenko, S.V., Sultanov, R.I., Illarioshkin, S.N., Grivennikov, I.A., et al.. (2020). Parkinson’s disease-associated changes in the expression of neurotrophic factors and their receptors upon neuronal differentiation of human induced pluripotent stem cells. J. Mol. Neurosci. 70: 514–521, https://doi.org/10.1007/s12031-019-01450-5.Search in Google Scholar PubMed

Ochocki, J.D. and Simon, M.C. (2013). Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol. 203: 23–33, https://doi.org/10.1083/jcb.201303110.Search in Google Scholar PubMed PubMed Central

Offeddu, G.S., Shin, Y., and Kamm, R.D. (2020). Microphysiological models of neurological disorders for drug development. Curr. Opin. Biomed. Eng. 13: 119–126, https://doi.org/10.1016/j.cobme.2019.12.011.Search in Google Scholar

Ohab, J.J., Fleming, S., Blesch, A., and Carmichael, S.T. (2006). A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26: 13007–13016, https://doi.org/10.1523/jneurosci.4323-06.2006.Search in Google Scholar

Ohshima, M., Kamei, S., Fushimi, H., Mima, S., Yamada, T., and Yamamoto, T. (2019). Prediction of drug permeability using in vitro blood–brain barrier models with human induced pluripotent stem cell-derived brain microvascular endothelial cells. BioResearch Open Access 8: 200–209, https://doi.org/10.1089/biores.2019.0026.Search in Google Scholar PubMed PubMed Central

Ortolan, E., Augeri, S., Fissolo, G., Musso, I., and Funaro, A. (2019). CD157: from immunoregulatory protein to potential therapeutic target. Immunol. Lett. 205: 59–64, https://doi.org/10.1016/j.imlet.2018.06.007.Search in Google Scholar PubMed

Osipova, E.D., Komleva, Y.K., Morgun, A.V., Lopatina, O.L., Panina, Y.A., Olovyannikova, R.Y., Vais, E.F., Salmin, V.V., and Salmina, A.B. (2018a). Designing in vitro blood–brain barrier models reproducing alterations in brain aging. Front. Aging Neurosci. 10: 234, https://doi.org/10.3389/fnagi.2018.00234.Search in Google Scholar PubMed PubMed Central

Osipova, E.D., Semyachkina-Glushkovskaya, O.V., Morgun, A.V., Pisareva, N.V., Malinovskaya, N.A., Boitsova, E.B., Pozhilenkova, E.A., Belova, O.A., Salmin, V.V., Taranushenko, T.E., et al.. (2018b). Gliotransmitters and cytokines in the control of blood–brain barrier permeability. Rev. Neurosci. 29: 567–591, https://doi.org/10.1515/revneuro-2017-0092.Search in Google Scholar PubMed

Ott, B.R., Jones, R.N., Daiello, L.A., de la Monte, S.M., Stopa, E.G., Johanson, C.E., Denby, C., and Grammas, P. (2018). Blood-cerebrospinal fluid barrier gradients in mild cognitive impairment and Alzheimer’s disease: relationship to inflammatory cytokines and chemokines. Front. Aging Neurosci. 10: 245, https://doi.org/10.3389/fnagi.2018.00245.Search in Google Scholar PubMed PubMed Central

Ottoboni, L., von Wunster, B., and Martino, G. (2020). Therapeutic plasticity of neural stem cells. Front. Neurol. 11: 148, https://doi.org/10.3389/fneur.2020.00148.Search in Google Scholar PubMed PubMed Central

Oyarce, K., Bongarzone, E.R., and Nualart, F. (2014). Unconventional neurogenic niches and neurogenesis modulation by vitamins. J. Stem Cell Res. Ther. 4: 184, https://doi.org/10.4172/2157-7633.1000184.Search in Google Scholar PubMed PubMed Central

Park, J.-C., Jang, S.-Y., Lee, D., Lee, J., Kang, U., Chang, H., Kim, H.J., Han, S.-H., Seo, J., Choi, M., et al.. (2021). A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat. Commun. 12: 280, https://doi.org/10.1038/s41467-020-20440-5.Search in Google Scholar PubMed PubMed Central

Perales-Clemente, E., Cook, A.N., Evans, J.M., Roellinger, S., Secreto, F., Emmanuele, V., Oglesbee, D., Mootha, V.K., Hirano, M., Schon, E.A., et al.. (2016). Natural underlying mtDNA heteroplasmy as a potential source of intra-person hiPSC variability. EMBO J. 35: 1979–1990, https://doi.org/10.15252/embj.201694892.Search in Google Scholar PubMed PubMed Central

Pérez-Domínguez, M., Tovar, Y.R.L.B., and Zepeda, A. (2018). Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior. Rev. Neurosci. 29: 1–20.10.1515/revneuro-2017-0024Search in Google Scholar PubMed

Pham, M.T., Pollock, K.M., Rose, M.D., Cary, W.A., Stewart, H.R., Zhou, P., Nolta, J.A., and Waldau, B. (2018). Generation of human vascularized brain organoids. Neuroreport 29: 588–593, https://doi.org/10.1097/wnr.0000000000001014.Search in Google Scholar

Place, T.L., Domann, F.E., and Case, A.J. (2017). Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic. Biol. Med. 113: 311–322, https://doi.org/10.1016/j.freeradbiomed.2017.10.003.Search in Google Scholar PubMed PubMed Central

Planchez, B., Surget, A., and Belzung, C. (2020). Adult hippocampal neurogenesis and antidepressants effects. Curr. Opin. Pharmacol. 50: 88–95, https://doi.org/10.1016/j.coph.2019.11.009.Search in Google Scholar PubMed

Platel, J.C. and Bordey, A. (2016). The multifaceted subventricular zone astrocyte: from a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 323: 20–28, https://doi.org/10.1016/j.neuroscience.2015.10.053.Search in Google Scholar PubMed PubMed Central

Plummer, S., Wallace, S., Ball, G., Lloyd, R., Schiapparelli, P., Quiñones-Hinojosa, A., Hartung, T., and Pamies, D. (2019). A Human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci. Rep. 9: 1407, https://doi.org/10.1038/s41598-018-38130-0.Search in Google Scholar PubMed PubMed Central

Pohl, U. (1990). Endothelial cells as part of a vascular oxygen-sensing system: hypoxia-induced release of autacoids. Experientia 46: 1175–1179, https://doi.org/10.1007/bf01936931.Search in Google Scholar

Potjewyd, G., Moxon, S., Wang, T., Domingos, M., and Hooper, N.M. (2018). Tissue engineering 3D neurovascular units: a biomaterials and bioprinting perspective. Trends Biotechnol. 36: 457–472, https://doi.org/10.1016/j.tibtech.2018.01.003.Search in Google Scholar PubMed

Potts, M.B. and Lim, D.A. (2012). An old drug for new ideas: metformin promotes adult neurogenesis and spatial memory formation. Cell Stem Cell 11: 5–6, https://doi.org/10.1016/j.stem.2012.06.003.Search in Google Scholar PubMed PubMed Central

Pozhilenkova, E.A., Lopatina, O.L., Komleva, Y.K., Salmin, V.V., and Salmina, A.B. (2017). blood–brain barrier-supported neurogenesis in healthy and diseased brain. Rev. Neurosci. 28: 397–415, https://doi.org/10.1515/revneuro-2016-0071.Search in Google Scholar PubMed

Qian, L. and TCW, J. (2021). Human iPSC-based modeling of central nerve system disorders for drug discovery. Int. J. Mol. Sci. 22: 1203, https://doi.org/10.3390/ijms22031203.Search in Google Scholar PubMed PubMed Central

Quarona, V., Zaccarello, G., Chillemi, A., Brunetti, E., Singh, V.K., Ferrero, E., Funaro, A., Horenstein, A.L., and Malavasi, F. (2013). CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytometry 84B: 207–217, https://doi.org/10.1002/cyto.b.21092.Search in Google Scholar PubMed

Rauch, M.F., Michaud, M., Xu, H., Madri, J.A., and Lavik, E.B. (2008). Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo. J. Biomater. Sci. Polym. Ed. 19: 1469–1485, https://doi.org/10.1163/156856208786140409.Search in Google Scholar PubMed

Ristori, E., Donnini, S., and Ziche, M. (2020). New insights into blood–brain barrier maintenance: the homeostatic role of β-amyloid precursor protein in cerebral vasculature. Front. Physiol. 11: 1056, https://doi.org/10.3389/fphys.2020.01056.Search in Google Scholar PubMed PubMed Central

Roncarati, R., Sestan, N., Scheinfeld, M.H., Berechid, B.E., Lopez, P.A., Meucci, O., McGlade, J.C., Rakic, P., and D’Adamio, L. (2002). The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc. Natl. Acad. Sci. U.S.A. 99: 7102–7107, https://doi.org/10.1073/pnas.102192599.Search in Google Scholar PubMed PubMed Central

Roux, A., Wang, X., Becker, K., and Ma, J. (2020). Modeling α-synucleinopathy in organotypic brain slice culture with preformed α-synuclein amyloid fibrils. J. Parkinsons Dis. 10: 1397–1410, https://doi.org/10.3233/jpd-202026.Search in Google Scholar PubMed PubMed Central

Ruck, T., Bittner, S., and Meuth, S.G. (2015). Blood–brain barrier modeling: challenges and perspectives. Neural Regen. Res. 10: 889–891, https://doi.org/10.4103/1673-5374.158342.Search in Google Scholar PubMed PubMed Central

Ruzaeva, V.A., Morgun, A.V., Khilazheva, E.D., Kuvacheva, N.V., Pozhilenkova, E.A., Boitsova, E.B., Martynova, G.P., Taranushenko, T.E., and Salmina, A.B. (2016). Development of blood–brain barrier under the modulation of HIF activity in astroglialand neuronal cells in vitro. Biomed. Khim. 62: 664–669, https://doi.org/10.18097/pbmc20166206664.Search in Google Scholar

Sakai, A., Matsuda, T., Doi, H., Nagaishi, Y., Kato, K., and Nakashima, K. (2018). Ectopic neurogenesis induced by prenatal antiepileptic drug exposure augments seizure susceptibility in adult mice. Proc. Natl. Acad. Sci. 115: 4270–4275, https://doi.org/10.1073/pnas.1716479115.Search in Google Scholar PubMed PubMed Central

Salick, M.R., Lubeck, E., Riesselman, A., and Kaykas, A. (2021). The future of cerebral organoids in drug discovery. Semin. Cell Dev. Biol. 111: 67–73, https://doi.org/10.1016/j.semcdb.2020.05.024.Search in Google Scholar PubMed

Salmina, A.B., Kharitonova, E.V., Gorina, Y.V., Teplyashina, E.A., Malinovskaya, N.A., Khilazheva, E.D., Mosyagina, A.I., Morgun, A.V., Shuvaev, A.N., Salmin, V.V., et al.. (2021). Blood–brain barrier and neurovascular unit in vitro models for studying mitochondria-driven molecular mechanisms of neurodegeneration. Int. J. Mol. Sci. 22: 4661, https://doi.org/10.3390/ijms22094661.Search in Google Scholar PubMed PubMed Central

Salmina, A.B., Kuvacheva, N.V., Morgun, A.V., Komleva, Y.K., Pozhilenkova, E.A., Lopatina, O.L., Gorina, Y.V., Taranushenko, T.E., and Petrova, L.L. (2015). Glycolysis-mediated control of blood–brain barrier development and function. Int. J. Biochem. Cell Biol. 64: 174–184, https://doi.org/10.1016/j.biocel.2015.04.005.Search in Google Scholar PubMed

Salmina, A.B., Morgun, A.V., Kuvacheva, N.V., Lopatina, O.L., Komleva, Y.K., Malinovskaya, N.A., and Pozhilenkova, E.A. (2014). Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev. Neurosci. 25: 97–111, https://doi.org/10.1515/revneuro-2013-0044.Search in Google Scholar PubMed

Sato, Y., Uchida, Y., Hu, J., Young-Pearse, T.L., Niikura, T., and Mukouyama, Y.-S. (2017). Soluble APP functions as a vascular niche signal that controls adult neural stem cell number. Development 144: 2730–2736, https://doi.org/10.1242/dev.143370.Search in Google Scholar PubMed PubMed Central

Segarra, M., Aburto, M.R., and Acker-Palmer, A. (2021). Blood–brain barrier dynamics to maintain brain homeostasis. Trends Neurosci. 44: 393–405, https://doi.org/10.1016/j.tins.2020.12.002.Search in Google Scholar PubMed

Semerci, F., Choi, W.T.-S., Bajic, A., Thakkar, A., Encinas, J.M., Depreux, F., Segil, N., Groves, A.K., and Maletic-Savatic, M. (2017). Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance. Elife 6: e24660, https://doi.org/10.7554/eLife.24660.Search in Google Scholar PubMed PubMed Central

Seo, S., Kim, H., Sung, J.H., Choi, N., Lee, K., and Kim, H.N. (2020). Microphysiological systems for recapitulating physiology and function of blood–brain barrier. Biomaterials 232: 119732, https://doi.org/10.1016/j.biomaterials.2019.119732.Search in Google Scholar PubMed

Sharee Ghourichaee, S. and Leach, J.B. (2016). The effect of hypoxia and laminin-rich substrates on the proliferative behavior of human neural stem cells. J. Mater. Chem. B 4: 3509–3514, https://doi.org/10.1039/c5tb02701b.Search in Google Scholar PubMed

Shi, Y., Sun, L., Wang, M., Liu, J., Zhong, S., Li, R., Li, P., Guo, L., Fang, A., and Chen, R. (2020). Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18: e3000705, https://doi.org/10.1371/journal.pbio.3000705.Search in Google Scholar PubMed PubMed Central

Shin, Y., Yang, K., Han, S., Park, H.J., Seok Heo, Y., Cho, S.W., and Chung, S. (2014). Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix. Adv. Healthc. Mater. 3: 1457–1464, https://doi.org/10.1002/adhm.201300569.Search in Google Scholar PubMed

Shuvalova, L.D., Davidenko, A.V., Eremeev, A.V., Khomyakova, E.A., Zerkalenkova, E.A., Lebedeva, O.S., Bogomazova, A.N., Klyushnikov, S.A., Illarioshkin, S.N., and Lagarkova, M.A. (2021). Generation of induced pluripotent stem cell line RCPCMi008-A derived from patient with spinocerebellar ataxia 17. Stem Cell Res. 54: 102431, https://doi.org/10.1016/j.scr.2021.102431.Search in Google Scholar PubMed

Shuvalova, L.D., Eremeev, A.V., Bogomazova, A.N., Novosadova, E.V., Zerkalenkova, E.A., Olshanskaya, Y.V., Fedotova, E.Y., Glagoleva, E.S., Illarioshkin, S.N., Lebedeva, O.S., et al.. (2020). Generation of induced pluripotent stem cell line RCPCMi004-A derived from patient with Parkinson’s disease with deletion of the exon 2 in PARK2 gene. Stem Cell Res. 44: 101733, https://doi.org/10.1016/j.scr.2020.101733.Search in Google Scholar PubMed

Sierra, A., Martín-Suárez, S., Valcárcel-Martín, R., Pascual-Brazo, J., Aelvoet, S.A., Abiega, O., Deudero, J.J., Brewster, A.L., Bernales, I., Anderson, A.E., et al.. (2015). Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell 16: 488–503, https://doi.org/10.1016/j.stem.2015.04.003.Search in Google Scholar PubMed PubMed Central

Singh, C.S.B., Choi, K.B., Munro, L., Wang, H.Y., Pfeifer, C.G., and Jefferies, W.A. (2021). Reversing pathology in a preclinical model of Alzheimer’s disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine 71: 103503, https://doi.org/10.1016/j.ebiom.2021.103503.Search in Google Scholar PubMed PubMed Central

Sloan, S.A., Andersen, J., Pașca, A.M., Birey, F., and Pașca, S.P. (2018). Generation and assembly of human brain region-specific three-dimensional cultures. Nat. Protoc. 13: 2062–2085, https://doi.org/10.1038/s41596-018-0032-7.Search in Google Scholar PubMed PubMed Central

Son, M.J., Kwon, Y., Son, T., and Cho, Y.S. (2016). Restoration of mitochondrial NAD+ levels delays stem cell senescence and facilitates reprogramming of aged somatic cells. Stem Cell. 34: 2840–2851, https://doi.org/10.1002/stem.2460.Search in Google Scholar PubMed

Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., et al.. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489: 150–154, https://doi.org/10.1038/nature11306.Search in Google Scholar PubMed PubMed Central

Stapor, P., Wang, X., Goveia, J., Moens, S., and Carmeliet, P. (2014). Angiogenesis revisited – role and therapeutic potential of targeting endothelial metabolism. J. Cell Sci. 127, https://doi.org/10.1242/jcs.153908.Search in Google Scholar PubMed

Stebbins, M.J., Gastfriend, B.D., Canfield, S.G., Lee, M.-S., Richards, D., Faubion, M.G., Li, W.-J., Daneman, R., Palecek, S.P., and Shusta, E.V. (2019). Human pluripotent stem cell-derived brain pericyte-like cells induce blood–brain barrier properties. Sci. Adv. 5: eaau7375, https://doi.org/10.1126/sciadv.aau7375.Search in Google Scholar PubMed PubMed Central

Stone, N.L., England, T.J., and O’Sullivan, S.E. (2019). A novel transwell blood brain barrier model using primary human cells. Front. Cell. Neurosci. 13: 230, https://doi.org/10.3389/fncel.2019.00230.Search in Google Scholar PubMed PubMed Central

Subburaju, S., Kaye, S., Choi, Y.K., Baruah, J., Datta, D., Ren, J., Kumar, A.S., Szabo, G., Fukumura, D., Jain, R.K., et al.. (2020). NAD+-mediated rescue of prenatal forebrain angiogenesis restores postnatal behavior. Sci. Adv. 6: eabb9766, https://doi.org/10.1126/sciadv.abb9766.Search in Google Scholar PubMed PubMed Central

Subramaniyan Parimalam, S., Badilescu, S., Sonenberg, N., Bhat, R., and Packirisamy, M. (2019). Lab-on-A-chip for the development of pro-/anti-angiogenic nanomedicines to treat brain diseases. Int. J. Mol. Sci. 20: 6126, https://doi.org/10.3390/ijms20246126.Search in Google Scholar PubMed PubMed Central

Sueda, R., Imayoshi, I., Harima, Y., and Kageyama, R. (2019). High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 33: 511–523, https://doi.org/10.1101/gad.323196.118.Search in Google Scholar PubMed PubMed Central

Summerfield, S.G. and Dong, K.C. (2013). In vitro, in vivo and in silico models of drug distribution into the brain. J. Pharmacokinet. Pharmacodyn. 40: 301–314, https://doi.org/10.1007/s10928-013-9303-7.Search in Google Scholar PubMed

Sun, H., Li, A., Hou, T., Tao, X., Chen, M., Wu, C., Chen, S., Zhu, L., and Liao, H. (2019). Neurogenesis promoted by the CD200/CD200R signaling pathway following treadmill exercise enhances post-stroke functional recovery in rats. Brain Behav. Immun. 82: 354–371, https://doi.org/10.1016/j.bbi.2019.09.005.Search in Google Scholar PubMed

Tachikawa, M. and Hosoya, K.-i. (2011). Transport characteristics of guanidino compounds at the blood–brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 8: 1–12, https://doi.org/10.1186/2045-8118-8-13.Search in Google Scholar PubMed PubMed Central

Tajerian, M. and Clark, J.D. (2015). Novel cytogenic and neurovascular niches due to blood–brain barrier compromise in the chronic pain brain. Mol. Pain 11: 63, https://doi.org/10.1186/s12990-015-0066-6.Search in Google Scholar PubMed PubMed Central

Takeda, K. and Fong, G.-H. (2007). Prolyl hydroxylase domain 2 protein suppresses hypoxia-induced endothelial cell proliferation. Hypertension 49: 178–184, https://doi.org/10.1161/01.hyp.0000251360.40838.0f.Search in Google Scholar PubMed

Tan, S.C., Gomes, R.S.M., Yeoh, K.K., Perbellini, F., Malandraki-Miller, S., Ambrose, L., Heather, L.C., Faggian, G., Schofield, C.J., Davies, K.E., et al.. (2016). Preconditioning of cardiosphere-derived cells with hypoxia or prolyl-4-hydroxylase inhibitors increases stemness and decreases reliance on oxidative metabolism. Cell Transplant. 25: 35–53, https://doi.org/10.3727/096368915x687697.Search in Google Scholar PubMed PubMed Central

Tata, M., Wall, I., Joyce, A., Vieira, J.M., Kessaris, N., and Ruhrberg, C. (2016). Regulation of embryonic neurogenesis by germinal zone vasculature. Proc. Natl. Acad. Sci. 113: 13414–13419, https://doi.org/10.1073/pnas.1613113113.Search in Google Scholar PubMed PubMed Central

Teplyashina, E.A., Komleva, Y.K., Lychkovskaya, E.V., Deikhina, A.S., and Salmina, A.B. (2021). Regulation of neurogenesis and cerebral angiogenesis by cell protein proteolysis products. RUDN J. Med. 25: 114–132, https://doi.org/10.22363/2313-0245-2021-25-2-114-126.Search in Google Scholar

Thomsen, M.S., Humle, N., Hede, E., Moos, T., Burkhart, A., and Thomsen, L.B. (2021). The blood–brain barrier studied in vitro across species. PLoS One 16: e0236770, https://doi.org/10.1371/journal.pone.0236770.Search in Google Scholar PubMed PubMed Central

Tian, X., Brookes, O., and Battaglia, G. (2017). Pericytes from mesenchymal stem cells as a model for the blood–brain barrier. Sci. Rep. 7: 39676, https://doi.org/10.1038/srep39676.Search in Google Scholar PubMed PubMed Central

Trapp, B.D. and Hauer, P.E. (1994). Amyloid precursor protein is enriched in radial glia: implications for neuronal development. J. Neurosci. Res. 37: 538–550, https://doi.org/10.1002/jnr.490370413.Search in Google Scholar PubMed

Udo, H., Yoshida, Y., Kino, T., Ohnuki, K., Mizunoya, W., Mukuda, T., and Sugiyama, H. (2008). Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J. Neurosci. 28: 14522–14536, https://doi.org/10.1523/jneurosci.3673-08.2008.Search in Google Scholar PubMed PubMed Central

Urbán, N., Blomfield, I.M., and Guillemot, F. (2019). Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 104: 834–848.10.1016/j.neuron.2019.09.026Search in Google Scholar PubMed

Urbán, N. and Guillemot, F. (2014). Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front. Cell. Neurosci. 8: 396.10.3389/fncel.2014.00396Search in Google Scholar

Uwamori, H., Higuchi, T., Arai, K., and Sudo, R. (2017). Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue. Sci. Rep. 7: 17349, https://doi.org/10.1038/s41598-017-17411-0.Search in Google Scholar PubMed PubMed Central

Varnum, M.M., Kiyota, T., Ingraham, K.L., Ikezu, S., and Ikezu, T. (2015). The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol. Aging 36: 2995–3007, https://doi.org/10.1016/j.neurobiolaging.2015.07.027.Search in Google Scholar PubMed PubMed Central

Vatansever, S., Schlessinger, A., Wacker, D., Kaniskan, H., Jin, J., Zhou, M.M., and Zhang, B. (2021). Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: state-of-the-arts and future directions. Med. Res. Rev. 41: 1427–1473, https://doi.org/10.1002/med.21764.Search in Google Scholar PubMed PubMed Central

Vatine, G.D., Barrile, R., Workman, M.J., Sances, S., Barriga, B.K., Rahnama, M., Barthakur, S., Kasendra, M., Lucchesi, C., Kerns, J., et al.. (2019). Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24: 995–1005 e1006, https://doi.org/10.1016/j.stem.2019.05.011.Search in Google Scholar PubMed

Vlieghe, P. and Khrestchatisky, M. (2013). Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med. Res. Rev. 33: 457–516, https://doi.org/10.1002/med.21252.Search in Google Scholar PubMed

Wagenführ, L., Meyer, A.K., Marrone, L., and Storch, A. (2016). Oxygen tension within the neurogenic niche regulates dopaminergic neurogenesis in the developing midbrain. Stem Cell. Dev. 25: 227–238, https://doi.org/10.1089/scd.2015.0214.Search in Google Scholar PubMed PubMed Central

Wakabayashi, T., Naito, H., Suehiro, J.-i., Lin, Y., Kawaji, H., Iba, T., Kouno, T., Ishikawa-Kato, S., Furuno, M., Takara, K., et al.. (2018). CD157 marks tissue-resident endothelial stem cells with homeostatic and regenerative properties. Cell Stem Cell 22: 384–397.e386, https://doi.org/10.1016/j.stem.2018.01.010.Search in Google Scholar PubMed

Wan, H., Rehngren, M., Giordanetto, F., Bergström, F., and Tunek, A. (2007). High-throughput screening of drug–brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J. Med. Chem. 50: 4606–4615, https://doi.org/10.1021/jm070375w.Search in Google Scholar PubMed

Wang, J., Cui, Y., Yu, Z., Wang, W., Cheng, X., Ji, W., Guo, S., Zhou, Q., Wu, N., Chen, Y., et al.. (2019). Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell 25: 754–767 e759, https://doi.org/10.1016/j.stem.2019.09.009.Search in Google Scholar PubMed

Wang, W.E., Yang, D., Li, L., Wang, W., Peng, Y., Chen, C., Chen, P., Xia, X., Wang, H., Jiang, J., et al.. (2013). Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium. Circ. Res. 113: 288–300, https://doi.org/10.1161/circresaha.113.300929.Search in Google Scholar PubMed PubMed Central

Wang, Y.I., Abaci, H.E., and Shuler, M.L. (2017). Microfluidic blood–brain barrier model provides in vivo‐like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114: 184–194, https://doi.org/10.1002/bit.26045.Search in Google Scholar PubMed PubMed Central

Wilhelmsson, U., Faiz, M., de Pablo, Y., Sjöqvist, M., Andersson, D., Widestrand, Å., Potokar, M., Stenovec, M., Smith, P.L.P., Shinjyo, N., et al.. (2012). Astrocytes negatively regulate neurogenesis through the Jagged1-mediated notch pathway. Stem Cell. 30: 2320–2329, https://doi.org/10.1002/stem.1196.Search in Google Scholar PubMed

Winkelman, M.A., Koppes, A.N., Koppes, R.A., and Dai, G. (2021). Bioengineering the neurovascular niche to study the interaction of neural stem cells and endothelial cells. APL Bioeng. 5: 011507, https://doi.org/10.1063/5.0027211.Search in Google Scholar PubMed PubMed Central

Wu, W., DeConinck, A., and Lewis, J.A. (2011). Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23: H178–H183, https://doi.org/10.1002/adma.201004625.Search in Google Scholar PubMed

Yang, L.-T., Nichols, J.T., Yao, C., Manilay, J.O., Robey, E.A., and Weinmaster, G. (2005). Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16: 927–942, https://doi.org/10.1091/mbc.e04-07-0614.Search in Google Scholar PubMed PubMed Central

Yasuoka, K., Hirata, K., Kuraoka, A., He, J.W., and Kawabuchi, M. (2004). Expression of amyloid precursor protein-like molecule in astroglial cells of the subventricular zone and rostral migratory stream of the adult rat forebrain. J. Anat. 205: 135–146, https://doi.org/10.1111/j.0021-8782.2004.00320.x.Search in Google Scholar PubMed PubMed Central

Yetkin-Arik, B., Vogels, I.M.C., Neyazi, N., van Duinen, V., Houtkooper, R.H., van Noorden, C.J.F., Klaassen, I., and Schlingemann, R.O. (2019). Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Sci. Rep. 9: 10414, https://doi.org/10.1038/s41598-019-46503-2.Search in Google Scholar PubMed PubMed Central

Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., and Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5: 237–241, https://doi.org/10.1016/j.stem.2009.08.001.Search in Google Scholar PubMed

Young-Pearse, T.L., Bai, J., Chang, R., Zheng, J.B., LoTurco, J.J., and Selkoe, D.J. (2007). A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J. Neurosci. 27: 14459–14469, https://doi.org/10.1523/jneurosci.4701-07.2007.Search in Google Scholar

Yu, Y., Niapour, M., Zhang, Y., and Berger, S.A. (2008). Mitochondrial regulation by c-Myc and hypoxia-inducible factor-1α controls sensitivity to econazole. Mol. Cancer Therapeut. 7: 483–491, https://doi.org/10.1158/1535-7163.mct-07-2050.Search in Google Scholar PubMed

Zhang, J., Liu, M., Huang, M., Chen, M., Zhang, D., Luo, L., Ye, G., Deng, L., Peng, Y., Wu, X., et al.. (2019). Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol. Res. 144: 292–305, https://doi.org/10.1016/j.phrs.2019.04.021.Search in Google Scholar PubMed

Zhang, K., Zhu, L., and Fan, M. (2011). Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front. Mol. Neurosci. 4: 5, https://doi.org/10.3389/fnmol.2011.00005.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Li, C.S., Ye, Y., Johnson, K., Poe, J., Johnson, S., Bobrowski, W., Garrido, R., and Madhu, C. (2006). Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood–brain barrier permeability. Drug Metab. Dispos. 34: 1935–1943, https://doi.org/10.1124/dmd.105.006437.Search in Google Scholar PubMed

Zhang, Z.G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., Bruggen, N.v., and Chopp, M. (2000). VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J. Clin. Invest. 106: 829–838, https://doi.org/10.1172/jci9369.Search in Google Scholar PubMed PubMed Central

Zhou, Q., Zhu, L., Qiu, W., Liu, Y., Yang, F., Chen, W., and Xu, R. (2020). Nicotinamide riboside enhances mitochondrial proteostasis and adult neurogenesis through activation of mitochondrial unfolded protein response signaling in the brain of ALS SOD1(G93A) mice. Int. J. Biol. Sci. 16: 284–297, https://doi.org/10.7150/ijbs.38487.Search in Google Scholar PubMed PubMed Central

Zhu, H.-F., Wan, D., Luo, Y., Zhou, J.-L., Chen, L., and Xu, X.-Y. (2010). Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion. Int. J. Biol. Sci. 6: 443–453, https://doi.org/10.7150/ijbs.6.443.Search in Google Scholar PubMed PubMed Central

Zhu, X., Shen, J., Feng, S., Huang, C., Liu, Z., Sun, Y.E., and Liu, H. (20202020). Metformin improves cognition of aged mice by promoting cerebral angiogenesis and neurogenesis. bioRxiv, 2003.2025.006767, https://doi.org/10.18632/aging.103693.Search in Google Scholar PubMed PubMed Central

Zhuang, P., Sun, A.X., An, J., Chua, C.K., and Chew, S.Y. (2018). 3D neural tissue models: from spheroids to bioprinting. Biomaterials 154: 113–133, https://doi.org/10.1016/j.biomaterials.2017.10.002.Search in Google Scholar PubMed

Zozulya, A., Weidenfeller, C., and Galla, H.J. (2008). Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood–brain barrier in vitro. Brain Res. 1189: 1–11, https://doi.org/10.1016/j.brainres.2007.10.099.Search in Google Scholar PubMed

Received: 2021-10-13
Accepted: 2021-12-13
Published Online: 2022-01-05
Published in Print: 2022-07-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2021-0137/html
Scroll to top button