Abstract
Depression continues to carry a major disease burden worldwide, with limitations on the success of traditional pharmacological or psychological treatments. Recent approaches have therefore focused upon the neurobiological underpinnings of depression, and on the “individualization” of depression symptom profiles. One such model of depression has divided the standard diagnostic criteria into four “depression subtypes”, with neurological and behavioral pathways. At the same time, attention has been focused upon the region of the brain known as the “default mode network” (DMN) and its role in attention and problem-solving. However, to date, no review has been published of the links between the DMN and the four subtypes of depression. By searching the literature studies from the last 20 years, 62 relevant papers were identified, and their findings are described for the association they demonstrate between aspects of the DMN and the four depression subtypes. It is apparent from this review that there are potential positive clinical and therapeutic outcomes from focusing upon DMN activation and connectivity, via psychological therapies, transcranial magnetic stimulation, and some emerging pharmacological models.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Albert, K.M., Potter, G.G., Boyd, B.D., Kang, H., and Taylor, W.D. (2019). Brain network functional connectivity and cognitive performance in major depressive disorder. J. Psychiatr. Res. 110: 51–56, https://doi.org/10.1016/j.jpsychires.2018.11.020.Search in Google Scholar PubMed PubMed Central
Al-Harbi, K.S. (2012). Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 6: 369–388, https://doi.org/10.2147/ppa.s29716.Search in Google Scholar
Andrews-Hanna, J.R. (2012). The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18: 251–270, https://doi.org/10.1177/1073858411403316.Search in Google Scholar PubMed PubMed Central
Andrews-Hanna, J., Reidler, J., Sepulcre, J., Poulin, R., and Buckner, R. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron 65: 550–562, https://doi.org/10.1016/j.neuron.2010.02.005.Search in Google Scholar PubMed PubMed Central
APA (2013). Diagnostic and statistical manual of mental disorders, 5th ed. Arlington, VA: American Psychiatric Association.Search in Google Scholar
Ball, T., Goldstein-Piekarski, A., Gatt, J., and Williams, L. (2017). Quantifying person-level brain network functioning to facilitate clinical translation. Transl. Psychiatry 7: e1248, https://doi.org/10.1038/tp.2017.204.Search in Google Scholar PubMed PubMed Central
Basar, E., Golbasi, B.T., Tulay, E., Aydin, S., and Basar-Eroglu, C. (2016). Best method for analysis of brain oscillations in healthy subjects and neuropsychiatric diseases. Int. J. Psychophysiol. 103: 22–42.10.1016/j.ijpsycho.2015.02.017Search in Google Scholar PubMed
Beck, A.T. (1967). Depression. Harper and Row, New York.Search in Google Scholar
Belluscio, M.A., Mizuseki, K., Schmidt, R., Kempter, R., and Buzsáki, G. (2012). Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus. J. Neurosci. 32: 423–435, https://doi.org/10.1523/jneurosci.4122-11.2012.Search in Google Scholar PubMed PubMed Central
Belmaker, R. and Agam, G. (2008). Major depressive disorder. N. Engl. J. Med. 358: 55–68, https://doi.org/10.1056/nejmra073096.Search in Google Scholar PubMed
Bennabi, D., Aouizerate, B., El-Hage, W., Doumy, O., Moliere, F., Courtet, P., and Vaiva, G. (2015). Risk factors for treatment resistance in unipolar depression: a systematic review. J. Affect. Disord. 171: 137–141, https://doi.org/10.1016/j.jad.2014.09.020.Search in Google Scholar PubMed
Berman, M.G., Peltier, S., Nee, D.E., Kross, E., Deldin, P.J., and Jonides, J. (2011). Depression, rumination and the default network. Soc. Cognit. Affect Neurosci. 6: 548–555, https://doi.org/10.1093/scan/nsq080.Search in Google Scholar PubMed PubMed Central
Betzel, R.F. and Bassett, D.S. (2017). Multi-scale brain networks. Neuroimage 160: 73–83, https://doi.org/10.1016/j.neuroimage.2016.11.006.Search in Google Scholar PubMed PubMed Central
Biswal, B., Zerrin Yetkin, F., Haughton, V.M., and Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo‐planar mri. Magn. Reson. Med. 34: 537–541, https://doi.org/10.1002/mrm.1910340409.Search in Google Scholar PubMed
Bloom, D., Cafiero, E., Jané-Llopis, E., Abrahams-Gessel, S., Fathima, S., Feigl, A., and Rosenberg, L. (2012). The global economic burden of noncommunicable diseases. PGDA Working Paper, 8712.Search in Google Scholar
Boehm, I., Geisler, D., King, J.A., Ritschel, F., Seidel, M., Deza Araujo, Y., and Walter, M. (2014). Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa. Front. Behav. Neurosci. 8: 346, https://doi.org/10.3389/fnbeh.2014.00346.Search in Google Scholar PubMed PubMed Central
Bratman, G.N., Hamilton, J.P., Hahn, K.S., Daily, G.C., and Gross, J.J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl. Acad. Sci. Unit. States Am. 112: 8567–8572, https://doi.org/10.1073/pnas.1510459112.Search in Google Scholar PubMed PubMed Central
Bressler, S.L. and Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends Cognit. Sci. 14: 277–290, https://doi.org/10.1016/j.tics.2010.04.004.Search in Google Scholar PubMed
Brissenden, J.A., Levin, E.J., Osher, D.E., Halko, M.A., and Somers, D.C. (2016). Functional evidence for a cerebellar node of the dorsal attention network. J. Neurosci. 36: 6083–6096, https://doi.org/10.1523/jneurosci.0344-16.2016.Search in Google Scholar
Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., and Sonuga-Barke, E.J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33: 279–296, https://doi.org/10.1016/j.neubiorev.2008.09.002.Search in Google Scholar PubMed
Buckner, R.L. and Carroll, D.C. (2007). Self-projection and the brain. Trends Cognit. Sci. 11: 49, https://doi.org/10.1016/j.tics.2006.11.004.Search in Google Scholar PubMed
Buckner, R.L., Andrews‐Hanna, J.R., and Schacter, D.L. (2008). The brain’s default network. Ann. N. Y. Acad. Sci. 1124: 1–38, https://doi.org/10.1196/annals.1440.011.Search in Google Scholar PubMed
Butz, M., Wörgötter, F., and van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Res. Rev. 60: 287–305, https://doi.org/10.1016/j.brainresrev.2008.12.023.Search in Google Scholar PubMed
Chen, A.C.N., Feng, W., Zhao, H., Yin, Y., and Wang, P. (2008). EEG default mode network in the human brain: spectral regional field powers. Neuroimage 41: 561–574, https://doi.org/10.1016/j.neuroimage.2007.12.064.Search in Google Scholar
Chisholm, D., Sweeny, K., Sheehan, P., Rasmussen, B., Smit, F., Cuijpers, P., and Saxena, S. (2016). Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiatr. 3: 415–424, https://doi.org/10.1016/s2215-0366(16)30024-4.Search in Google Scholar
Christley, Y., Duffy, T., Everall, I.P., and Martin, C.R. (2013). The neuropsychiatric and neuropsychological features of chronic fatigue syndrome: revisiting the enigma. Curr. Psychiatr. Rep. 15: 353, https://doi.org/10.1007/s11920-013-0353-8.Search in Google Scholar PubMed
Christoff, K., Gordon, A.M., Smallwood, J., Smith, R., and Schooler, J.W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. U.S.A. 106: 8719–8724, https://doi.org/10.1073/pnas.0900234106.Search in Google Scholar PubMed PubMed Central
Clark, D.A. and Beck, A.T. (2010). Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cognit. Sci. 14: 418–424, https://doi.org/10.1016/j.tics.2010.06.007.Search in Google Scholar PubMed
Coutinho, J., Fernandesl, S., Soares, J., Maia, L., Gonçalves, Ó., and Sampaio, A. (2016). Default mode network dissociation in depressive and anxiety states. Brain Imag. Behav. 10: 147–157, https://doi.org/10.1007/s11682-015-9375-7.Search in Google Scholar PubMed
Cowdrey, F.A., Filippini, N., Park, R.J., Smith, S.M., and McCabe, C. (2014). Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa. Hum. Brain Mapp. 35: 483–491, https://doi.org/10.1002/hbm.22202.Search in Google Scholar PubMed PubMed Central
Craddock, R.C., Saad, J., Chao-Gan, Y., Joshua, T.V., Castellanos, F.X., Adriana Di, M., and Michael, P.M. (2013). Imaging human connectomes at the macroscale. Nat. Methods 10: 524–539, https://doi.org/10.1038/nmeth.2482.Search in Google Scholar PubMed PubMed Central
Daches, S., Vine, V., Layendecker, K.M., George, C.J., and Kovacs, M. (2018). Family functioning as perceived by parents and young offspring at high and low risk for depression. J. Affect. Disord. 226: 355–360, https://doi.org/10.1016/j.jad.2017.09.031.Search in Google Scholar PubMed PubMed Central
De Havas, J.A., Parimal, S., Soon, C.S., and Chee, M.W. (2012). Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 59: 1745–1751, https://doi.org/10.1016/j.neuroimage.2011.08.026.Search in Google Scholar PubMed
de Pasquale, F., Della Penna, S., Snyder, A.Z., Marzetti, L., Pizzella, V., Romani, G.L., and Corbetta, M. (2012). A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74: 753–764, https://doi.org/10.1016/j.neuron.2012.03.031.Search in Google Scholar PubMed PubMed Central
de Pasquale, F., Della Penna, S., Sporns, O., Romani, G., and Corbetta, M. (2016). A dynamic core network and global efficiency in the resting human brain. Cerebr. Cortex 26: 4015–4033, https://doi.org/10.1093/cercor/bhv185.Search in Google Scholar PubMed PubMed Central
DeRubeis, R.J., Siegle, G.J., and Hollon, S.D. (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 9: 788–796, https://doi.org/10.1038/nrn2345.Search in Google Scholar PubMed PubMed Central
Dixon, M., Andrews-Hanna, J., Spreng, R., Irving, Z., Mills, C., Girn, M., and Christoff, K. (2017). Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147: 632–649, https://doi.org/10.1016/j.neuroimage.2016.12.073.Search in Google Scholar PubMed
Drummond, S.P., Bischoff-Grethe, A., Dinges, D.F., Ayalon, L., Mednick, S.C., and Meloy, M. (2005). The neural basis of the psychomotor vigilance task. Sleep 28: 1059–1068.Search in Google Scholar
Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., and Etkin, A. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23: 28–38, https://doi.org/10.1038/nm.4246.Search in Google Scholar PubMed PubMed Central
Dutta, A., McKie, S., Downey, D., Thomas, E., Juhasz, G., Arnone, D., and Anderson, I.M. (2019). Regional default mode network connectivity in major depressive disorder. Transl. Psychiatry 9: 116, https://doi.org/10.1038/s41398-019-0447-0.Search in Google Scholar PubMed PubMed Central
Egede, L.E. (2007). Major depression in individuals with chronic medical disorders: prevalence, correlates and association with health resource utilization, lost productivity and functional disability. Gen. Hosp. Psychiatr. 29: 409–416, https://doi.org/10.1016/j.genhosppsych.2007.06.002.Search in Google Scholar PubMed
Esterman, M., Noonan, S.K., Rosenberg, M., and DeGutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebr. Cortex 23: 2712–2723, https://doi.org/10.1093/cercor/bhs261.Search in Google Scholar PubMed
Evans, J.W., Szczepanik, J., Brutsché, N., Park, L.T., Nugent, A.C., and Zarate, C.A. (2018). Default mode connectivity in major depressive disorder measured up to 10 Days after ketamine administration. Biol. Psychiatr. 84: 582–590, https://doi.org/10.1016/j.biopsych.2018.01.027.Search in Google Scholar PubMed PubMed Central
Fomina, T., Hohmann, M., Schölkopf, B., and Grosse-Wentrup, M. (2015). Identification of the default mode network with electroencephalography. In: Paper presented at the 2015 37th annual international conference of the IEEE Engineering in Medicine and iology Society. IEEE, Milan, Italy.10.1109/EMBC.2015.7320143Search in Google Scholar PubMed
Fossati, P. (2019). Circuit based anti-correlation, attention orienting, and major depression. CNS Spectr. 24: 94–101, https://doi.org/10.1017/s1092852918001402.Search in Google Scholar
Fox, M.D. (2018). Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379: 2237–2245, https://doi.org/10.1056/nejmra1706158.Search in Google Scholar PubMed
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., and Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102: 9673–9678, https://doi.org/10.1073/pnas.0504136102.Search in Google Scholar PubMed PubMed Central
Frances, A.J. and Nardo, J.M. (2013). ICD-11 should not repeat the mistakes made by DSM-5. Br. J. Psychiatry 203: 1–2, https://doi.org/10.1192/bjp.bp.113.127647.Search in Google Scholar PubMed
Francisco, V., Jean-Philippe, L., Eugenio, R., and Jacques, M. (2001). The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2: 229–239.10.1038/35067550Search in Google Scholar PubMed
Franklin, J.C., Ribeiro, J.D., Fox, K.R., Bentley, K.H., Kleiman, E.M., Huang, X., Musacchio, K. M., Jaroszewski, A. C., Chang, B. P., and Nock, M.K. (2017). Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol. Bull. 143: 187–232, https://doi.org/10.1037/bul0000084.Search in Google Scholar PubMed
Fransson, P. (2005). Spontaneous low‐frequency BOLD signal fluctuations: an fMRI investigation of the resting‐state default mode of brain function hypothesis. Hum. Brain Mapp. 26: 15–29, https://doi.org/10.1002/hbm.20113.Search in Google Scholar PubMed PubMed Central
Fried, E.I. and Nesse, R.M. (2015). Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 172: 96–102, https://doi.org/10.1016/j.jad.2014.10.010.Search in Google Scholar PubMed PubMed Central
Frodl, T., Bokde, A.L., Scheuerecker, J., Lisiecka, D., Schoepf, V., Hampel, H., Möllera, H.J., Brückmannb, H., Wiesmannb, M., and Meisenzahl, E. (2010). Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biol. Psychiatr. 67: 161–167, https://doi.org/10.1016/j.biopsych.2009.08.022.Search in Google Scholar PubMed
Gilbert, S., Dumontheil, I., Simons, J., Frith, C., and Burgess, P. (2007). Comment on “Wandering minds: the default network and stimulus-independent thought”. Science 317: 43, https://doi.org/10.1126/science.1140801.Search in Google Scholar
Giugni, E., Vadalà, R., and De Vincentiis, C. (2010). The brain’s default mode network: a mind “sentinel” role? Funct. Neurol. 25: 189–190.Search in Google Scholar
Gold, P. (2013). Evidence that stress per se has a role in the precipitation and natural history of depressive illness. Mol. Psychiatr. 18: 954–956, https://doi.org/10.1038/mp.2013.85.Search in Google Scholar PubMed
Goldberg, D. (2011). The heterogeneity of “major depression”. World Psychiatr. 10: 226–228, https://doi.org/10.1002/j.2051-5545.2011.tb00061.x.Search in Google Scholar PubMed PubMed Central
Gotlib, I.H. and Joormann, J. (2010). Cognition and depression: current status and future directions. Annu. Rev. Clin. Psychol. 6: 285–312, https://doi.org/10.1146/annurev.clinpsy.121208.131305.Search in Google Scholar PubMed PubMed Central
Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., Nelson, S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., et al.. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98: 439–452.e435, https://doi.org/10.1016/j.neuron.2018.03.035.Search in Google Scholar PubMed PubMed Central
Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna, H., Reiss, A.L., and Schatzberg, A.F. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatr. 62: 429–437, https://doi.org/10.1016/j.biopsych.2006.09.020.Search in Google Scholar PubMed PubMed Central
Greicius, M.D., Krasnow, B., Reiss, A.L., and Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100: 253–258, https://doi.org/10.1073/pnas.0135058100.Search in Google Scholar PubMed PubMed Central
Greicius, M.D., Supekar, K., Menon, V., and Dougherty, R.F. (2008). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebr. Cortex 19: 72–78, https://doi.org/10.1093/cercor/bhn059.Search in Google Scholar PubMed PubMed Central
Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M., Ernst, J., Hell, D., Boeker, H., and Northoff, G. (2009). Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 34: 932–943, https://doi.org/10.1038/npp.2008.81.Search in Google Scholar PubMed
Guo, W., Liu, F., Xue, Z., Yu, Y., Ma, C., Tan, C., Sun, X.L., Chen, J.D., Liu, Z.N., Xiao, C., et al.. (2011). Abnormal neural activities in first-episode, treatment-naive, short-illness-duration, and treatment-response patients with major depressive disorder: a resting-state fMRI study. J. Affect. Disord. 135: 326–331, https://doi.org/10.1016/j.jad.2011.06.048.Search in Google Scholar PubMed
Gusnard, D.A. and Raichle, M.E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2: 685–694, https://doi.org/10.1038/35094500.Search in Google Scholar PubMed
Hamilton, J.P., Furman, D.J., Chang, C., Thomason, M.E., Dennis, E., and Gotlib, I.H. (2011). Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol. Psychiatr. 70: 327–333, https://doi.org/10.1016/j.biopsych.2011.02.003.Search in Google Scholar PubMed PubMed Central
Hamilton, J.P., Farmer, M., Fogelman, P., and Gotlib, I.H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatr. 78: 224–230, https://doi.org/10.1016/j.biopsych.2015.02.020.Search in Google Scholar PubMed PubMed Central
Han, D.H., Kim, S.M., Bae, S., Renshaw, P.F., and Anderson, J.S. (2016). A failure of suppression within the default mode network in depressed adolescents with compulsive internet game play. J. Affect. Disord. 194: 57–64, https://doi.org/10.1016/j.jad.2016.01.013.Search in Google Scholar PubMed
Harald, B. and Gordon, P. (2012). Meta-review of depressive subtyping models. J. Affect. Disord. 139: 126, https://doi.org/10.1016/j.jad.2011.07.015.Search in Google Scholar PubMed
Insel, T. (2013). Transforming diagnosis. National Institute for Mental Health, Washington, DC.Search in Google Scholar
Jacob, Y., Morris, L.S., Huang, K.-H., Schneider, M., Rutter, S., Verma, G., Murrough, J.W., and Balchandani, P. (2020). Neural correlates of rumination in major depressive disorder: a brain network analysis. NeuroImage: Clinical 25: 102142, https://doi.org/10.1016/j.nicl.2019.102142.Search in Google Scholar PubMed PubMed Central
Jann, K., Dierks, T., Boesch, C., Kottlow, M., Strik, W., and Koenig, T. (2009). BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45: 903, https://doi.org/10.1016/j.neuroimage.2009.01.001.Search in Google Scholar PubMed
Kaiser, R.H., Andrews-Hanna, J.R., Wager, T.D., and Pizzagalli, D.A. (2015). Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatr. 72: 603–611, https://doi.org/10.1001/jamapsychiatry.2015.0071.Search in Google Scholar PubMed PubMed Central
Kapur, S., Phillips, A., and Insel, T. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatr. 17: 1174, https://doi.org/10.1038/mp.2012.105.Search in Google Scholar PubMed
Kazemi, R., Rostami, R., Khomami, S., Baghdadi, G., Rezaei, M., Hata, M., Aoki, Y., Ishii, R., Iwase, M., and Fitzgerald, P.B. (2018). Bilateral transcranial magnetic stimulation on DLPFC changes resting state networks and cognitive function in patients with bipolar depression. Front. Hum. Neurosci. 12, https://doi.org/10.3389/fnhum.2018.00356.Search in Google Scholar PubMed PubMed Central
Kelly, A., Uddin, L., Biswal, B., Castellanos, F., and Milham, M. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527–537, https://doi.org/10.1016/j.neuroimage.2007.08.008.Search in Google Scholar PubMed
Kennedy, S.H. and Giacobbe, P. (2007). Treatment resistant depression—advances in somatic therapies. Ann. Clin. Psychiatr. 19: 279–287, https://doi.org/10.1080/10401230701675222.Search in Google Scholar PubMed
Kim, B.-H., Namkoong, K., Kim, J.-J., Lee, S., Yoon, K.J., Choi, M., and Jung, Y.-C. (2015). Altered resting-state functional connectivity in women with chronic fatigue syndrome. Psychiatr. Res. Neuroimaging 234: 292–297, https://doi.org/10.1016/j.pscychresns.2015.10.014.Search in Google Scholar PubMed
Klonsky, E.D., May, A.M., and Saffer, B.Y. (2016). Suicide, suicide attempts, and suicidal ideation. Annu. Rev. Clin. Psychol. 12: 307–330, https://doi.org/10.1146/annurev-clinpsy-021815-093204.Search in Google Scholar PubMed
Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V., and Pylkova, L.V. (2011). The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res. 1402: 67, https://doi.org/10.1016/j.brainres.2011.05.052.Search in Google Scholar PubMed
Kudela, M., Harezlak, J., and Lindquist, M.A. (2017). Assessing uncertainty in dynamic functional connectivity. Neuroimage 149: 165, https://doi.org/10.1016/j.neuroimage.2017.01.056.Search in Google Scholar PubMed PubMed Central
Lakhan, S.E., Vieira, K., and Hamlat, E. (2010). Biomarkers in psychiatry: drawbacks and potential for misuse. Int. Arch. Med. 3: 1, https://doi.org/10.1186/1755-7682-3-1.Search in Google Scholar PubMed PubMed Central
Lemogne, C., Delaveau, P., Freton, M., Guionnet, S., and Fossati, P. (2012). Medial prefrontal cortex and the self in major depression. J. Affect. Disord. 136: e1–e11, https://doi.org/10.1016/j.jad.2010.11.034.Search in Google Scholar PubMed
Lewis, L. and Akeju, O. (2017). Hierarchy in disruption of large-scale networks across altered arousal states. Br. J. Anaesth. 119: 566–568, https://doi.org/10.1093/bja/aex297.Search in Google Scholar PubMed
Li, M., Safron, A., Chang, C., Speck, O., Mayberg, H., Biswal, B., and Martin, W. (2020). Default mode network connectivity change corresponds to ketamine’s delayed glutamatergic effects. Eur. Arch. Psychiatr. Clin. Neurosci. 270: 207–216, https://doi.org/10.1007/s00406-018-0942-y.Search in Google Scholar PubMed
Liston, C., Chen, A.C., Zebley, B.D., Drysdale, A.T., Gordon, R., Leuchter, B., Voss, H.U., Casey, B.J., Etkin, A., and Dubin, M.J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatr. 76: 517, https://doi.org/10.1016/j.biopsych.2014.01.023.Search in Google Scholar PubMed PubMed Central
Liu, Z., Xu, C., Xu, Y., Wang, Y., Zhao, B., Lv, Y., Cao, X., Zhang, K., and Du, C. (2010). Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatr. Res. Neuroimaging 182: 211–215, https://doi.org/10.1016/j.pscychresns.2010.03.004.Search in Google Scholar PubMed
Luciano, M., Del Vecchio, V., Giacco, D., De Rosa, C., Malangone, C., Fiorillo, A. (2012). A ‘family affair’? The impact of family psychoeducational interventions on depression. Expert Rev. Neurother. 12: 83–92, https://doi.org/10.1586/ern.11.131.Search in Google Scholar PubMed
Lyubomirsky, S. and Nolen-Hoeksema, S. (1995). Effects of self-focused rumination on negative thinking and interpersonal problem solving. J. Pers. Soc. Psychol. 69: 176–190, https://doi.org/10.1037/0022-3514.69.1.176.Search in Google Scholar
Mahmood, T. (2020). Biomarkers in psychiatry: a clinician’s viewpoint. Br. Med. Bull. 135: 23–27, https://doi.org/10.1093/bmb/ldaa019.Search in Google Scholar PubMed
Mantini, D. and Vanduffel, W. (2013). Emerging roles of the brain’s default network. Neuroscientist 19: 76–87, https://doi.org/10.1177/1073858412446202.Search in Google Scholar PubMed
Marchetti, I., Koster, E.H., Sonuga-Barke, E.J., and De Raedt, R. (2012). The default mode network and recurrent depression: a neurobiological model of cognitive risk factors. Neuropsychol. Rev. 22: 229–251, https://doi.org/10.1007/s11065-012-9199-9.Search in Google Scholar PubMed
Marques, D.R., Gomes, A.A., Clemente, V., dos Santos, J.M., and Castelo-Branco, M. (2015). Default-mode network activity and its role in comprehension and management of psychophysiological insomnia: a new perspective. New Ideas Psychol. 36: 30–37, https://doi.org/10.1016/j.newideapsych.2014.08.001.Search in Google Scholar
Mashour, G.A. and Hudetz, A.G. (2018). Neural correlates of unconsciousness in large-scale brain networks. Trends Neurosci. 41: 150–160, https://doi.org/10.1016/j.tins.2018.01.003.Search in Google Scholar PubMed PubMed Central
Mason, M., Norton, M., Van Horn, J., and Wegner, D. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315: 393–395, https://doi.org/10.1126/science.1131295.Search in Google Scholar PubMed PubMed Central
McCrone, P., Rost, F., Koeser, L., Koutoufa, I., Stephanou, S., Knapp, M., Goldberg, D., Taylor, D., and Fonagy, P. (2017). The economic cost of treatment-resistant depression in patients referred to a specialist service. J. Ment. Health 33: 253–261.10.1080/09638237.2017.1417562Search in Google Scholar PubMed
McFadden, K.L., Cornier, M.-A., Melanson, E.L., Bechtell, J.L., and Tregellas, J.R. (2013). Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults. Neuroreport 24: 866, https://doi.org/10.1097/wnr.0000000000000013.Search in Google Scholar PubMed PubMed Central
McFadden, K.L., Tregellas, J.R., Shott, M.E., and Frank, G.K. (2014). Reduced salience and default mode network activity in women with anorexia nervosa. J. Psychiatr. Neurosci. 39: 178, https://doi.org/10.1503/jpn.130046.Search in Google Scholar PubMed PubMed Central
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., Lavoie, S., Pantelis, C., Yung, A., Wood, S., et al.. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatr. 13: 211–223, https://doi.org/10.1002/wps.20144.Search in Google Scholar PubMed PubMed Central
McIntyre, R., Filteau, M.-J., Martin, L., Patry, S., Carvalho, A., Cha, D., Barakat, M., and Miguelez, M. (2014). Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J. Affect. Disord. 156: 1–7, https://doi.org/10.1016/j.jad.2013.10.043.Search in Google Scholar PubMed
McKiernan, K.A., D’Angelo, B.R., Kaufman, J.N., and Binder, J.R. (2006). Interrupting the “stream of consciousness”: an fMRI investigation. Neuroimage 29, https://doi.org/10.1016/j.neuroimage.2005.09.030.Search in Google Scholar PubMed PubMed Central
McVay, J.C. and Kane, M.J. (2010). Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 136: 188–207, https://doi.org/10.1037/a0018298.Search in Google Scholar PubMed PubMed Central
Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cognit. Sci. 15: 483–506, https://doi.org/10.1016/j.tics.2011.08.003.Search in Google Scholar PubMed
Mezuk, B., Eaton, W.W., Albrecht, S., and Golden, S.H. (2008). Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 31: 2383–2390, https://doi.org/10.2337/dc08-0985.Search in Google Scholar PubMed PubMed Central
Monroe, S. and Anderson, S. (2015). Depression: the shroud of heterogeneity. Curr. Dir. Psychol. Sci. 24: 227, https://doi.org/10.1177/0963721414568342.Search in Google Scholar
Neuner, I., Arrubla, J., Werner, C.J., Hitz, K., Boers, F., Kawohl, W., and Shah, N.J. (2014). The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study. PloS One 9: e88214, https://doi.org/10.1371/journal.pone.0088214.Search in Google Scholar PubMed PubMed Central
Nie, X., Shao, Y., Liu, S.-y., Li, H.-j., Wan, A.-l., Nie, S., Peng, D.C., and Dai, X.-j. (2015). Functional connectivity of paired default mode network subregions in primary insomnia. Neuropsychiatric Dis. Treat. 11: 3085, https://doi.org/10.2147/NDT.S95224.Search in Google Scholar PubMed PubMed Central
Nock, M.K., Hwang, I., Sampson, N., Kessler, R.C., Angermeyer, M., Beautrais, A., Borges, G., Bromet, E., Bruffaerts, R., De Girolamo, G., et al.. (2009). Cross-national analysis of the associations among mental disorders and suicidal behavior: findings from the WHO World Mental Health Surveys. PLoS Med. 6: e1000123, https://doi.org/10.1371/journal.pmed.1000123.Search in Google Scholar PubMed PubMed Central
Northoff, G. (2016). How do resting state changes in depression translate into psychopathological symptoms? From ‘spatiotemporal correspondence’to ‘spatiotemporal psychopathology’. Curr. Opin. Psychiatr. 29: 18–24, https://doi.org/10.1097/yco.0000000000000222.Search in Google Scholar PubMed
Northoff, G., Wiebking, C., Feinberg, T., and Panksepp, J. (2011). The ‘resting-state hypothesis’ of major depressive disorder—a translational subcortical–cortical framework for a system disorder. Neurosci. Biobehav. Rev. 35: 1929–1945, https://doi.org/10.1016/j.neubiorev.2010.12.007.Search in Google Scholar PubMed
Novakova, L. (2020). Theta-burst transcranial magnetic stimulation induced cognitive task-related decrease in activity of default mode network: an exploratory study. Brain Stimul. 13: 597, https://doi.org/10.1016/j.brs.2020.01.015.Search in Google Scholar PubMed
Olbrich, S., Tränkner, A., Chittka, T., Hegerl, U., and Schönknecht, P. (2014). Functional connectivity in major depression: increased phase synchronization between frontal cortical EEG-source estimates. Psychiatr. Res. Neuroimaging 222: 91–99, https://doi.org/10.1016/j.pscychresns.2014.02.010.Search in Google Scholar PubMed
Østergaard, S.D., Jensen, S.O.W., and Bech, P. (2011). The heterogeneity of the depressive syndrome: when numbers get serious. Acta Psychiatr. Scand. 124: 495–496, https://doi.org/10.1111/j.1600-0447.2011.01744.x.Search in Google Scholar PubMed
Patten, S.B., Williams, J.V.A., Lavorato, D.H., Bulloch, A.G.M., Wiens, K., and Wang, J. (2016). Why is major depression prevalence not changing? J. Affect. Disord. 190: 93, https://doi.org/10.1016/j.jad.2015.09.002.Search in Google Scholar PubMed
Raichle, M., Macleod, A., Snyder, A., and Powers, W. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. Unit. States Am. 98: 676–682, https://doi.org/10.1073/pnas.98.2.676.Search in Google Scholar PubMed PubMed Central
Rocha, R.P., Koçillari, L., Suweis, S., Corbetta, M., and Maritan, A. (2018). Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. Sci. Rep. 8: 1–15, https://doi.org/10.1038/s41598-018-33923-9.Search in Google Scholar PubMed PubMed Central
Rosenbaum, D., Haipt, A., Fuhr, K., Haeussinger, F.B., Metzger, F.G., Nuerk, H.-C., Fallgatter, A.J., Batra, A., and Ehlis, A.-C. (2017). Aberrant functional connectivity in depression as an index of state and trait rumination. Sci. Rep. 7: 1–12, https://doi.org/10.1038/s41598-017-02277-z.Search in Google Scholar PubMed PubMed Central
Ruban, A. and Kołodziej, A. (2018). Changes in default-mode network activity and functional connectivity as an indicator of psychedelic-assisted psychotherapy effectiveness. Neuropsychiatria Neuropsychologia 13: 91–97, https://doi.org/10.5114/nan.2018.81249.Search in Google Scholar
Rubinov, M. and Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059, https://doi.org/10.1016/j.neuroimage.2009.10.003.Search in Google Scholar PubMed
Sakkalis, V. (2011). Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41: 1110, https://doi.org/10.1016/j.compbiomed.2011.06.020.Search in Google Scholar PubMed
Scalabrini, A., Vai, B., Poletti, S., Damiani, S., Mucci, C., Colombo, C., Zanardi, R., Benedetti, F., and Northoff, G. (2020). All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology 45: 2058–2069, https://doi.org/10.1038/s41386-020-0785-x.Search in Google Scholar PubMed PubMed Central
Scheeringa, R., Bastiaansen, M.C., Petersson, K.M., Oostenveld, R., Norris, D.G., and Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 67: 242–251, https://doi.org/10.1016/j.ijpsycho.2007.05.017.Search in Google Scholar PubMed
Scheibner, H.J., Bogler, C., Gleich, T., Haynes, J.-D., and Bermpohl, F. (2017). Internal and external attention and the default mode network. Neuroimage 148: 381, https://doi.org/10.1016/j.neuroimage.2017.01.044.Search in Google Scholar PubMed
Seeley, W.W. (2019). The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39: 9878–9882, https://doi.org/10.1523/jneurosci.1138-17.2019.Search in Google Scholar
Sharpley, C.F. and Bitsika, V. (2013). Differences in neurobiological pathways of four “clinical content” subtypes of depression. Behav. Brain Res. 256: 368, https://doi.org/10.1016/j.bbr.2013.08.030.Search in Google Scholar PubMed
Sharpley, C.F. and Bitsika, V. (2014). Validity, reliability and prevalence of four ‘clinical content’ subtypes of depression. Behav. Brain Res. 259: 9, https://doi.org/10.1016/j.bbr.2013.10.032.Search in Google Scholar PubMed
Sheline, Y.I., Barch, D.M., Price, J.L., Rundle, M.M., Vaishnavi, S.N., Snyder, A.Z., Mintun, M.A., Wang, S., Coalson, R.S., and Raichle, M.E. (2009). The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. Unit. States Am. 106: 1942–1947, https://doi.org/10.1073/pnas.0812686106.Search in Google Scholar PubMed PubMed Central
Shen, H.H. (2015). Core concept: resting-state connectivity. Proc. Natl. Acad. Sci. Unit. States Am. 112: 14115–14116, https://doi.org/10.1073/pnas.1518785112.Search in Google Scholar PubMed PubMed Central
Shulman, G.L., Fiez, J.A., Corbetta, M., Buckner, R.L., Miezin, F.M., Raichle, M.E., and Petersen, S.E. (1997). Decreases in cerebral cortex (common blood flow changes across visual tasks). J. Cognit. Neurosci. 9: 648, https://doi.org/10.1162/jocn.1997.9.5.648.Search in Google Scholar PubMed
Sidlauskaite, J., Sonuga-Barke, E., Roeyers, H., and Wiersema, J.R. (2016). Default mode network abnormalities during state switching in attention deficit hyperactivity disorder. Psychol. Med. 46: 519–528, https://doi.org/10.1017/s0033291715002019.Search in Google Scholar
Singh, A., Erwin-Grabner, T., Sutcliffe, G., Antal, A., Paulus, W., and Goya-Maldonado, R. (2019). Personalized repetitive transcranial magnetic stimulation temporarily alters default mode network in healthy subjects. Sci. Rep. 9: 5639, https://doi.org/10.1038/s41598-019-42067-3.Search in Google Scholar PubMed PubMed Central
Smallwood, J. and Schooler, J.W. (2006). The restless mind. Psychol. Bull. 132: 946–958, https://doi.org/10.1037/0033-2909.132.6.946.Search in Google Scholar PubMed
Smigielski, L., Scheidegger, M., Kometer, M., and Vollenweider, F. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage 196: 207–215, https://doi.org/10.1016/j.neuroimage.2019.04.009.Search in Google Scholar PubMed
Smith, J.M. and Alloy, L.B. (2009). A roadmap to rumination: a review of the definition, assessment, and conceptualization of this multifaceted construct. Clin. Psychol. Rev. 29: 116–128, https://doi.org/10.1016/j.cpr.2008.10.003.Search in Google Scholar PubMed PubMed Central
Smith, V., Mitchell, D.J., and Duncan, J. (2018). Role of the default mode network in cognitive transitions. Cerebr. Cortex 28: 3685–3696, https://doi.org/10.1093/cercor/bhy167.Search in Google Scholar PubMed PubMed Central
Spreng, R.N., Mar, R.A., and Kim, A.S.N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cognit. Neurosci. 21: 489, https://doi.org/10.1162/jocn.2008.21029.Search in Google Scholar PubMed
Teasdale, J.D. (1988). Cognitive vulnerability to persistent depression. Cognit. Emot. 2: 247–274, https://doi.org/10.1080/02699938808410927.Search in Google Scholar
Thomas, K., Malcolm, B., and Lastra, D. (2017). Psilocybin-Assisted therapy: a review of a novel treatment for psychiatric disorders. J. Psychoact. Drugs 49: 446–455, https://doi.org/10.1080/02791072.2017.1320734.Search in Google Scholar
Tregellas, J.R., Wylie, K.P., Rojas, D.C., Tanabe, J., Martin, J., Kronberg, E., Cordes, D., and Cornier, M.A. (2011). Altered default network activity in obesity. Obesity 19: 2316–2321, https://doi.org/10.1038/oby.2011.119.Search in Google Scholar
Turecki, G. and Brent, D.A. (2016). Suicide and suicidal behaviour. Lancet 387: 1227–1239, https://doi.org/10.1016/s0140-6736(15)00234-2.Search in Google Scholar
Uddin, L.Q., Clare Kelly, A., Biswal, B.B., Xavier Castellanos, F., and Milham, M.P. (2009). Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30: 625–637, https://doi.org/10.1002/hbm.20531.Search in Google Scholar PubMed PubMed Central
Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., Phillips, C., Soddu, A., Luxen, A., Moonen, G., et al.. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. J. Cognit. Neurosci. 23: 570–578, https://doi.org/10.1162/jocn.2010.21488.Search in Google Scholar PubMed
Wang, K., Yu, C., Xu, L., Qin, W., Li, K., Xu, L., and Jiang, T. (2009). Offline memory reprocessing: involvement of the brain’s default network in spontaneous thought processes. PloS One 4: 1–7, https://doi.org/10.1371/journal.pone.0004867.Search in Google Scholar PubMed PubMed Central
Weissman, D.H., Roberts, K., Visscher, K., and Woldorff, M. (2006). The neural bases of momentary lapses in attention. Nat. Neurosci. 9: 971–978, https://doi.org/10.1038/nn1727.Search in Google Scholar PubMed
Whitfield-Gabrieli, S. and Ford, J.M. (2012). Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8: 49–76, https://doi.org/10.1146/annurev-clinpsy-032511-143049.Search in Google Scholar PubMed
WHO (2008). The global burden of disease: 2004 update. World Health Organisation, Geneva.Search in Google Scholar
WHO (2017). Depression and other common mental disorders. World Health Organisation, Geneva.Search in Google Scholar
Wig, G.S. (2017). Segregated systems of human brain networks. Trends Cognit. Sci. 21: 981–996, https://doi.org/10.1016/j.tics.2017.09.006.Search in Google Scholar PubMed
Yan, C.-G., Chen, X., Li, L., Castellanos, F.X., Bai, T.-J., Bo, Q.-J., Cao, J., Chen, G.M., Chen, N.X., Chen, W., et al.. (2019). Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. U.S.A. 116: 9078–9083, https://doi.org/10.1073/pnas.1900390116.Search in Google Scholar PubMed PubMed Central
Zacharias, N., Musso, F., Müller, F., Lammers, F., Saleh, A., London, M., de Boer, P., and Winterer, G. (2020). Ketamine effects on default mode network activity and vigilance: a randomized, placebo‐controlled crossover simultaneous fMRI/EEG study. Hum. Brain Mapp. 41: 107–119, https://doi.org/10.1002/hbm.24791.Search in Google Scholar PubMed PubMed Central
Zeng, L.-L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., and Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135: 1498–1507, https://doi.org/10.1093/brain/aws059.Search in Google Scholar PubMed
Zhang, B., Li, S., Zhuo, C., Li, M., Safron, A., Genz, A., Qin, W., Yu, C., and Walter, M. (2017). Altered task-specific deactivation in the default mode network depends on valence in patients with major depressive disorder. J. Affect. Disord. 207: 377–383, https://doi.org/10.1016/j.jad.2016.08.042.Search in Google Scholar PubMed
Zhou, H.-X., Chen, X., Shen, Y.-Q., Li, L., Chen, N.X., Zhu, Z.C., Castellanos, F.X., and Yan, C.G. (2020). Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. Neuroimage 206: 116287, https://doi.org/10.1016/j.neuroimage.2019.116287.Search in Google Scholar PubMed
Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., and Yao, S. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol. Psychiatr. 71: 611–617, https://doi.org/10.1016/j.biopsych.2011.10.035.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Neuronal and glial CSF biomarkers in multiple sclerosis: a systematic review and meta-analysis
- Default mode network activity in depression subtypes
- Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins
- The physiopathology of spontaneous hemorrhagic stroke: a systematic review
- COVID-19 and stroke: from the cases to the causes
- Overview of COVID-19 and neurological complications
Articles in the same Issue
- Frontmatter
- Neuronal and glial CSF biomarkers in multiple sclerosis: a systematic review and meta-analysis
- Default mode network activity in depression subtypes
- Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins
- The physiopathology of spontaneous hemorrhagic stroke: a systematic review
- COVID-19 and stroke: from the cases to the causes
- Overview of COVID-19 and neurological complications