Home Neuroprotection of hypoxic/ischemic preconditioning in neonatal brain with hypoxic-ischemic injury
Article
Licensed
Unlicensed Requires Authentication

Neuroprotection of hypoxic/ischemic preconditioning in neonatal brain with hypoxic-ischemic injury

  • Xue Fan , Huiqing Wang , Li Zhang EMAIL logo , Jun Tang , Yi Qu and Dezhi Mu
Published/Copyright: August 31, 2020
Become an author with De Gruyter Brill

Abstract

The neonatal brain is susceptible to hypoxic-ischemic injury due to its developmental characteristics. Hypoxia-ischemia means a decreased perfusion of oxygen and glucose, which can lead to severe encephalopathy. Although early initiation of therapeutic hypothermia was reported to provide neuroprotection for infants after HI, hypothermia administered alone after the acute insult cannot reverse the severe damage that already has occurred or improve the prognosis of severe hypoxic-ischemic encephalopathy. Therefore, exploring new protective mechanisms for treating hypoxic-ischemic brain damage are imperative. Until now, many studies reported the neuroprotective mechanisms of hypoxic/ischemic preconditioning in protecting the hypoxic-ischemic newborn brains. After hypoxia and ischemia, hypoxia-inducible factor signaling pathway is involved in the transcriptional regulation of many genes and is also play a number of different roles in protecting brains during hypoxic/ischemic preconditioning. Hypoxic/ischemic preconditioning could protect neonatal brain by several mechanisms, including vascular regulation, anti-apoptosis, anti-oxidation, suppression of excitotoxicity, immune regulation, hormone levels regulation, and promote cell proliferation. This review focused on the protective mechanisms underlying hypoxic/ischemic preconditioning for neonatal brain after hypoxia-ischemia and emphasized on the important roles of hypoxia inducible factor 1 signaling pathway.


Corresponding author: Li Zhang, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China, E-mail:
Xue Fan and Huiqing Wang contributed equally to this work.

Funding source: Grants from Ministry of Education of China

Funding source: Grants from Science and Technology Bureau of Sichuan Province

Funding source: National Key R & D Program of China

Award Identifier / Grant number: 2017YFA0104200

Funding source: Grant of clinical discipline program (Neonatology) from the Ministry of Health of China

Award Identifier / Grant number: 1311200003303

Funding source: Ministry of Education of the People’s Republic of China

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Science Foundation of China (No. 81971433, 81842011, 81771634, 81630038, 81300524), the National Key R & D Program of China (2017YFA0104200), the Grants from Ministry of Education of China (IRT0935), the Grants from Science and Technology Bureau of Sichuan Province (2020YFS0041, 2020YJ0236, 2016TD0002) and the Grant of clinical discipline program (Neonatology) from the Ministry of Health of China (1311200003303).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdullahi, W., Tripathi, D., and Ronaldson, P.T. (2018). Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol. 315: C343–C356, https://doi.org/10.1152/ajpcell.00095.2018.Search in Google Scholar

Alkan, T.-G.B., Vatansever, E., and Sarandöl, E. (2008). Effects of hypoxic preconditioning in antioxidant enzyme activities in hypoxic-ischemic brain damage in immature rats. Turk Neurosurg 18: 165–171, https://doi.org/10.1203/00006450-199804001-01927.Search in Google Scholar

Ara, J. and De Montpellier, S. (2013). Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain. Stem Cell Res. 11: 669–686, https://doi.org/10.1016/j.scr.2013.04.007.Search in Google Scholar

Ara, J., Fekete, S., Frank, M., Golden, J.A., Pleasure, D., and Valencia, I. (2011). Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol. Dis. 43: 473–485, https://doi.org/10.1016/j.nbd.2011.04.021.Search in Google Scholar

Bailey, D.M. (2019). Oxygen, evolution and redox signalling in the human brain; quantum in the quotidian. J. Physiol. 597: 15–28, https://doi.org/10.1113/jp276814.Search in Google Scholar

Beegle, J., Lakatos, K., Kalomoiris, S., Stewart, H., Isseroff, R.R., Nolta, J.A., and Fierro, F.A. (2015). Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cell. 33: 1818–1828, https://doi.org/10.1002/stem.1976.Search in Google Scholar

Bell, K.F., Fowler, J.H., Al-Mubarak, B., Horsburgh, K., and Hardingham, G.E. (2011). Activation of Nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxid Med Cell Longev 2011: 689524, https://doi.org/10.1155/2011/689524.Search in Google Scholar

Bergeron, M., Gidday, J.M., Yu, A.Y., Semenza, G.L., Ferriero, D.M., and Sharp, F.R. (2000). Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann. Neurol. 48: 285–296, https://doi.org/10.1002/1531-8249(200009)48:3<285::aid-ana2>3.0.co;2-8.10.1002/1531-8249(200009)48:3<285::AID-ANA2>3.0.CO;2-8Search in Google Scholar

Buonocore, G. and Groenendaal, F. (2007). Anti-oxidant strategies. Semin. Fetal Neonatal Med. 12: 287–295, https://doi.org/10.1016/j.siny.2007.01.020.Search in Google Scholar

Cantagrel, S., Krier, C., Ducrocq, S., Bodard, S., Payen, V., Laugier, J., Guilloteau, D., and Chalon, S. (2003). Hypoxic preconditioning reduces apoptosis in a rat model of immature brain hypoxia-ischaemia. Neurosci. Lett. 347: 106–110, https://doi.org/10.1016/s0304-3940(03)00525-1.Search in Google Scholar

Chen, C.Y., Sun, W.Z., Kang, K.H., Chou, H.C., Tsao, P.N., Hsieh, W.S., and Fu, W.M. (2015). Hypoxic preconditioning suppresses glial activation and neuroinflammation in neonatal brain insults. Mediat. Inflamm. 2015: 632592, https://doi.org/10.1155/2015/632592.Search in Google Scholar

Cimarosti, H., Jones, N.M., O’Shea, R.D., Pow, D.V., Salbego, C., and Beart, P.M. (2005). Hypoxic preconditioning in neonatal rat brain involves regulation of excitatory amino acid transporter 2 and estrogen receptor alpha. Neurosci. Lett. 385: 52–57, https://doi.org/10.1016/j.neulet.2005.05.006.Search in Google Scholar

Cox-Limpens, K.E., Strackx, E., Van-den-Hove, D.L., Van-Ekkendonk, J.R., Jong, M., Zimmermann, L.J., Steinbusch, H.W., Vles, J.S., and Gavilanes, A.W. (2015). Fetal asphyctic preconditioning protects against perinatal asphyxia- induced apoptosis and astrogliosis in neonatal brain. CNS Neurol. Disord. - Drug Targets 14: 33–40, https://doi.org/10.2174/1871527314666150116112032.Search in Google Scholar

Dixon, B.J., Reis, C., Ho, W.M., Tang, J., and Zhang, J.H. (2015). Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int. J. Mol. Sci. 16: 22368–22401, https://doi.org/10.3390/ijms160922368.Search in Google Scholar

Fan, X., Kavelaars, A., Heijnen, C.J., Groenendaal, F., and van-Bel, F. (2010). Pharmacological neuroprotection after perinatal hypoxic-ischemic brain injury. Curr. Neuropharmacol. 8: 324–334, https://doi.org/10.2174/157015910793358150.Search in Google Scholar

Feng, Y. and Bhatt, A.J. (2015). Corticosteroid responses following hypoxic preconditioning provide neuroprotection against subsequent hypoxic-ischemic brain injury in the newborn rats. Int. J. Dev. Neurosci. 44: 6–13, https://doi.org/10.1016/j.ijdevneu.2015.04.010.Search in Google Scholar

Feng, Y., Rhodes, P.G., and Bhatt, A.J. (2010). Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor A, preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic-ischemic model. Brain Res. 1325: 1–9, https://doi.org/10.1016/j.brainres.2010.02.029.Search in Google Scholar

Fineschi, V., Viola, R.V., La Russa, R., Santurro, A., and Frati, P. (2017). A controversial medicolegal issue: timing the onset of perinatal hypoxic-ischemic brain injury. Mediat. Inflamm. 2017: 6024959, https://doi.org/10.1155/2017/6024959.Search in Google Scholar

Francis, K.R. and Wei, L. (2010). Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 1: e22, https://doi.org/10.1038/cddis.2009.22.Search in Google Scholar

Gidday, J.M., Fitzgibbons, J.C., Shah, A.R., and Park, T.S. (1994). Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci. Lett. 168: 221–224, https://doi.org/10.1016/0304-3940(94)90455-3.Search in Google Scholar

Giusti, S. and Fiszer de-Plazas, S. (2012). Neuroprotection by hypoxic preconditioning involves upregulation of hypoxia-inducible factor-1 in a prenatal model of acute hypoxia. J. Neurosci. Res. 90: 468–478, https://doi.org/10.1002/jnr.22766.Search in Google Scholar PubMed

Gong, J., Gong, S., Zhang, M., Zhang, L., Hu, Y., Liu, Y., and Li, W. (2014). Cerebral ischemic preconditioning reduces glutamate excitotoxicity by up-regulating the uptake activity of GLT-1 in rats. Amino Acids 46: 1537–1545, https://doi.org/10.1007/s00726-014-1723-1.Search in Google Scholar PubMed

Grayson, W.L., Zhao, F., Izadpanah, R., Bunnell, B., and Ma, T. (2006). Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J. Cell. Physiol. 207: 331–339, https://doi.org/10.1002/jcp.20571.Search in Google Scholar PubMed

Gustavsson, M., Mallard, C., Vannucci, S.J., Wilson, M.A., Johnston, M.V., and Hagberg, H. (2007). Vascular response to hypoxic preconditioning in the immature brain. J. Cerebr. Blood Flow Metabol. 27: 928–938, https://doi.org/10.1038/sj.jcbfm.9600408.Search in Google Scholar PubMed

Hagberg, H., Dammann, O., Mallard, C., and Leviton, A. (2004). Preconditioning and the developing brain. Semin. Perinatol. 28: 389–395, https://doi.org/10.1053/j.semperi.2004.10.006.Search in Google Scholar PubMed

Harry, G.J. and Kraft, A.D. (2012). Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33: 191–206, https://doi.org/10.1016/j.neuro.2012.01.012.Search in Google Scholar PubMed PubMed Central

Hayes, H.B., Jayaraman, A., Herrmann, M., Mitchell, G.S., Rymer, W.Z., and Trumbower, R.D. (2014). Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology 82: 104–113, https://doi.org/10.1212/01.wnl.0000437416.34298.43.Search in Google Scholar PubMed PubMed Central

Hu, S., Dong, H.L., Li, Y.Z., Luo, Z.J., Sun, L., Yang, Q.Z., Yang, L.F., and Xiong, L. (2010). Effects of remote ischemic preconditioning on biochemical markers and neurologic outcomes in patients undergoing elective cervical decompression surgery: a prospective randomized controlled trial. J. Neurosurg. Anesthesiol. 22: 46–52, https://doi.org/10.1097/ana.0b013e3181c572bd.Search in Google Scholar PubMed

Huang, T., Huang, W., Zhang, Z., Yu, L., Xie, C., Zhu, D., Peng, Z., and Chen, J. (2014). Hypoxia-inducible factor-1alpha upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction. Neuroreport 25: 1122–1128, https://doi.org/10.1097/wnr.0000000000000236.Search in Google Scholar

Jones, N.M. and Bergeron, M. (2004). Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. J. Neurochem. 89: 157–167, https://doi.org/10.1111/j.1471-4159.2004.02324.x.Search in Google Scholar PubMed

Jones, N.M., Lee, E.M., Brown, T.G., Jarrott, B., and Beart, P.M. (2006). Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain. Neurosci. Lett. 404: 72–77, https://doi.org/10.1016/j.neulet.2006.05.049.Search in Google Scholar PubMed

Kadam, S.D., Mulholland, J.D., McDonald, J.W., and Comi, A.M. (2008). Neurogenesis and neuronal commitment following ischemia in a new mouse model for neonatal stroke. Brain Res. 1208: 35–45, https://doi.org/10.1016/j.brainres.2008.02.037.Search in Google Scholar PubMed PubMed Central

Kaelin, W.G.Jr. and Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell. 30: 393–402. https://doi.org/10.1016/j.molcel.2008.04.009.Search in Google Scholar PubMed

Koh, M.Y. and Powis, G. (2012). Passing the baton: the HIF switch. Trends Biochem. Sci. 37: 364–372, https://doi.org/10.1016/j.tibs.2012.06.004.Search in Google Scholar PubMed PubMed Central

Lai, M.C. and Yang, S.N. (2011). Perinatal hypoxic-ischemic encephalopathy. J. Biomed. Biotechnol. 2011: 609813, https://doi.org/10.1155/2011/609813.Search in Google Scholar PubMed PubMed Central

Lee, J.H., Yoon, Y.M., and Lee, S.H. (2017). Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt Axis. Int. J. Mol. Sci. 18, https://doi.org/10.3390/ijms18061320.Search in Google Scholar PubMed PubMed Central

Lee, Y.C., Chang, Y.C., Wu, C.C., and Huang, C.C. (2018). Hypoxia-preconditioned human umbilical vein endothelial cells protect against neurovascular damage after hypoxic ischemia in neonatal brain. Mol. Neurobiol. 55: 7743–7757, https://doi.org/10.1007/s12035-018-0867-5.Search in Google Scholar PubMed

Li, B., Concepcion, K., Meng, X., and Zhang, L. (2017a). Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog. Neurobiol. 159: 50–68, https://doi.org/10.1016/j.pneurobio.2017.10.006.Search in Google Scholar PubMed PubMed Central

Li, S., Hafeez, A., Noorulla, F., Geng, X., Shao, G., Ren, C., Lu, G., Zhao, H., Ding, Y., and Ji, X. (2017b). Preconditioning in neuroprotection: from hypoxia to ischemia. Prog. Neurobiol. 157: 79–91, https://doi.org/10.1016/j.pneurobio.2017.01.001.Search in Google Scholar PubMed PubMed Central

Li, Y., Yu, S.P., Mohamad, O., Genetta, T., and Wei, L. (2010). Sublethal transient global ischemia stimulates migration of neuroblasts and neurogenesis in mice. Transl Stroke Res 1: 184–196, https://doi.org/10.1007/s12975-010-0016-6.Search in Google Scholar PubMed PubMed Central

Lin, W.Y., Chang, Y.C., Ho, C.J., and Huang, C.C. (2013). Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke 44: 162–169, https://doi.org/10.1161/strokeaha.112.677617.Search in Google Scholar

Lopez-Aguilera, F., Plateo-Pignatari, M.G., Biaggio, V., Ayala, C., and Seltzer, A.M. (2012). Hypoxic preconditioning induces an AT2-R/VEGFR-2(Flk-1) interaction in the neonatal brain microvasculature for neuroprotection. Neuroscience 216: 1–9, https://doi.org/10.1016/j.neuroscience.2012.04.070.Search in Google Scholar PubMed

Millar, L.J., Shi, L., Hoerder-Suabedissen, A., and Molnar, Z. (2017). Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 11: 78, https://doi.org/10.3389/fncel.2017.00078.Search in Google Scholar PubMed PubMed Central

Minato, K., Tomimatsu, T., Mimura, K., Jugder, O., Kakigano, A., Kanayama, T., Fujita, S., Taniguchi, Y., Kanagawa, T., Endo, M., et al. (2013). Hypoxic preconditioning increases triiodothyronine (T3) level in the developing rat brain. Brain Res. 1501: 89–97, https://doi.org/10.1016/j.brainres.2013.01.036.Search in Google Scholar PubMed

Narayanan, S.V., Dave, K.R., and Perez-Pinzon, M.A. (2018). Ischemic preconditioning protects astrocytes against oxygen glucose deprivation via the nuclear erythroid 2-related factor 2 pathway. Transl Stroke Res 9: 99–109, https://doi.org/10.1007/s12975-017-0574-y.Search in Google Scholar PubMed PubMed Central

Netto, C.A., Sanches, E.F., Odorcyk, F., Duran-Carabali, L.E., and Sizonenko, S.V. (2018). Pregnancy as a valuable period for preventing hypoxia-ischemia brain damage. Int. J. Dev. Neurosci. 70: 12–24, https://doi.org/10.1016/j.ijdevneu.2018.06.004.Search in Google Scholar PubMed

Paneth, N. (2018). Hypoxia-ischemia and brain injury in infants born preterm. Dev. Med. Child Neurol. 60: 115, https://doi.org/10.1111/dmcn.13642.Search in Google Scholar PubMed

Park, S.M., Park, C.W., Lee, T.K., Cho, J.H., Park, J.H., Lee, J.C., Chen, B.H., Shin, B.N., Ahn, J.H., Tae, H.J., et al. (2016). Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia. Neural Regen Res 11: 1081–1089.10.4103/1673-5374.187039Search in Google Scholar PubMed PubMed Central

Parmar, J. and Jones, N.M. (2015). Hypoxic preconditioning can reduce injury-induced inflammatory processes in the neonatal rat brain. Int. J. Dev. Neurosci. 43: 35–42, https://doi.org/10.1016/j.ijdevneu.2015.03.010.Search in Google Scholar PubMed

Pugh, C.W. and Ratcliffe, P.J. (2017). New horizons in hypoxia signaling pathways. Exp. Cell Res. 356: 116–121, https://doi.org/10.1016/j.yexcr.2017.03.008.Search in Google Scholar PubMed PubMed Central

Qin, X., Cheng, J., Zhong, Y., Mahgoub, O.K., Akter, F., Fan, Y.Q., Aldughaim, M., Xie, Q.R., Qin, L.X., Gu, L.J., et al. (2019). Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy. Front. Mol. Neurosci. 12: 88, https://doi.org/10.3389/fnmol.2019.00088.Search in Google Scholar PubMed PubMed Central

Ramirez, J.M., Severs, L.J., Ramirez, S.C., and Agosto-Marlin, I.M. (2018). Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J. Physiol. 596: 3043–3065, https://doi.org/10.1113/jp275890.Search in Google Scholar

Rhee, C.J., da Costa, C.S., Austin, T., Brady, K.M., Czosnyka, M., and Lee, J.K. (2018). Neonatal cerebrovascular autoregulation. Pediatr. Res. 84: 602–610, https://doi.org/10.1038/s41390-018-0141-6.Search in Google Scholar PubMed PubMed Central

Sharp, F.R., Ran, R., Lu, A., Tang, Y., Strauss, K.I., Glass, T., Ardizzone, T., and Bernaudin, M. (2004). Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1: 26–35, https://doi.org/10.1602/neurorx.1.1.26.Search in Google Scholar PubMed PubMed Central

Sheldon, R.A., Lee, C.L., Jiang, X., Knox, R.N., and Ferriero, D.M. (2014). Hypoxic preconditioning protection is eliminated in HIF-1alpha knockout mice subjected to neonatal hypoxia-ischemia. Pediatr. Res. 76: 46–53, https://doi.org/10.1038/pr.2014.53.Search in Google Scholar PubMed PubMed Central

Sims, B., Clarke, M., Francillion, L., Kindred, E., Hopkins, E.S., and Sontheimer, H. (2012). Hypoxic preconditioning involves system Xc- regulation in mouse neural stem cells. Stem Cell Res. 8: 285–291, https://doi.org/10.1016/j.scr.2011.09.002.Search in Google Scholar PubMed

Sun, H.S., Xu, B.F., Chen, W.L., Xiao, A.J., Turlova, E., Alibraham, A., Barszczyk, A., Bae, C.Y.J., Quan, Y., Liu, B.S., et al. (2015). Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp. Neurol. 263: 161–171, https://doi.org/10.1016/j.expneurol.2014.10.003.Search in Google Scholar PubMed

Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R., and Zlokovic, B.V. (2019). Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99: 21–78, https://doi.org/10.1152/physrev.00050.2017.Search in Google Scholar PubMed PubMed Central

Takenouchi, T., Sugiura, Y., Morikawa, T., Nakanishi, T., Nagahata, Y., Sugioka, T., Honda, K., Kubo, A., Hishiki, T., Matsuura, T., et al. (2015). Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia. J. Cerebr. Blood Flow Metabol. 35: 794–805, https://doi.org/10.1038/jcbfm.2014.253.Search in Google Scholar PubMed PubMed Central

Tester, N.J., Fuller, D.D., Fromm, J.S., Spiess, M.R., Behrman, A.L., and Mateika, J.H. (2014). Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am. J. Respir. Crit. Care Med. 189: 57–65, https://doi.org/10.1164/rccm.201401-0089le.Search in Google Scholar

Torres-Cuevas, I., Parra-Llorca, A., Sanchez-Illana, A., Nunez-Ramiro, A., Kuligowski, J., Chafer-Pericas, C., Cernada, M., Escobar, J., and Vento, M. (2017). Oxygen and oxidative stress in the perinatal period. Redox Biol 12: 674–681, https://doi.org/10.1016/j.redox.2017.03.011.Search in Google Scholar

Tsai, C.C., Yew, T.L., Yang, D.C., Huang, W.H., and Hung, S.C. (2012). Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2: 148–159.Search in Google Scholar

Vlassaks, E., Brudek, T., Pakkenberg, B., and Gavilanes, A.W. (2014). Cerebellar cytokine expression in a rat model for fetal asphyctic preconditioning and perinatal asphyxia. Cerebellum 13: 471–478, https://doi.org/10.1007/s12311-014-0559-2.Search in Google Scholar

Webb, J.D., Coleman, M.L., and Pugh, C.W. (2009). Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell. Mol. Life Sci. 66: 3539–3554, https://doi.org/10.1007/s00018-009-0147-7.Search in Google Scholar

Wu, L.Y., Ding, A.S., Zhao, T., Ma, Z.M., Wang, F.Z., and Fan, M. (2005). Underlying mechanism of hypoxic preconditioning decreasing apoptosis induced by anoxia in cultured hippocampal neurons. Neurosignals 14: 109–116, https://doi.org/10.1159/000086293.Search in Google Scholar

Xiao, F., Fratkin, J.D., Rhodes, P.G., and Cai, Z. (2000). Reduced nitric oxide is involved in prenatal ischemia-induced tolerance to neonatal hypoxic-ischemic brain injury in rats. Neurosci. Lett. 285: 5–8, https://doi.org/10.1016/s0304-3940(00)00997-6.Search in Google Scholar

Yıldız, E.P., Ekici, B., and Tatlı, B. (2017). Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev. Neurother. 17: 449–459.10.1080/14737175.2017.1259567Search in Google Scholar PubMed

Yin, W., Signore, A.P., Iwai, M., Cao, G., Gao, Y., Johnnides, M.J., Hickey, R.W., and Chen, J. (2007). Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 38: 1017–1024, https://doi.org/10.1161/01.str.0000258102.18836.ca.Search in Google Scholar PubMed

Zhao, M., Zhu, P., Fujino, M., Zhuang, J., Guo, H., Sheikh, I., Zhao, L., and Li, X.K. (2016). Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies. Int. J. Mol. Sci. 17, https://doi.org/10.3390/ijms17122078.Search in Google Scholar PubMed PubMed Central

Zhou, D., Ding, J., Ya, J., Pan, L., Wang, Y., Ji, X., and Meng, R. (2018). Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 10: 1825–1855, https://doi.org/10.18632/aging.101527.Search in Google Scholar PubMed PubMed Central

Received: 2020-04-13
Accepted: 2020-07-30
Published Online: 2020-08-31
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0024/pdf
Scroll to top button