Home The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning
Article
Licensed
Unlicensed Requires Authentication

The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning

  • Santiago Ballaz

    Santiago Ballaz is a professor of biology at the School of Biological Sciences and Engineering of the Yachay Tech University in Ecuador. He earned his PhD degree in biological sciences at the University of Navarra (Spain). He gained his postdoctoral training at the Molecular and Behavioral Neuroscience Institute of the Michigan University (US) under the supervision of Professor Stanley J. Watson. He has also worked as staff scientist at the Centre of Molecular Pathology of the University of Lisbon (Portugal) and the Centre of Applied Medical Research of the University of Navarra (Spain).

    ORCID logo EMAIL logo
Published/Copyright: March 25, 2017
Become an author with De Gruyter Brill

Abstract

The CCK(1) receptor is a G-protein-coupled receptor activated by the sulfated forms of cholecystokinin (CCK), a gastrin-like peptide released in the gastrointestinal tract and mammal brain. A substantial body of research supports the hypothesis that CCK(1)r stimulates gallbladder contraction and pancreatic secretion in the gut, as well as satiety in brain. However, this receptor may also fulfill relevant roles in behavior, thanks to its widespread distribution in the brain. The strategic location of CCK(1)r in mesolimbic structures and specific hypothalamic and brainstem nuclei lead to complex interactions with neurotransmitters like dopamine, serotonin, and glutamate, as well as hypothalamic hormones and neuropeptides. The activity of CCK(1)r maintains adequate levels of dopamine and regulates the activity of serotonin neurons of raphe nuclei, which makes CCK(1)r an interesting therapeutic target for the development of adjuvant treatments for schizophrenia, drug addiction, and mood disorders. Unexplored functions of CCK(1)r, like the transmission of interoceptive sensitivity in addition to the regulation of hypothalamic hormones and neurotransmitters affecting emotional states, well-being, and attachment behaviors, may open exciting roads of research. The absence of specific ligands for the CCK(1) receptor has complicated the study of its distribution in brain so that research about its impact on behavior has been published sporadically over the last 30 years. The present review reunites all this body of evidence in a comprehensive way to summarize our knowledge about the actual role of CCK in the neurobiology of mental illness.

About the author

Santiago Ballaz

Santiago Ballaz is a professor of biology at the School of Biological Sciences and Engineering of the Yachay Tech University in Ecuador. He earned his PhD degree in biological sciences at the University of Navarra (Spain). He gained his postdoctoral training at the Molecular and Behavioral Neuroscience Institute of the Michigan University (US) under the supervision of Professor Stanley J. Watson. He has also worked as staff scientist at the Centre of Molecular Pathology of the University of Lisbon (Portugal) and the Centre of Applied Medical Research of the University of Navarra (Spain).

Acknowledgements

I am greatly thankful to Professor Margery Beinfeld for her critical review of the manuscript. I also thank to Jenny Andrade for her support.

References

Adamec, R.E., Shallow, T., and Budgell J. (1997). Blockade of CCK(B) but not CCK(A) receptors before and after the stress of predator exposure prevents lasting increases in anxiety-like behavior: implications for anxiety associated with posttraumatic stress disorder. Behav. Neurosci. 111, 435–449.10.1037/0735-7044.111.2.435Search in Google Scholar

Anderzhanova, E., Covasa, M., and Hajnal, A. (2007). Altered basal and stimulated accumbens dopamine release in obese OLETF rats as a function of age and diabetic status. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R603–R611.10.1152/ajpregu.00301.2007Search in Google Scholar PubMed PubMed Central

Andresen, M.C., Fawley, J.A., and Hofmann, M.E. (2013). Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Front. Neurosci. 6, 191–203.10.3389/fnins.2012.00191Search in Google Scholar PubMed PubMed Central

Bachus, S.E., Hyde, T.M., Herman, M.M., Egan, M.F., and Kleinman, J.E. (1997). Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J. Psychiatr. Res. 31, 233–256.10.1016/S0022-3956(96)00041-6Search in Google Scholar

Ballaz, S., Barber, A., Fortuño, A., Del Río, J., Martin-Martínez, M., Gómez-Monterrey, I., Herranz, R., González-Muñiz, R., and García-López, M.T. (1997). Pharmacological evaluation of IQM-95,333, a highly selective CCKA receptor antagonist with anxiolytic-like activity in animal models. Br. J. Pharmacol. 121, 759–767.10.1038/sj.bjp.0701186Search in Google Scholar PubMed PubMed Central

Ballaz, S.J., Akil, H., and Watson, S.J. (2008). The CCK-system underpins novelty-seeking behavior in the rat: gene expression and pharmacological analyses. Neuropeptides 42, 245–253.10.1016/j.npep.2008.03.001Search in Google Scholar PubMed PubMed Central

Baptista, V., Zheng, Z.L., Coleman, F.H., Rogers, R.C., and Travagli, R.A. (2005). Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J. Neurophysiol. 94, 2763–2771.10.1152/jn.00351.2005Search in Google Scholar PubMed PubMed Central

Baptista, V., Browning, K.N., and Travagli, R.A. (2007). Effect of cholecystokinin-8 in the nucleus tractus solitary of vagally deafferented rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1092–R1100.10.1152/ajpregu.00517.2006Search in Google Scholar PubMed PubMed Central

Barrett, R.W., Steffey, M.E., and Wolfram, C.A. (1989). Type-A cholecystokinin binding sites in cow brain: characterization using (-)-[3H]L364718 membrane binding assays. Mol. Pharmacol. 36, 285–290.10.1016/S0026-895X(25)09206-5Search in Google Scholar

Beglinger, C. (2002) Overview. Cholecystokinin and eating. Curr. Opin. Investig. Drugs 3, 587–588.Search in Google Scholar

Beglinger, C., Degen, L., Matzinger, D., D’Amato, M., and Drewe, J. (2001). Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1149–R1154.10.1152/ajpregu.2001.280.4.R1149Search in Google Scholar PubMed

Beinfeld, M.C. (2003). What we know and what we need to know about the role of endogenous CCK in psychostimulant sensitization. Life Sci. 73, 643–654.10.1016/S0024-3205(03)00384-9Search in Google Scholar

Beinfeld, M.C., Connolly, K., and Pierce, R.C. (2001). OLETF (Otsuka Long-Evans Tokushima Fatty) rats that lack the CCK 1(A) receptor develop less behavioral sensitization to repeated cocaine treatment than wild type LETO (Long Evans Tokushima Otsuka) rats. Peptides 22, 1285–1290.10.1016/S0196-9781(01)00453-3Search in Google Scholar

Beinfeld, M.C., Connolly, K.J., and Pierce, R.C. (2002). Cocaine treatment increases extracellular cholecystokinin (CCK) in the nucleus accumbens shell of awake, freely moving rats, an effect that is enhanced in rats that are behaviorally sensitized to cocaine. J. Neurochem. 81, 1021–1027.10.1046/j.1471-4159.2002.00894.xSearch in Google Scholar PubMed

Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A., and Maggi, G. (1997). Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71, 135–140.10.1016/S0304-3959(97)03346-0Search in Google Scholar PubMed

Benes, F.M., Burke, R.E., Walsh, J., Berretta, S., Matzilevich, D., Minns, M., and Konradi, C. (2004). Acute amygdalar activation induces an upregulation of multiple monoamine G protein coupled pathways in rat hippocampus. Mol. Psychiatry 9, 932–945.10.1038/sj.mp.4001524Search in Google Scholar PubMed

Berntson, G.G., Sarter, M., and Cacioppo, J.T. (2003). Ascending visceral regulation of cortical affective information processing. Eur. J. Neurosci. 18, 2103–2109.10.1046/j.1460-9568.2003.02967.xSearch in Google Scholar PubMed

Bi, S., Ladenheim, E.E., Schwartz, G.J., and Moran, T.H. (2001). A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R254–R260.10.1152/ajpregu.2001.281.1.R254Search in Google Scholar PubMed

Boden, P. and Woodruff, G.N. (1994). Ionic mechanisms underlying cholecystokinin action in rat brain. Ann. N. Y. Acad. Sci. USA 713, 129–137.10.1111/j.1749-6632.1994.tb44059.xSearch in Google Scholar PubMed

Boden, P.R., Woodruff, G.N., and Pinnock, R.D. (1991). Pharmacology of a cholecystokinin receptor on 5-hydroxytryptamme neurons in the dorsal raphe of the rat brain. Br. J. Pharmacol. 102, 635–638.10.1111/j.1476-5381.1991.tb12225.xSearch in Google Scholar PubMed PubMed Central

Boden, P.R., Higginbottom, M., Hill, D.R., Horwell, D.C., Hughes, J., Rees, D.C., Roberts, E., Singh, L., Suman-Chauhan, N., and Woodruff, G.N. (1993). Cholecystokinin dipeptoid antagonists: design, synthesis, and anxiolytic profile of some novel CCK-A and CCK-B selective and “mixed” CCK-A/CCK-B antagonists. J. Med. Chem. 36, 552–565.10.1021/jm00057a005Search in Google Scholar PubMed

Bourin, M., Malinge, M., Colombel, M.C., and Vasar, E. (1999). Cholecystokinin receptor agonists block the jumping behaviour precipitated in morphine-dependent mice by naloxone. Eur. Neuropsychopharmacol. 1–2, 37–43.10.1016/S0924-977X(97)00104-1Search in Google Scholar

Bradwejn, J., Koszycki, D., and Meterissian, G. (1990). Cholecystokinin-tetrapeptide induces panic attacks in patients with panic disorder. Can. J. Psychiatry 35, 83–85.10.1177/070674379003500115Search in Google Scholar

Broberger, C., Holmberg, K., Shi, T.J., Dockray, G., and Hökfelt, T. (2001). Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res. 903, 128–140.10.1016/S0006-8993(01)02468-4Search in Google Scholar

Burdyga, G., Lal, S., Spiller, D., Jiang, W., Thompson, D., Attwood, S., Saeed, S., Grundy, D., Varro, A., Dimaline, R., et al. (2003). Localization of orexin-1 receptor mn to vagal afferent neurons in the rat and humans. Gastroenterology 124, 129–139.10.1053/gast.2003.50020Search in Google Scholar

Cáceda, R., Kinkead, B., and Nemeroff, C.B. (2007). Involvement of neuropeptide systems in schizophrenia: human studies. Int. Rev. Neurobiol. 78, 327–376.10.1016/S0074-7742(06)78011-4Search in Google Scholar

Cao, B., Zhang, X., Yan, N., Chen, S., and Li, Y. (2012). Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats. Mol. Brain 5, 19.10.1186/1756-6606-5-19Search in Google Scholar

Carpenter, M.B. and Sutin, J. (1983). Human neuroanatomy (Baltimore, MD: Williams & Wilkins).Search in Google Scholar

Carter, C.S. (2014). Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 65, 17–39.10.1146/annurev-psych-010213-115110Search in Google Scholar

Charrier, D., Dangoumau, L., Puech, A.J., Hamon, M., Thiébot, M.H. (1995). Failure of CCK receptor ligands to modify anxiety-related behavioural suppression in an operant conflict paradigm in rats. Psychopharmacology (Berlin) 121, 127–134.10.1007/BF02245599Search in Google Scholar

Christoforou, A., Le Hellard, S., Thomson, P.A., Morris, S.W., Tenesa, A., Pickard, B.S., Wray, N.R., Muir, W.J., Blackwood, D.H., Porteous, D.J., et al. (2007). Association analysis of the chromosome 4p15-p16 candidate region for bipolar disorder and schizophrenia. Mol. Psychiatry. 12, 1011–1025.10.1038/sj.mp.4002003Search in Google Scholar

Cohen, H., Kaplan, Z., and Kotler, M. (1999). CCK-antagonists in a rat exposed to acute stress: implications for anxiety associated with post-traumatic stress disorder. Depress Anxiety 10, 8–17.10.1002/(SICI)1520-6394(1999)10:1<8::AID-DA2>3.3.CO;2-RSearch in Google Scholar

Cohen, H., Kaplan, Z., Matar, M.A., Buriakovsky, I., Bourin, M., and Kotler, M. (2004). Different pathways mediated by CCK1 and CCK2 receptors: effect of intraperitoneal mRNA antisense oligodeoxynucleotides to cholecystokinin on anxiety-like and learning behaviors in rats. Depress Anxiety 20, 139–152.10.1002/da.20032Search in Google Scholar

Cosen-Binker, L.I., Binker, M.G., Negri, G., and Tiscornia, O. (2004). Influence of stress in acute pancreatitis and correlation with stress-induced gastric ulcer. Pancreatology 4, 470–484.10.1159/000079956Search in Google Scholar PubMed

Costall, B. and Naylor, R.J. (1997). The influence of 5-HT2 and 5-HT4 receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test. Br. J. Pharmacol. 122, 1105–1118.10.1038/sj.bjp.0701513Search in Google Scholar PubMed PubMed Central

Covasa, M. and Ritter, R.C. (2005). Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors. Brain Res. 1051, 155–163.10.1016/j.brainres.2005.06.003Search in Google Scholar PubMed

Crawley, J.N. (1992). Subtype-selective cholecystokinin receptor antagonists block cholecystokinin modulation of dopamine-mediated behaviors in the rat mesolimbic pathway. J. Neurosci. 12, 3380–3391.10.1523/JNEUROSCI.12-09-03380.1992Search in Google Scholar PubMed PubMed Central

Crespi, F. (1998). The role of cholecystokinin (CCK),CCK-Aor CCK-B receptor antagonists in the spontaneous preference for drugs of abuse (alcohol or cocaine) in naive rats. Methods Find. Exp. Clin. Pharmacol. 20, 679–697.10.1358/mf.1998.20.8.487502Search in Google Scholar PubMed

Crespi, F., Corsi, M., England, T., Ratti, E., Trist, D.G., and Gaviraghi, G. (1997). Spontaneous preference for ethanol in naive rats is influenced by cholecystokinin A receptor antagonism. Alcohol 14, 327–332.10.1016/S0741-8329(96)00179-6Search in Google Scholar PubMed

Crespi, F., Corsi, M., Reggianni, A., Ratti, E., and Gaviraghi, G. (2000). Involvement of the cholecystokinin within craving for cocaine: role of cholecystokinin receptor ligands. Exp. Opin. Invest. Drugs 9, 2249–2258.10.1517/13543784.9.10.2249Search in Google Scholar PubMed

Daugé, V., Dor, A., Féger, J., and Roques, B.P. (1989a). The behavioral effects of CCK8 injected into the medial nucleus accumbens are dependent on the motivational state of the rat. Eur. J. Pharmacol. 163, 25–32.10.1016/0014-2999(89)90391-9Search in Google Scholar PubMed

Daugé, V., Steimes, P., Derrien, M., Beau, N., Roques, B.P., and Féger, J. (1989b). CCK8 effects on motivational and emotional states of rats involve CCKA receptors of the postero-median part of the nucleus accumbens. Pharmacol. Biochem. Behav. 34, 157–163.10.1016/0091-3057(89)90367-5Search in Google Scholar PubMed

Day, H.E., McKnight, A.T., Poat, J.A., and Hughes, J. (1994). Evidence that cholecystokinin induces immediate early gene expression in the brainstem, hypothalamus and amygdala of the rat by a CCKA receptor mechanism. Neuropharmacology. 33, 719–727.10.1016/0028-3908(94)90111-2Search in Google Scholar PubMed

De Sousa, N.J., Wunderlich, G.R., De Cabo, C., and Vaccarino, F.J. (1999). The expression of behavioral sensitization to amphetamine: role of CCK(A) receptors. Pharmacol. Biochem. Behav. 62, 31–37.10.1016/S0091-3057(98)00107-5Search in Google Scholar PubMed

Derrien, M., Durieux, C., Daugé, V., and Roques, B.P. (1993). Involvement of D2 dopaminergic receptors in the emotional and motivational responses induced by injection of CCK-8 in the posterior part of the rat nucleus accumbens. Brain Res. 617, 181–188.10.1016/0006-8993(93)91084-6Search in Google Scholar PubMed

Dockray, G.J. (1980). Cholecystokinins in rat cerebral cortex: identification, purification and characterization by immunochemical methods. Brain Res. 188, 155–165.10.1016/0006-8993(80)90564-8Search in Google Scholar PubMed

Dockray, G.J. (2012). Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes. 19, 8–12.10.1097/MED.0b013e32834eb77dSearch in Google Scholar PubMed

Dumbrille-Ross, A. and Seeman, P. (1984). Dopamine receptor elevation by cholecystokinin. Peptides. 5, 1207–1212.10.1016/0196-9781(84)90189-XSearch in Google Scholar PubMed

Farook, J.M., Zhu, Y.Z., Wang, Q., Moochhala, S.M., Lee, L., and Wong, PT. (2004). Analysis of strain difference in behavior to cholecystokinin (CCK) receptor mediated drugs in PVG hooded and Sprague-Dawley rats using elevated plus-maze test apparatus. Neurosci. Lett. 358, 215–219.10.1016/j.neulet.2004.01.027Search in Google Scholar PubMed

Feifel, D., Priebe, K., and Shilling, P.D. (2001). Startle and sensorimotor gating in rats lacking CCK-A receptors. Neuropsychopharmacology. 24, 663–670.10.1016/S0893-133X(00)00235-9Search in Google Scholar PubMed

Feifel, D., Shilling, P.D., Kuczenski, R., and Segal, D.S. (2003). Altered extracellular dopamine concentration in the brains of cholecystokinin-A receptor deficient rats. Neurosci. Lett. 348, 147–150.10.1016/S0304-3940(03)00767-5Search in Google Scholar PubMed

Felicio, L.F., Mazzini, B.K., Cacheiro, R.G., Cruz, TN., Flório, J.C., and Nasello, A.G. (2001). Stimulation of either cholecystokinin receptor subtype reduces while antagonists potentiate or sensitize a morphine-induced excitatory response. Peptides 22, 1299–1304.10.1016/S0196-9781(01)00455-7Search in Google Scholar

Feng, T., Yang, S., Wen, D., Sun, Q., Li, Y., Ma, C., and Cong, B. (2014). Stress-induced enhancement of fear conditioning activates the amygdalar cholecystokinin system in a rat model of post-traumatic stress disorder. Neuroreport 25, 1085–1090.10.1097/WNR.0000000000000232Search in Google Scholar PubMed

Fried, M. and Feinle, C. (2002). The role of fat and cholecystokinin in functional dyspepsia. Gut 51(Suppl 1), i54–i57.10.1136/gut.51.suppl_1.i54Search in Google Scholar PubMed PubMed Central

Gerhardt, P., Voits, M., Fink, H., and Huston, J.P. (1994). Evidence for mnemotropic action of cholecystokinin fragments Boc-CCK-4 and CCK-8S. Peptides 15, 689–697.10.1016/0196-9781(94)90097-3Search in Google Scholar PubMed

Giacobini, P., Kopin, A.S., Beart, P.M., Mercer, L.D., Fasolo, A., and Wray, S. (2004). Cholecystokinin modulates migration of gonadotropin-releasing hormone-1 neurons. J. Neurosci. 24, 4737–4748.10.1523/JNEUROSCI.0649-04.2004Search in Google Scholar PubMed PubMed Central

Godukhin, O., You, Z.B., Herrera-Marschitz, M., Goiny, M., Pettersson, E., Hökfelt, T., and Ungerstedt, U. (1995). Effect of local cholecystokinin-8 administration on extracellular levels of amino acids and glycolytic products monitored by in vivo microdialysis in the fronto-parietal cortex of the rat. Neurosci. Lett. 194, 29–32.10.1016/0304-3940(95)11711-5Search in Google Scholar PubMed

Gracey, D.J., Bell, R., and King, D.J. (2002). Differential effects of the CCKA receptor ligands PD-140,548 and A-71623 on latent inhibition in the rat. Prog Neuropsychopharmacol. Biol. Psychiatry. 26, 497–504.10.1016/S0278-5846(01)00296-2Search in Google Scholar

Graham, W.C., Hill, D.R., Woodruff, G.N., Sambrook, M.A., and Crossman, A.R. (1991). Reduction of [125I]Bolton Hunter CCK8 and [3H]MK-329 (devazepide) binding to CCK receptors in the substantia nigra/VTA complex and its forebrain projection areas following MPTP-induced hemi-parkinsonism in the monkey. Neurosci. Lett. 131, 129–134.10.1016/0304-3940(91)90353-USearch in Google Scholar PubMed

Gronier, B. and Debonnel, G. (1996). Electrophysiological evidence for the implication of cholecystokinin in the modulation of the N-methyl-d-aspartate response by sigma ligands in the rat CA3 dorsal hippocampus. Naunyn-Schmiedeberg’s Arch. Pharmacol. 353, 382–390.10.1007/BF00261434Search in Google Scholar PubMed

Gué, M., Tekamp, A., Tabis, N., Junien, J.L., and Buéno, L. (1994). Cholecystokinin blockade of emotional stress- and CRF-induced colonic motor alterations in rats: role of the amygdala. Brain Res. 658, 232–238.10.1016/S0006-8993(09)90030-0Search in Google Scholar PubMed

Guevara-Guzman, R., Lévy, F., Jean, A., and Nowak, R. (2005). Electrophysiological responses of nucleus of tractus solitarious neurons to CCK and gastric distension in newborn lambs. Cell. Mol. Neurobiology. 25, 393–406.10.1007/s10571-005-3066-7Search in Google Scholar PubMed

Haley, G.E. and Flynn, F.W. (2008). Tachykinin neurokinin 3 receptor signaling in cholecystokinin-elicited release of oxytocin and vasopressin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1760–1767.10.1152/ajpregu.00033.2008Search in Google Scholar PubMed

Hamilton, M.E. and Freeman, A.S. (1995). Effects of administration of cholecystokinin into the VTA on DA overflow in nucleus accumbens and amygdala of freely moving rats. Brain Res. 688, 134–142.10.1016/0006-8993(95)00518-USearch in Google Scholar

Harro, J. and Vasar, E. (1991). Cholecystokinin-induced anxiety: how is it reflected in studies on exploratory behaviour? Neurosci. Biobehav. Rev. 15, 473–477.10.1016/S0149-7634(05)80134-4Search in Google Scholar PubMed

Hashimoto, H., Onaka, T., Kawasaki, M., Chen, L., Mera, T., Soya, A., Saito, T., Fujihara, H., Sei, H., Morita, Y., et al. (2005). Effects of cholecystokinin (CCK)-8 on hypothalamicoxytocin-secreting neurons in rats lacking CCK-A receptor. Auton. Neurosci. 121, 16–25.10.1016/j.autneu.2005.05.002Search in Google Scholar PubMed

Hebb, A.L., Zacharko, R.M., Dominguez, H., Trudel, F., Laforest, S., and Drolet, G. (2002). Odor-induced variation in anxiety-like behavior in mice is associated with discrete and differential effects on mesocorticolimbic cholecystokinin mRNA expression. Neuropsychopharmacology. 27, 744–755.10.1016/S0893-133X(02)00354-8Search in Google Scholar PubMed

Hendrie, C.A., Neill, J.C., Sheperd, J.K., and Dourish, C.T. (1993). The effects of CCKA and CCKB antagonists on activity in the black/white exploration model of anxiety in mice. Physiol. Behav. 54, 689–693.10.1016/0031-9384(93)90077-SSearch in Google Scholar

Hernandez-Gómez, A.M., Aguilar-Roblero, R., and Pérez de la Mora, M. (2002). Role of cholecystokinin-A and cholecystokinin-B receptors in anxiety. Amino Acids 23, 283–290.10.1007/s00726-001-0139-xSearch in Google Scholar PubMed

Hernando, F., Fuentes, J.A., and Ruiz-Gayo, M. (1996). Impairment of stress adaptive behaviours in rats by the CCKA receptor antagonist, devazepide. Br. J. Pharmacol. 118, 400–406.10.1111/j.1476-5381.1996.tb15416.xSearch in Google Scholar PubMed PubMed Central

Higgins, G.A., Joharchi, N., Wang, Y., Corrigall, W.A., and Sellers, E.M. (1994). The CCKA receptor antagonist devazepide does not modify opioid self-administration or drug discrimination: comparison with the dopamine antagonist haloperidol. Brain Res. 640, 246–254.10.1016/0006-8993(94)91880-5Search in Google Scholar PubMed

Hill, D.R., Campbell, N.J., Shaw, T.M., and Woodruff, G.N. (1987). Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J. Neurosci. 7, 2967–2976.10.1523/JNEUROSCI.07-09-02967.1987Search in Google Scholar PubMed PubMed Central

Hill, D.R., Shaw, T.M., Dourish, C.T., and Woodruff, G.N. (1988a). CCK-A receptors in the rat interpeduncular nucleus: evidence for a presynaptic location. Brain Res. 454, 101–105.10.1016/0006-8993(88)90807-4Search in Google Scholar PubMed

Hill, D.R., Shaw, T.M., and Woodruff, G.N. (1988b). Binding sites for 125I-cholecystokinin in primate spinal cord are of the CCK-A subclass. Neurosci. Lett. 89, 133–139.10.1016/0304-3940(88)90369-2Search in Google Scholar PubMed

Hill, D.R. and Woodruff, G.N. (1990a). Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365,260. Brain Res. 526, 276–283.10.1016/0006-8993(90)91232-6Search in Google Scholar PubMed

Hill, D.R., Shaw, T.M., Graham, W., and Woodruff, G.N. (1990b). Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125I-Bolton Hunter CCK-8 and 3H-MK-329. J. Neurosci. 10, 1070–1081.10.1523/JNEUROSCI.10-04-01070.1990Search in Google Scholar PubMed PubMed Central

Hökfelt, T., Rehfeld, J.F., Skirboll, L., Ivemark, B., Goldstein, M., and Markey, K. (1980). Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature 285, 476–478.10.1038/285476a0Search in Google Scholar PubMed

Hökfelt, T., Skirboll, L., Everitt, B., Meister, B., Brownstein, M., Jacobs, T., Faden, A., Kuga, S., Goldstein, M., Markstein, R., et al. (1985). Distribution of cholecystokinin-like immunoreactivity in the nervous system. Co-existence with classical neurotransmitters and other neuropeptides. Ann. NY Acad. Sci. 448, 255–274.10.1111/j.1749-6632.1985.tb29922.xSearch in Google Scholar PubMed

Honda, T., Wada, E., Battey, J.F., and Wank, S.A. (1993). Differential gene expression of CCK(A) and CCK(B) receptors in the rat brain. Mol. Cell. Neurosci. 4, 143–154.10.1006/mcne.1993.1018Search in Google Scholar PubMed

Hsu, L.T., Hung, K.Y., Wu, H.W., Liu, W.W., She, M.P., Lee, T.C., Sun, C.H., Yu, W.H., Buret, A.G., and Yu, L.C. (2016). Gut-derived cholecystokinin contributes to visceral hypersensitivity via nerve growth factor-dependent neurite outgrowth. J. Gastroenterol. Hepatol. 31, 1594–1603.10.1111/jgh.13296Search in Google Scholar PubMed

Hurwitz, I., Malkesman, O., Stern, Y., Schroeder, M., Lavi-Avnon, Y., Shayit, M., Shavit, Y., Wolf, G., Yirmiya, R., and Weller, A. (2006). Stress and pain responses in rats lacking CCK1 receptors. Peptides 27, 1483–1489.10.1016/j.peptides.2005.10.009Search in Google Scholar PubMed

Hussain, R.J., Taraschenko, O.D., and Glick, S.D. (2008). Effects of nicotine, methamphetamine and cocaine on extracellular levels of acetylcholine in the interpeduncular nucleus of rats. Neurosci. Lett. 440, 270–274.10.1016/j.neulet.2008.06.001Search in Google Scholar PubMed PubMed Central

Huston, J.P., Schildein, S., Gerhardt, P., Privou, C., Fink, H., and Hasenöhrl, R.U. (1998). Modulation of memory, reinforcement and anxiety parameters by intra-amygdala injection of cholecystokinin-fragments Boc-CCK-4 and CCK-8s. Peptides 19, 27–37.10.1016/S0196-9781(97)00270-2Search in Google Scholar PubMed

Innis, R.B. and Snyder, S. (1980). Distinct cholecystokinin receptors in brain and pancreas. Proc. Natl. Acad. Sci. USA 77, 6917–6921.10.1073/pnas.77.11.6917Search in Google Scholar PubMed PubMed Central

Ise, K., Akiyoshi, J., Horinouchi, Y., Tsutsumi, T., Isogawa, K., and Nagayama, H. (2003). Association between the CCK-A receptor gene and panic disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 118B, 29–31.10.1002/ajmg.b.10020Search in Google Scholar PubMed

Ishak, W.W., Kahloon, M., and Fakhry, H. (2011). Oxytocin role in enhancing well-being: a literature review. J. Affect. Disord. 130, 1–9.10.1016/j.jad.2010.06.001Search in Google Scholar PubMed

Josselyn, S.A., De Cristofaro, A., and Vaccarino, F.J. (1997). Evidence for CCK(A) receptor involvement in the acquisition of conditioned activity produced by cocaine in rats. Brain Res. 763, 93–102.10.1016/S0006-8993(97)00410-1Search in Google Scholar PubMed

Kelland, M.D., Zhang, J., Chiodo, L.A., and Freeman, A.S. (1991). Receptor selectivity of cholecystokinin effects on mesoaccumbens dopamine neurons. Synapse 8, 137–143.10.1002/syn.890080207Search in Google Scholar PubMed

Kennedy, J.L., Bradwejn, J., Koszycki, D., King, N., Crowe, R., Vincent, J., and Fourie, O. (1999). Investigation of cholecystokinin system genes in panic disorder. Mol. Psychiatry 4, 284–285.10.1038/sj.mp.4000507Search in Google Scholar PubMed

King, S.O., 2nd, and Williams, C.L. (2009). Novelty-induced arousal enhances memory for cued classical fear conditioning: interactions between peripheral adrenergic and brainstem glutamatergic systems. Learn Mem. 16, 625–634.10.1101/lm.1513109Search in Google Scholar PubMed

Koefoed, P., Hansen, T.V., Woldbye, D.P., Werge, T., Mors, O., Hansen, T., Jakobsen, K.D., Nordentoft, M., Wang, A., Bolwig, T.G., et al. (2009). An intron 1 polymorphism in the cholecystokinin-A receptor gene associated with schizophrenia in males. Acta Psychiatr. Scand. 120, 281–287.10.1111/j.1600-0447.2009.01400.xSearch in Google Scholar PubMed

Kõks, S., Nikopensius, T., Koido, K., Maron, E., Altmäe, S., Heinaste, E., Vabrit, K., Tammekivi, V., Hallast, P., Kurg, A., et al. (2006). Analysis of SNP profiles in patients with major depressive disorder. Int. J. Neuropsychopharmacol. 9, 167–174.10.1017/S1461145705005468Search in Google Scholar PubMed

Koshikawa, N., Kikuchi de Beltrán, K., Saigusa, T., Kobayashi, M., and Stephenson, J.D. (1991). Cholecystokinin octapeptide and caerulein injection into the dorsomedial nucleus accumbens potentiate apomorphine-induced jaw movements in rats. Eur. J. Pharmacol. 209, 75–80.10.1016/0014-2999(91)90013-GSearch in Google Scholar PubMed

Kramer, M.S., Cutler, N.R., Ballenger, J.C., Patterson, W.M., Mendels, J., Chenault, A., Shrivastava, R., Matsura-Wolfe, D., Lines, C., and Reines, S. (1995). A placebo-controlled trial of L-365,260, a CCKB antagonist, in panic disorder. Biol. Psychiatry. 37, 462–466.10.1016/0006-3223(94)00190-ESearch in Google Scholar PubMed

Ladurelle, N., Durieux, C., Roques, B.P., and Daugé, V. (1994). Different modifications of the dopamine metabolism in the core and shell parts of the nucleus accumbens following CCK-A receptor stimulation in the shell region. Neurosci. Lett. 178, 5–10.10.1016/0304-3940(94)90276-3Search in Google Scholar PubMed

Ladurelle, N., Roques, B., and Daugé, V. (1995). The transfer of rats from a familiar to a novel environment prolongs the Increase of extracellular dopamine efflux induced by CCK8 in the posterior nucleus accumbens. J. Neurosci. 15, 3118–3127.10.1523/JNEUROSCI.15-04-03118.1995Search in Google Scholar PubMed PubMed Central

Lattmann, E., Sattayasai, J., Boonprakob, Y., Singh, H., Lattmann, P., and Dunn, S. (2008). Cholecystokinin antagonists (part 1): antinociceptive, anxiolytic and antidepressant effects of N-(5-methyl-3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-N’-phenylureas and carboxamides. Drug Discov. Ther. 2, 156–167.Search in Google Scholar

Lavi-Avnon, Y., Malkesman, O., Hurwitz, I., and Weller, A. (2004). Mother-infant interactions in rats lacking CCK(A) receptors. Behav. Neurosci. 118, 282–289.10.1037/0735-7044.118.2.282Search in Google Scholar PubMed

Legido, A., Adler, M.W., Karkanias, C., Geller, E.B., Bradley, E., Greenstein, J.I., and Grover, W.D. (1995). Cholecystokinin potentiates morphine anticonvulsant action through both CCK-A and CCK-B receptors. Neuropeptides 28, 107–113.10.1016/0143-4179(95)90082-9Search in Google Scholar PubMed

Lemaire, M., Böhme, G.A., Piot, O., Roques, B.P., and Blanchard, J.C. (1994). CCK-A and CCK-B selective receptor agonists and antagonists modulate olfactory recognition in male rats. Psychopharmacology (Berl) 115, 435–440.10.1007/BF02245565Search in Google Scholar PubMed

Li, H., Ohta, H., Izumi, H., Matsuda, Y., Seki, M., Toda, T., Akiyama, M., Matsushima, Y., Goto, Y., Kaga, M., and Inagaki, M. (2013). Behavioral and cortical EEG evaluations confirm the roles of both CCKA and CCKB receptors in mouse CCK-induced anxiety. Behav. Brain Res. 237, 325–332.10.1016/j.bbr.2012.09.051Search in Google Scholar PubMed

Lin, J.Y., Li, C.S., and Pan, J.T. (1993). Effects of various neuroactive substances on single-unit activities of hypothalamic arcuate neurons in brain slices. Brain Res. Bull. 31, 587–594.10.1016/0361-9230(93)90127-WSearch in Google Scholar

Lodge, D.J. and Lawrence, A.J. (2001). Comparative analysis of the central CCK system in Fawn Hooded and Wistar Kyoto rats: extended localization of CCK-A receptors throughout the rat brain using a novel radioligand. Regul. Pept. 99, 191–201.10.1016/S0167-0115(01)00256-7Search in Google Scholar

Lodge, D.J., Short, J.L., Mercer, L.D., Beart, P.M., and Lawrence, A.J. (2000). CCK/dopamine interactions in Fawn-Hooded and Wistar-Kyoto rat brain. Peptides. 21, 379–386.10.1016/S0196-9781(00)00159-5Search in Google Scholar PubMed

Matsushita, H., Akiyoshi, J., Kai, K., Ishii, N., Kodama, K., Tsutsumi, T., Isogawa, K., and Nagayama, H. (2003). Spatial memory impairment in OLETF rats without cholecystokinin-a receptor. Neuropeptides 37, 271–276.10.1016/S0143-4179(03)00083-0Search in Google Scholar PubMed

Matto, V., Harro, J., and Allikmets, L. (1997). The effects of cholecystokinin A and B receptor antagonists on exploratory behaviour in the elevated zero-maze in rat. Neuropharmacology. 36, 389–396.10.1016/S0028-3908(97)00011-7Search in Google Scholar

Mercer, L.D. and Beart, P.M. (1997). Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokinin A receptor. Neurosci. Lett. 225, 97–100.10.1016/S0304-3940(97)00197-3Search in Google Scholar PubMed

Mercer, L.D. and Beart, P.M. (2004). Immunolocalization of CCK1R in rat brain using a new anti-peptide antibody. Neurosci. Lett. 359, 109–113.10.1016/j.neulet.2004.01.045Search in Google Scholar PubMed

Millington, W.R., Mueller, G.P., and Lavigne, G.J. (1992). Cholecystokinin type A and type B receptor antagonists produce opposing effects on cholecystokinin-stimulated beta-endorphin secretion from the rat pituitary. J. Pharmacol. Exp. Ther. 261, 454–461.10.1016/S0022-3565(25)11060-4Search in Google Scholar

Minabe, Y., Ashby, C.R., Jr., and Wang, R.Y. (1991). The CCK-A receptor antagonist devazepide but not the CCK-B receptor antagonist L-365,260 reverses the effects of chronic clozapine and haloperidol on midbrain dopamine neurons. Brain Res. 549, 151–154.10.1016/0006-8993(91)90612-YSearch in Google Scholar

Minato, T., Tochigi, M., Kato, N., and Sasaki, T. (2007). Association study between the cholecystokinin A receptor gene and schizophrenia in the Japanese population. Psychiatr. Genet. 17, 117–119.10.1097/YPG.0b013e328011c02eSearch in Google Scholar PubMed

Mitchell, V.A., Jeong, H.J., Drew, G.M., and Vaughan, C.W. (2011). Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray. Neuropsychopharmacology 36, 1801–1810.10.1038/npp.2011.59Search in Google Scholar PubMed PubMed Central

Miyasaka, K., Kobayashi, S., Ohta, M., Kanai, S., Yoshida, Y., Nagata, A., Matsui, T., Noda, T., Takiguchi, S., Takata, Y., et al. (2002). Anxiety-related behaviors in cholecystokinin-A, B, and AB receptor gene knockout mice in the plus-maze. Neurosci. Lett. 335, 115–118.10.1016/S0304-3940(02)01176-XSearch in Google Scholar PubMed

Miyasaka, K., Yoshida, Y., Matsushita, S., Higuchi, S., Maruyama, K., Niino, N., Ando, F., Shimokata, H., Ohta, S., and Funakoshi, A. (2004). Association of cholecystokinin-A receptor gene polymorphism with alcohol dependence in a Japanese population. Alcohol Alcohol. 39, 25–28.10.1093/alcalc/agh002Search in Google Scholar PubMed

Miyasaka, K., Hosoya, H., Takano, S., Ohta, M., Sekime, A., Kanai, S., Matsui, T., and Funakoshi, A. (2005). Differences in ethanol ingestion between cholecystokinin-A receptor deficient and -B receptor deficient mice. Alcohol Alcohol. 40, 176–180.10.1093/alcalc/agh143Search in Google Scholar PubMed

Mönnikes, H., Lauer, G., and Arnold, R. (1997). Peripheral administration of cholecystokinin activates c-fos expression in the locus coeruleus/subcoeruleus nucleus, dorsal vagal complex and paraventricular nucleus via capsaicin-sensitive vagal afferents and CCK-A receptors in the rat. Brain Res. 770, 277–288.10.1016/S0006-8993(97)00865-2Search in Google Scholar

Moran, T.H., Robinson, P., Goldrich, M.S., and McHugh, P. (1986). Two brain cholecystokinin receptors: Implications for behavioural actions. Brain Res. 362, 175–179.10.1016/0006-8993(86)91413-7Search in Google Scholar PubMed

Mussa, B.M., Sartor, D.M., Verberne, A.J. (2010). Dorsal vagal preganglionic neurons: differential responses to CCK1 and 5-HT3 receptor stimulation. Auton. Neurosci. 156, 36–43.10.1016/j.autneu.2010.03.001Search in Google Scholar PubMed

Nakamura, H., Kihara, Y., Tashiro, M., Kanagawa, K., Shirohara, H., Yamamoto, M., Yoshikawa, H., Fukumitsu, K., Hirohata, Y., and Otsuki, M. (1998). Defects of cholecystokinin (CCK)-A receptor gene expression and CCK-A receptor-mediated biological functions in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. J. Gastroenterol. 33, 702–709.10.1007/s005350050158Search in Google Scholar PubMed

Nikolaus, S., Huston, J.P., Körber, B., Thiel, C., and Schwarting, R.K. (1997). Pretreatment with neurokinin substance P but not with cholecystokinin-8S can alleviate functional deficits of partial nigrostriatal 6-hydroxydopamine lesion. Peptides 18, 1161–1168.10.1016/S0196-9781(97)00181-2Search in Google Scholar PubMed

Nishikawa, T., Fage, D., and Scatton, B. (1986). Evidence for, and nature of, the tonic inhibitory influence of habenulo interpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res. 373, 324–336.10.1016/0006-8993(86)90347-1Search in Google Scholar PubMed

Nishimura, S., Bilgüvar, K., Ishigame, K., Sestan, N., Günel, M., and Louvi, A. (2015). Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS One 10, e0124295.10.1371/journal.pone.0124295Search in Google Scholar PubMed PubMed Central

Noble, F., Smadja, C., and Roques, B.P. (1994). Role of endogenous cholecystokinin in the facilitation of mu-mediated antinociception by delta-opioid agonists. J. Pharmacol. Exp. Ther. 271, 1127–1134.10.1016/S0022-3565(25)23990-8Search in Google Scholar

Nowak, R., Breton, G., and Mellot, E. (2001). CCK and development of mother preference in sheep: a neonatal time course study. Peptides 22, 1309–1316.10.1016/S0196-9781(01)00457-0Search in Google Scholar PubMed

Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., and Beste, C. (2013). Cholecystokinin A receptor (CCKAR) gene variation is associated with language lateralization. PLoS One 8, e53643.10.1371/journal.pone.0053643Search in Google Scholar PubMed PubMed Central

Parks, G.S., Wang, L., Wang, Z., and Civelli, O. (2014). Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp. Neurol. 522, 3817–3833.10.1002/cne.23642Search in Google Scholar PubMed PubMed Central

Petkova-Kirova, P., Giovannini, M.G., Kalfin, R., and Rakovska, A. (2012). Modulation of acetylcholine release by cholecystokininin striatum: receptor specificity; role of dopaminergic neuronal activity. Brain Res. Bull. 89, 177–184.10.1016/j.brainresbull.2012.08.009Search in Google Scholar PubMed

Pettit, H.O. and Mueller, K. (1989). Infusions of cholecystokinin octapeptide into the ventral tegmental area potentiate amphetamine conditioned place preferences. Psychopharmacology 99, 423–426.10.1007/BF00445571Search in Google Scholar PubMed

Phillips, G.D., Le Noury, J., Wolterink, G., Donselaar-Wolterink, I., Robbins, T.W., and Everitt, B.J. (1993). Cholecystokinin-dopamine interactions within the nucleus accumbens in the control over behaviour by conditioned reinforcement. Behav. Brain Res. 55, 223–231.10.1016/0166-4328(93)90118-ASearch in Google Scholar

Price, C.J., Hoyda, T.D., and Fergurson, A.V. (2011). The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 14, 182–194.10.1177/1073858407311100Search in Google Scholar PubMed

Rex, A. and Fink, H. (1998). Effects of cholecystokinin-receptor agonists on cortical 5-HT release in guinea pigs on the X-maze. Peptides 19, 519–526.10.1016/S0196-9781(97)00454-3Search in Google Scholar

Rinaman, L., Banihashemi, L., and Koehnle, T.J. (2011). Early life experience shapes the functional organization of stress-responsive visceral circuits. Physiol. Behav. 104, 632–640.10.1016/j.physbeh.2011.04.008Search in Google Scholar PubMed PubMed Central

Robinson, T.E. and Berridge, K.C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291.10.1016/0165-0173(93)90013-PSearch in Google Scholar

Rotzinger, S. and Vaccarino, F.J. (2003). Cholecystokinin receptor subtypes: role in the modulation of anxiety-related and reward-related behaviours in animal models. J. Psychiat. Neurosci. 28, 171–181.Search in Google Scholar

Rotzinger, S., Bush, D.E., and Vaccarino, F.J. (2002). Cholecystokinin modulation of mesolimbic dopamine function: regulation of motivated behaviour. Pharmacol. Toxicol. 91, 404–413.10.1034/j.1600-0773.2002.910620.xSearch in Google Scholar PubMed

Rout, J.K., Dasgupta, A., Singh, O., Banerjee, U., and Basu, A. (2015). Association of single-nucleotide polymorphism of cholecystokinin receptor A gene with schizophrenia in Eastern Indian population. Indian J. Psychiatry. 57, 267–271.10.4103/0019-5545.166634Search in Google Scholar PubMed PubMed Central

Ruiz-Gayo, M., Garrido, M.M., and Fuentes, J.A. (2000). Inhibition of the hypothalamic-pituitary-adrenal axis in food-deprived rats by a CCK-A receptor antagonist. Br. J. Pharmacol. 129, 839–842.10.1038/sj.bjp.0703117Search in Google Scholar PubMed PubMed Central

Saleh, T.M., Kombian, S.B., Zidichouski, J.A., and Pittman, Q.J. (1997). Cholecystokinin and neurotensin inversely modulate excitatory synaptic transmission in the parabrachial nucleus in vitro. Neuroscience. 77, 23–35.10.1016/S0306-4522(96)00463-0Search in Google Scholar PubMed

Sanjuan, J., Toirac, I., González, J.C., Leal, C., Moltó, M.D., Nájera, C., and De Frutos, R. (2004). A possible association between the CCK-AR gene and persistent auditory hallucinations in schizophrenia. Eur. Psychiatry 19, 349–353.10.1016/j.eurpsy.2004.06.015Search in Google Scholar PubMed

Sartor, D.M. and Verberne, A.J. (2002). Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am J Physiol. Regul. Integr. Comp. Physiol. 282, R1174–1184.10.1152/ajpregu.00500.2001Search in Google Scholar PubMed

Schalling, H., Friberg, K., Seroogy, K., Riederer, P., Bird, E., Schiffman, S.N., Mailleux, P., Vanderhaeghen, J.J., Kuga, S., Goldstein, M., et al. (1990). Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc Natl Acad Sci USA 87, 8427–8431.10.1073/pnas.87.21.8427Search in Google Scholar PubMed PubMed Central

Schroeder, M. and Weller, A. (2010). Anxiety-like behavior and locomotion in CCK1 knockout rats as a function of strain, sex and early maternal environment. Behav. Brain Res. 211, 198–207.10.1016/j.bbr.2010.03.038Search in Google Scholar PubMed

Seroogy, K., Tsuruo, Y., Hökfelt, T., Walsh, J., Fahrenkrug, J., Emson, P.C., and Goldstein, M. (1988). Further analysis of presence of peptides in dopamine neurons. Cholecystokinin, peptide histidine-isoleucine/vasoactive intestinal polypeptide and substance P in rat supramammillary region and mesencephalon. Exp. Brain Res. 72, 523–534.10.1007/BF00250598Search in Google Scholar PubMed

Seroogy, K.B., Dangaran, K., Lim, S., Haycock, J.W., and Fallon, J.H. (1989). Ventral mesencephalic neurons containing both cholecystokinin- and tyrosine hydroxylase-like immunoreactivities project to forebrain regions. J. Comp. Neurol. 279, 397–414.10.1002/cne.902790306Search in Google Scholar PubMed

Shamay-Tsoory, S.G. and Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biol. Psychiatry. 79, 194–202.10.1016/j.biopsych.2015.07.020Search in Google Scholar PubMed

Shayit, M. and Weller, A. (2001). Cholecystokinin receptor antagonists increase the rat pup’s preference toward maternal-odor and rug texture. Dev. Psychobiol. 38, 164–173.10.1002/dev.1010Search in Google Scholar PubMed

Shilling, P.D. and Feifel, D. (2002a). Decreased haloperidol-induced potentiation of zif268 mRNA expression in the nucleus accumbens shell and the dorsal lateral striatum of rats lacking cholecystokinin-A receptors. Synapse 43, 134–138.10.1002/syn.10028Search in Google Scholar PubMed

Shilling, P.D. and Feifel, D. (2002b). SR146131, a cholecystokinin-A receptor agonist, antagonizes prepulse inhibition deficits produced by dizocilpine and DOI. Psychopharmacology (Berl) 164, 285–293.10.1007/s00213-002-1214-zSearch in Google Scholar

Singh, L., Oles, R.J., Field, M.J., Atwal, P., Woodruff, G.N., and Hunter, J.C. (1996). Effect of CCK receptor antagonists on the antinociceptive, reinforcing and gut motility properties of morphine. Br. J. Pharmacol. 118, 1317–1325.10.1111/j.1476-5381.1996.tb15539.xSearch in Google Scholar

Singh, J., Desiraju, T., and Raju ,T.R. (1997). Effects of microinjections of cholecystokinin and neurotensin into lateral hypothalamus and ventral mesencephalon on intracranial self-stimulation. Pharmacol. Biochem. Behav. 58, 893–898.10.1016/S0091-3057(97)00040-3Search in Google Scholar

Studler, J.M., Simon, H., Cesselin, F., Legrand, J.C., Glowinski, J., and Tassin, J.P. (1981). Biochemical investigation on the localization of the cholecystokinin octapeptide in dopaminergic neurons originating from the ventral tegmental area of the rat. Neuropeptides 2, 131–139.10.1016/0143-4179(81)90062-7Search in Google Scholar

Sugeta, S., Hirai, Y., Maezawa, H., Inoue, N., Yamazaki, Y., and Funahashi, M. (2015). Presynaptically mediated effects of cholecystokinin-8 on the excitability ofarea postremaneurons in rat brain slices. Brain Res. 1618, 83–90.10.1016/j.brainres.2015.05.018Search in Google Scholar

Sui, Y., Vermeulen, R., Hökfelt, T., Horne, M.K., and Stanić, D. (2013). Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb. Front. Cell. Neurosci. 7, 13.10.3389/fncel.2013.00013Search in Google Scholar

Tachikawa, H., Harada, S., Kawanishi, Y., Okubo, T., and Shiraishi, H. (2000). Novel polymorphisms of the human cholecystokinin A receptor gene: an association analysis with schizophrenia. Am. J. Med. Genet. 96, 141–145.10.1002/(SICI)1096-8628(20000403)96:2<141::AID-AJMG3>3.0.CO;2-RSearch in Google Scholar

Tachikawa, H., Harada, S., Kawanishi, Y., Okubo, T., and Suzuki, T. (2001). Linked polymorphisms (−333G>T and −286A>G) in the promoter region of the CCK-A receptor gene may be associated with schizophrenia. Psychiatry Res. 103, 147–155.10.1016/S0165-1781(01)00276-1Search in Google Scholar

Toirac, I., Sanjuán, J., Aguilar, E.J., González, J.C., Artigas, F., Rivero, O., Nájera, C., Moltó, M.D., and de Frutos, R. (2007). Association between CCK-AR gene and schizophrenia with auditory hallucinations. Psychiatr. Genet. 17, 47–53.10.1097/YPG.0b013e3280298292Search in Google Scholar

Torterolo, P., Scorza, C., Lagos, P., Urbanavicius, J., Benedetto, L., Pascovich, C., López-Hill, X., Chase, M.H., and Monti, J.M. (2015). Melanin-Concentrating Hormone (MCH): role in REM sleep and depression. Front. Neurosci. 9, 475.10.3389/fnins.2015.00475Search in Google Scholar

Tsujino, N., Yamanaka, A., Ichiki, K., Muraki, Y., Kilduff, T.S., Yagami, K., Takahashi, S., Goto, K., and Sakurai, T. (2005). Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J. Neurosci. 25, 7459–7469.10.1523/JNEUROSCI.1193-05.2005Search in Google Scholar PubMed PubMed Central

Urbanavicius, J., Lagos, P., Torterolo, P., Abin-Carriquiry, J.A., and Scorza, C. (2016). Melanin-concentrating hormone projections to the dorsalraphenucleus: an immunofluorescence and in vivo microdialysis study. J. Chem. Neuroanat. 72, 16–24.10.1016/j.jchemneu.2015.11.010Search in Google Scholar PubMed

Vann, S.D. and Nelson, A.J. (2015). The mammillary bodies and memory: more than a hippocampal relay. Prog. Brain Res. 219, 163–185.10.1016/bs.pbr.2015.03.006Search in Google Scholar PubMed PubMed Central

Vasar, E., Harro, J., Lang, A., Pôld, A., and Soosaar, A. (1991). Differential involvement of CCK-A and CCK-B receptors in the regulation of locomotor activity in the mouse. Psychopharmacology (Berl). 105, 393–399.10.1007/BF02244435Search in Google Scholar PubMed

Vasar, E., Soosaar, A., Harro, J., and Lang, A. (1992). Changes at cholecystokinin receptors induced by long-term treatment with diazepam and haloperidol. Eur. Neuropsychopharmacol. 2, 447–454.10.1016/0924-977X(92)90008-VSearch in Google Scholar

Vickroy, T.W., Bianchi, B.R., Kerwin, J.F., Jr., Kopecka, H., and Nadzan, A.M. (1988). Evidence that type A CCK receptors facilitate dopamine efflux in rat brain. Eur. J. Pharmacol. 152, 371–372.10.1016/0014-2999(88)90735-2Search in Google Scholar PubMed

Voigt, J.P., Huston, J.P., Voits, M., and Fink, H. (1996). Effects of cholecystokinin octapeptide (CCK-8) on food intake in adult and aged rats under different feeding conditions. Peptides 17, 1313–1315.10.1016/S0196-9781(96)00230-6Search in Google Scholar PubMed

Voits, M., Fink, H., Gerhardt, P., and Huston, J.P. (1995). Application of ’nose-poke habituation’ validation with post-trial diazepam- and cholecystokinin-induced hypo- and hypermnesia. J. Neurosci. Methods 57, 101–105.10.1016/0165-0270(94)00143-5Search in Google Scholar PubMed

Wang, R.Y., White, F.J., and Voigt, M.M. (1985). Interactions of cholecystokinin and dopamine in the nucleus accumbens. Ann. NY Acad. Sci. 448, 352–360.10.1111/j.1749-6632.1985.tb29930.xSearch in Google Scholar PubMed

Wang, R., Kasser, R.J., and Hu, X. (1988). Cholecystokinin receptor subtypes in the rat nucleus accumbens. Cholecystokinin Antagonists. R.Y. Wang and R. Schoenfeld, eds. (Liss, New York), pp. 199–215.Search in Google Scholar

Wang, Z.J., Rae, Z.R., and Shi, J.W. (1992). Tyrosine hydroxylase, neurotensine or cholecystokinin containing neurons in the nucleus tractus solitary send projection fibers to the nucleus accumbens in the rat. Brain Res. 578, 347–350.10.1016/0006-8993(92)90269-FSearch in Google Scholar PubMed

Wang, Y., Perng, S.L., Lin, J.C., and Tsao, W.L. (1994). Cholecystokinin facilitates methamphetamine-induced dopamine overflow in rat striatum and fetal ventral mesencephalic grafts. Exp. Neurol. 130, 279–287.10.1006/exnr.1994.1206Search in Google Scholar PubMed

Wank, S.A. (1995). Cholecystokinin receptors. Am. J. Physiol. 269, G628–G646.10.1152/ajpgi.1995.269.5.G628Search in Google Scholar PubMed

Weber, B.C., Manfredo, H.N., and Rinaman, L. (2009). A potential gastrointestinal link between enhanced postnatal maternal care and reduced anxiety-like behavior in adolescent rats. Behav. Neurosci. 123, 1178–1184.10.1037/a0017659Search in Google Scholar PubMed PubMed Central

Wei, J. and Hemmings, G.P. (1999). The CCK-A receptor gene possibly associated with auditory hallucinations in schizophrenia. Eur. Psychiatry. 14, 67–70.10.1016/S0924-9338(99)80719-6Search in Google Scholar PubMed

Weller, A. and Blass, E.M. (1988). Behavioral evidence for cholecystokinin-opiate interactions in neonatal rats. Am. J. Physiol. 255(6 Pt 2), R901–907.10.1152/ajpregu.1988.255.6.R901Search in Google Scholar PubMed

Weller, A. and Dubson, L. (1998). A CCK(A)-receptor antagonist administered to the neonate alters mother-infant interactions in the rat. Pharmacol. Biochem. Behav. 59, 843–851.10.1016/S0091-3057(97)00530-3Search in Google Scholar PubMed

Weller, A. and Feldman, R. (2003). Emotion regulation and touch in infants: the role of cholecystokinin and opioids. Peptides. 24, 779–788.10.1016/S0196-9781(03)00118-9Search in Google Scholar PubMed

Wen, D., Ma, C.L., Zhang, Y.J., Meng, Y.X., Ni, Z.Y., Li, S.J., and Cong, B. (2012). Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence. BMC Neurosci. 13, 63.10.1186/1471-2202-13-63Search in Google Scholar PubMed PubMed Central

Wen, D., Sun, D., Zang, G., Hao, L., Liu, X., Yu, F., Ma, C., and Cong, B. (2014). Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats. Neuroscience. 277, 14–25.10.1016/j.neuroscience.2014.06.048Search in Google Scholar PubMed

Wilson, J., Markie, D., and Fitches, A. (2012). Cholecystokinin system genes: associations with panic and other psychiatric disorders. J. Affect. Disord. 136, 902–908.10.1016/j.jad.2011.09.011Search in Google Scholar PubMed

Woodruff, G.N., Hill, D.R., Boden, P., Pinnock, R., Singh, L., and Hughes, J. (1991) Functional role of brain CCK receptors. Neuropeptides 19, 45–56.10.1016/0143-4179(91)90082-TSearch in Google Scholar

Wunderlich, G.R., De Sousa, N.J., and Vaccarino, F.J. (2000). Cholecystokinin modulates both the development and the expression of behavioral sensitization to amphetamine in the rat. Psychopharmacology (Berl). 151, 283–290.10.1007/s002130000445Search in Google Scholar PubMed

Xiao, Z., Jaiswal, M.K., Deng, P.Y., Matsui, T., Shin, H.S., Porter, J.E., and Lei, S. (2012). Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus 22, 1438–1450.10.1002/hipo.20984Search in Google Scholar PubMed PubMed Central

Yamamoto, Y., Akiyoshi, J., Kiyota, A., Katsuragi, S., Tsutsumi, T., Isogawa, K., and Nagayama, H. (2000). Increased anxiety behavior in OLETF rats without cholecystokinin-A receptor. Brain Res. Bull. 53, 789–792.10.1016/S0361-9230(00)00407-XSearch in Google Scholar PubMed

You, Z.B., Godukhin, O., Goiny, M., Nylander, I., Ungerstedt, U., Terenius, L., Hökfelt, T., and Herrera-Marschitz, M. (1997). Cholecystokinin-8S increases dynorphin B, aspartate, and glutamate release in the fronto-parietal cortex of the rat via different receptor subtypes. Naunyn Schmiedebergs Arch. Pharmacol. 355, 576–581.10.1007/PL00004986Search in Google Scholar PubMed

Yu, H., We, D., Ma, C., Meng, Y., Li, S., Ni, Z., and Cong, B. (2012). Effects of exogenous cholecystokinin octapeptide on acquisition of naloxone precipitated withdrawal induced conditioned place aversion in rats. PLoS One 7, e41860.10.1371/journal.pone.0041860Search in Google Scholar PubMed PubMed Central

Zhang, J., Chiodo, L.A., and Freeman, A.S. (1991). Effects of the CCK-A receptor antagonist CR1409 on the activity of midbrain dopamine neurons. Peptides 12, 339–343.10.1016/0196-9781(91)90023-ISearch in Google Scholar PubMed

Zhang, X.Y., Zhou, D.F., Zhang, P.Y., and Wei, J. (2000). The CCK-A receptor gene possibly associated with positive symptoms of schizophrenia. Mol. Psychiatry 5, 239–240.10.1038/sj.mp.4000677Search in Google Scholar PubMed

Zheng, Z., Lewis, M.W., and Travagli, R.A. (2005). In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1066–G1073.10.1152/ajpgi.00497.2004Search in Google Scholar PubMed PubMed Central

Zheng, C., Fu, Q., Shen, Y., and Xu, Q. (2012). Investigation of allelic heterogeneity of the CCK-A receptor gene in paranoid schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 741–747.10.1002/ajmg.b.32079Search in Google Scholar PubMed

Zhu, J.N., Guo, C.L., Li, H.Z., and Wang, J.J. (2007). Dorsomedial hypothalamic nucleus neurons integrate important peripheral feeding-related signals in rats. J. Neurosci. Res. 85, 3193–3204.10.1002/jnr.21420Search in Google Scholar PubMed

Zhu, G., Yan, J., Smith, W.W., Moran, T.H., and Bi, S. (2012). Roles of dorsomedial hypothalamic cholecystokinin signaling in the controls of meal patterns and glucose homeostasis. Physiol. Behav. 105, 234–241.10.1016/j.physbeh.2011.08.007Search in Google Scholar PubMed PubMed Central

Zimmermann-Peruzatto, J.M., Lazzari, V.M., de Moura, A.C., Almeida, S., and Giovenardi, M. (2015). Examining the role of vasopressin in the modulation of parental and sexual behaviors. Front. Psychiatry 6, 130.10.3389/fpsyt.2015.00130Search in Google Scholar PubMed PubMed Central

Received: 2016-12-28
Accepted: 2017-02-05
Published Online: 2017-03-25
Published in Print: 2017-07-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0088/pdf
Scroll to top button