Home Biological bases of human musicality
Article
Licensed
Unlicensed Requires Authentication

Biological bases of human musicality

  • Carla Perrone-Capano , Floriana Volpicelli ORCID logo EMAIL logo and Umberto di Porzio
Published/Copyright: January 20, 2017
Become an author with De Gruyter Brill

Abstract

Music is a universal language, present in all human societies. It pervades the lives of most human beings and can recall memories and feelings of the past, can exert positive effects on our mood, can be strongly evocative and ignite intense emotions, and can establish or strengthen social bonds. In this review, we summarize the research and recent progress on the origins and neural substrates of human musicality as well as the changes in brain plasticity elicited by listening or performing music. Indeed, music improves performance in a number of cognitive tasks and may have beneficial effects on diseased brains. The emerging picture begins to unravel how and why particular brain circuits are affected by music. Numerous studies show that music affects emotions and mood, as it is strongly associated with the brain’s reward system. We can therefore assume that an in-depth study of the relationship between music and the brain may help to shed light on how the mind works and how the emotions arise and may improve the methods of music-based rehabilitation for people with neurological disorders. However, many facets of the mind-music connection still remain to be explored and enlightened.

Acknowledgments

This work was supported by ‘Fondo per gli Investimenti di Ricerca di Base’ (FIRB-RBIN062YH4) and ‘Medical Research Italy’ (MERIT-RBNE08LN4P).

  1. Conflict of interest statement: The authors declare that the review was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Altenmüller, E. and Schlaug, G. (2015). Apollo’s gift: new aspects of neurologic music therapy. Prog. Brain Res. 217, 237–252.10.1016/bs.pbr.2014.11.029Search in Google Scholar PubMed PubMed Central

Angulo-Perkins, A. and Concha, L. (2014). Music perception: information flow within the human auditory cortices. Adv. Exp. Med. Biol. 829, 293–303.10.1007/978-1-4939-1782-2_15Search in Google Scholar PubMed

Baird, A. and Samson, S. (2015). Music and dementia. Prog. Brain Res. 217, 207–235.10.1016/bs.pbr.2014.11.028Search in Google Scholar PubMed

Bangert, M. and Altenmüller, E.O. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 4, 26.10.1186/1471-2202-4-26Search in Google Scholar PubMed PubMed Central

Belyk, M., Pfordresher, P.Q., Liotti, M., and Brown, S. (2016). The neural basis of vocal pitch imitation in humans. J. Cogn. Neurosci. 28, 621–635.10.1162/jocn_a_00914Search in Google Scholar PubMed

Berridge, K.C. and Kringelbach, M.L. (2015). Pleasure systems in the brain. Neuron 86, 646–664.10.1016/j.neuron.2015.02.018Search in Google Scholar PubMed PubMed Central

Bishop-Liebler, P., Welch, G., Huss, M., Thomson, J.M., and Goswami, U. (2014). Auditory temporal processing skills in musicians with dyslexia. Dyslexia 20, 261–279.10.1002/dys.1479Search in Google Scholar PubMed

Blasi, D.E., Wichmann, S., Hammerström, H., Stadler, P.F., and Christiansen, M.H. (2016). Sound-meaning association biases evidenced across thousands of languages. Proc. Natl. Acad. Sci. U. S. A. 113, 10818–10823.10.1073/pnas.1605782113Search in Google Scholar PubMed PubMed Central

Blood, A.J. and Zatorre, R.J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated with reward and emotion. Proc. Natl. Acad. Sci. U. S. A. 98, 11818–11823.10.1073/pnas.191355898Search in Google Scholar PubMed PubMed Central

Blood, A.J., Zatorre, R.J., Bermudez, P., and Evans, A.C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2, 382–387.10.1038/7299Search in Google Scholar PubMed

Bolhuis, J.J., Okanoya, K., and Scharff, C. (2010). Twitter evolution: converging mechanisms in birdsong and human speech. Nat. Rev. Neurosci. 11, 747–759.10.1038/nrn2931Search in Google Scholar PubMed

Bradt, J. and Dileo, C. (2009). Music for stress and anxiety reduction in coronary heart disease patients. Cochrane Database Syst. Rev. 12, CD006577.10.1002/14651858.CD006577.pub2Search in Google Scholar PubMed

Bringas, M.L., Zaldivar, M., Rojas, P.A., Martinez-Montes, K., Chongo D.M., Ortega, M.A. Galvizu, R., Perez, A.E., Morales, L.M., Maragoto, C., et al. (2015). Effectiveness of music therapy as an aid to neurorestoration of children with severe neurological disorders. Front. Neurosci. 9, 427.10.3389/fnins.2015.00427Search in Google Scholar PubMed PubMed Central

Brown, S., Martinez, M.J., and Parsons, L.M. (2006). Music and language side by side in the brain: a PET study of the generation of melodies and sentences. Eur. J. Neurosci. 23, 2791–2803.10.1111/j.1460-9568.2006.04785.xSearch in Google Scholar PubMed

Bryant, G.A. (2013). Animal signals and emotion in music: coordinating affect across groups. Front. Psychol. 4, 990.10.3389/fpsyg.2013.00990Search in Google Scholar PubMed PubMed Central

Caggiano, V., Fogassi, L., Rizzolatti, G., Casile, A., Giese, M.A., and Their, P. (2012). Mirror neurons encode the subjective value of an observed action. Proc. Natl. Acad. Sci. U. S. A. 109, 11848–11853.10.1073/pnas.1205553109Search in Google Scholar PubMed PubMed Central

Calvert, G.A., Bullmore, E.T., Brammer, M.J., Campbell, R., Williams, S.C., McGuire, P.K., Woodruff, P.W., Iversen, S.D., and David, A.S. (1997). Activation of auditory cortex during silent lipreading. Science 276, 593–596.10.1126/science.276.5312.593Search in Google Scholar PubMed

Castro, D.C. and Berridge, K.C. (2014). Opioid hedonic hotspot in nucleus accumbens shell: μ, δ, and κ maps for enhancement of sweetness “liking” and “wanting”. J. Neurosci. 34, 4239–4250.10.1523/JNEUROSCI.4458-13.2014Search in Google Scholar PubMed PubMed Central

Cerri, G., Cabinio, M., Blasi, V., Borroni, P., Iadanza, A., and Fava, E. (2015). The mirror neuron system and the strange case of Broca’s area. Hum. Brain Mapp. 36, 1010–1027.10.1002/hbm.22682Search in Google Scholar PubMed PubMed Central

Chanda, M.L. and Levitin, D.J. (2013). The neurochemistry of music. Trends Cogn. Sci. 17, 179–193.10.1016/j.tics.2013.02.007Search in Google Scholar PubMed

Chen, J.L., Rae, C., and Watkins, K.E. (2012). Learning to play a melody: an fMRI study examining the formation of auditory-motor associations. Neuroimage 59, 1200–1208.10.1016/j.neuroimage.2011.08.012Search in Google Scholar PubMed

Chomsky, N. (2016). The language capacity: architecture and evolution. Psychon. Bull. Rev. 23, 1–4.10.3758/s13423-016-1078-6Search in Google Scholar PubMed

Cohen, M.A., Evans, K.K., Horowitz, T.S., and Wolfe, J.M. (2011). Auditory and visual memory in musicians and nonmusicians. Psychon. Bull. Rev. 18, 586–591.10.3758/s13423-011-0074-0Search in Google Scholar PubMed PubMed Central

Colucci-D’Amato, L. and di Porzio, U. (2008). Neurogenesis in adult CNS: from denial to opportunities and challenges for therapy. Bioessays 30, 135–145.10.1002/bies.20703Search in Google Scholar PubMed

Darwin, C. (1878). The Expression of Emotion in Man and Animals. The Project Gutenberg Ebook. Available at: http://www.gutenberg.org/files/1227/1227-h/1227-h.htm.Search in Google Scholar

D’Ausilio, A., Bartoli, E., and Maffongelli, L. (2015). Grasping synergies: a motor-control approach to the mirror neuron mechanism. Phys. Life Rev. 12, 91–103.10.1016/j.plrev.2014.11.002Search in Google Scholar PubMed

di Porzio, U. (2016). The brain from within. Front. Hum. Neurosci. 10, 265.10.3389/fnhum.2016.00265Search in Google Scholar PubMed PubMed Central

Eckert, M.A., Kamdar, N.V., Chang, C.E., Beckmann, C.F., Greicius, M.D., and Menon, V. (2008). A cross-modal system linking primary auditory and visual cortices: evidence from intrinsic fMRI connectivity analysis. Hum. Brain Mapp. 29, 848–857.10.1002/hbm.20560Search in Google Scholar PubMed PubMed Central

Egermann, H., Fernando, N., Chuen, L., and McAdams, S. (2015). Music induces universal emotion-related psychophysiological responses: comparing Canadian listeners to Congolese pygmies. Front. Psychol. 5, 1–9.10.3389/fpsyg.2014.01341Search in Google Scholar PubMed PubMed Central

Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr. Opin. Neurobiol. 21, 415–424.10.1016/j.conb.2011.04.008Search in Google Scholar PubMed

Ferri, S., Peeters, R., Nelissen, K., Vanduffel, W., Rizzolatti, G., and Orban, G.A. (2015). A human homologue of monkey F5c. Neuroimage 111, 251–266.10.1016/j.neuroimage.2015.02.033Search in Google Scholar PubMed PubMed Central

Forgeard, M., Winner, E., Norton, A., and Schlaug, G. (2008). Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS One 3, e3566.10.1371/journal.pone.0003566Search in Google Scholar PubMed PubMed Central

Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119, 593–609.10.1093/brain/119.2.593Search in Google Scholar PubMed

Gazzola, V., Aziz-Zade, L., and Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Curr. Biol. 16, 1824–1829.10.1016/j.cub.2006.07.072Search in Google Scholar PubMed

Haueisen, J. and Knösche, T.R. (2001). Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13, 786–792.10.1162/08989290152541449Search in Google Scholar PubMed

Hauser, M.D. and McDermott, J. (2003). The evolution of the music faculty: a comparative perspective. Nat. Neurosci. 6, 663–668.10.1038/nn1080Search in Google Scholar PubMed

Herholz, S.C. and Zatorre, R.J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76, 486–502.10.1016/j.neuron.2012.10.011Search in Google Scholar PubMed

Hudziak, J.J., Albaugh, M.D., Ducharme, S., Karama, S., Spottswood, M., Crehan, E., Evans, A.C., Botteron, K.N.; Brain Development Cooperative Group. (2014). Cortical thickness maturation and duration of music training: health-promoting activities shape brain development. J. Am. Acad. Child Adolesc. Psychiatry 53, 1153–1161, 1161.e1-2.10.1016/j.jaac.2014.06.015Search in Google Scholar PubMed PubMed Central

Isokawa, M. (2012). Cellular signal mechanisms of reward-related plasticity in the hippocampus. Neural Plast. 2012, 945373.10.1155/2012/945373Search in Google Scholar PubMed PubMed Central

Jacobsen, J.H., Stelzer, J., Fritz, T.H., Chételat, G., La Joie, R., and Turner, R. (2015). Why musical memory can be preserved in advanced Alzheimer’s disease. Brain 138, 2438–2450.10.1093/brain/awv135Search in Google Scholar PubMed

Janak, P.H. and Tye, K.M. (2015). From circuits to behaviour in the amygdala. Nature 517, 284–292.10.1038/nature14188Search in Google Scholar PubMed PubMed Central

Kandel, E.R., Schwartz J.H., Jessell, T.M., Siegelbaum, S.A., and Hudspeth, A.J. (2014). Principles of Neural Science, The Auditory Central Nervous System, 5th edition, Part V: Perception, Chap 31, E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth, S. Mack, eds. (New York, NY, USA: McGraw-Hill) pp. 682–711.Search in Google Scholar

Kanduri, C., Kuusi, T., Ahvenainen, M., Philips, A.K., Lähdesmäki, H., and Järvelä, I. (2015). The effect of music performance on the transcriptome of professional musicians. Sci. Rep. 5, 9506.10.1038/srep09506Search in Google Scholar PubMed PubMed Central

Kohler, E., Keysers, C., Umiltà, M.A., Fogassi, L., Gallese, V., and Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848.10.1126/science.1070311Search in Google Scholar PubMed

Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15, 170–180.10.1038/nrn3666Search in Google Scholar PubMed

Konopka, G., Bomar, J.M., Winden, K., Coppola, G., Jonsson, Z.O., Gao, F., Peng, S., Preuss, T.M., Wohlschlegel, J.A., and Geschwind, D.H. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462, 213–217.10.1038/nature08549Search in Google Scholar PubMed PubMed Central

Logeswaran, N. and Bhattacharya, J. (2009). Crossmodal transfer of emotion by music. Neurosci. Lett. 455, 129–133.10.1016/j.neulet.2009.03.044Search in Google Scholar PubMed

Loui, P., Alsop, D., and Schlaug, S. (2009). Tone deafness: a new disconnection syndrome? J. Neurosci. 29, 10215–10220.10.1523/JNEUROSCI.1701-09.2009Search in Google Scholar PubMed PubMed Central

Masataka, N. (2009). The origins of language and the evolution of music: a comparative perspective. Phys. Life Rev. 6, 11–22.10.1016/j.plrev.2008.08.003Search in Google Scholar PubMed

Meyer, K., Kaplan, J.T., Essex, R., Webber, C., Damasio, H., and Damasio, A. (2010). Predicting visual stimuli on the basis of activity in auditory cortices. Nat. Neurosci. 13, 667–668.10.1038/nn.2533Search in Google Scholar PubMed

Mingle, M.E., Eppley, T.M., Campbell, M.W., Hall, K., Horner, V., and de Waal, F.B. (2014). Chimpanzees prefer African and Indian music over silence. J. Exp. Psychol. Anim. Learn. Cogn. 40, 502–505.10.1037/xan0000032Search in Google Scholar PubMed PubMed Central

Mithen, S.J. (2005). The singing Neanderthals: the origins of music, language, mind and body. Cambr. Archaeol. J. 16, 97–112.10.1017/S0959774306000060Search in Google Scholar

Mithen, S.J. (2009). The music instinct: the evolutionary basis of musicality. Ann. N. Y. Acad. Sci. 1169, 3–12.10.1111/j.1749-6632.2009.04590.xSearch in Google Scholar PubMed

Mooney, R. (2014). Auditory-vocal mirroring in songbirds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130179.10.1098/rstb.2013.0179Search in Google Scholar PubMed PubMed Central

Mukamel, R. and Fried, I. (2012). Human intracranial recordings and cognitive neuroscience. Annu. Rev. Psychol. 63, 511–537.10.1146/annurev-psych-120709-145401Search in Google Scholar PubMed

Nottebohm, F. and Liu, W.C. (2010). The origins of vocal learning: new sounds, new circuits, new cells. Brain Lang. 115, 3–17.10.1016/j.bandl.2010.05.002Search in Google Scholar PubMed

Palmer, S.E., Schloss, K.B., Xu, Z., and Prado-León, L.R. (2013). Music-color associations are mediated by emotion. Proc. Natl. Acad. Sci. U. S. A. 110, 8836–8841.10.1073/pnas.1212562110Search in Google Scholar PubMed PubMed Central

Parsons, L.M. (2001). Exploring the functional neuroanatomy of music performance, perception, and comprehension. Ann. N. Y. Acad. Sci. 930: 211–231.10.1093/acprof:oso/9780198525202.003.0017Search in Google Scholar

Paul, A., Sharda, M., Menon, S., Arora, I., Kansal, N., Arora, K., and Singh, N.C. (2015). The effect of sung speech on socio-communicative responsiveness in children with autism spectrum disorders. Front. Hum. Neurosci. 9, 555.10.3389/fnhum.2015.00555Search in Google Scholar PubMed PubMed Central

Perrone-Bertolotti, M., Kujala, J., Vidal, J.R., Hamame, C.M., Ossandon, T., and Bertrand, O. (2012). How silent is silent reading? Intracerebral evidence for top-down activation of temporal voice areas during reading. J. Neurosci. 32, 17554–17562.10.1523/JNEUROSCI.2982-12.2012Search in Google Scholar PubMed PubMed Central

Petkov, C.I. and Jarvis, E.D. (2012). Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front. Evol. Neurosci. 4, 12.10.3389/fnevo.2012.00012Search in Google Scholar PubMed PubMed Central

Pfenning, A.R., Hara, E., Whitney, O., Rivas, M.V., Wang, R., Roulhac, P.L., Howard, J.T., Wirthlin, M., Lovell, P.V., Ganapathy, G., et al. (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346, 1256846.10.1126/science.1256846Search in Google Scholar PubMed PubMed Central

Proverbio, A.M., Attardo, L., Cozzi, M., and Zani, A. (2015). The effect of musical practice on gesture/sound pairing. Front. Psychol. 6, 376.10.3389/fpsyg.2015.00376Search in Google Scholar PubMed PubMed Central

Rizzolatti, G. and Fabbri-Destro, M. (2008). The mirror system and its role in social cognition. Curr. Opin. Neurobiol. 18, 179–184.10.1016/j.conb.2008.08.001Search in Google Scholar PubMed

Rodrigues, A.C., Loureiro, M., and Caramelli, P. (2014). Visual memory in musicians and non-musicians. Front. Hum. Neurosci. 8, 424.10.3389/fnhum.2014.00424Search in Google Scholar PubMed PubMed Central

Rollnik, J.D. and Altenmüller, E. (2014). Music in disorders of consciousness. Front. Neurosci. 8, 190.10.3389/fnins.2014.00190Search in Google Scholar PubMed PubMed Central

Salimpoor, V.N., Benovoy, M., Larcher, K., Dagher, A., and Zatorre, R.J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262.10.1038/nn.2726Search in Google Scholar PubMed

Salimpoor, V.N., van den Bosch, I., Kovacevic, N., McIntosh, A.R., Dagher, A., and Zatorre, R.J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219.10.1126/science.1231059Search in Google Scholar PubMed

Salimpoor, V.N., Zald, D.H., Zatorre, R.J., Dagher, A., and McIntosh, A.R. (2015). Predictions and the brain: how musical sounds become rewarding. Trends Cogn. Sci. 19, 86–91.10.1016/j.tics.2014.12.001Search in Google Scholar PubMed

Särkämö, T., Altenmüller, E., Rodríguez-Fornells, A., and Peretz, I. (2016). Editorial: Music, brain, and rehabilitation: emerging therapeutic applications and potential neural mechanisms. Front. Hum. Neurosci. 10, 103. eCollection 2016.10.3389/fnhum.2016.00103Search in Google Scholar PubMed PubMed Central

Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Prog. Brain Res. 217, 37–55.10.1016/bs.pbr.2014.11.020Search in Google Scholar PubMed PubMed Central

Snowdon, C.T., Zimmermann, E., and Altenmüller, E. (2015). Music evolution and neuroscience. Prog. Brain Res. 217, 17–34.10.1016/bs.pbr.2014.11.019Search in Google Scholar PubMed

Spilka, M.J., Steele, C.J., and Penhune, V.B. (2010). Gesture imitation in musicians and non-musicians. Exp. Brain Res. 204, 549–558.10.1007/s00221-010-2322-3Search in Google Scholar PubMed

Tierney, A. and Kraus, N. (2013). Music training for the development of reading skills. Prog. Brain Res. 207, 209–241.10.1016/B978-0-444-63327-9.00008-4Search in Google Scholar PubMed

Tierney, A.T., Krizman, J., and Kraus, N. (2015). Music training alters the course of adolescent auditory development. Proc. Natl. Acad. Sci. U. S. A. 112, 10062–10067.10.1073/pnas.1505114112Search in Google Scholar PubMed PubMed Central

Trainor, L.J. and Zatorre, R.J. (2009). The neurobiological basis of musical expectations. Handbook of Music Psychology. S. Hallam, I. Cross, and M. Thaut, eds. (Oxford: Oxford University Press), pp. 171–183.Search in Google Scholar

Trehub, S.E. (2003). The developmental origins of musicality. Nat. Neurosci. 6, 669–673.10.1038/nn1084Search in Google Scholar PubMed

Vaquero, L., Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C., Càmara, E., van Vugt, F.T., Mohammadi, B., Samii, A., et al. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage 126, 106–119.10.1016/j.neuroimage.2015.11.008Search in Google Scholar PubMed

Velasco, C., Balboa, D., Marmolejo-Ramos, F., and Spence, C. (2014). Crossmodal effect of music and odor pleasantness on olfactory quality perception. Front Psychol. 5, 1352.10.3389/fpsyg.2014.01352Search in Google Scholar PubMed PubMed Central

Vines, B.W., Krumhansl, C.L., Wanderley, M.M., Dalca, I.M., and Levitin, D.J. (2011). Music to my eyes: cross-modal interactions in the perception of emotions in musical performance. Cognition 118, 157–170.10.1016/j.cognition.2010.11.010Search in Google Scholar PubMed

Voisin, J., Bidet-Caulet, A., Bertrand, O., and Fonlupt, P. (2006). Listening in silence activates auditory areas: a functional magnetic resonance imaging study. J. Neurosci. 26, 273–278.10.1523/JNEUROSCI.2967-05.2006Search in Google Scholar PubMed PubMed Central

Whitney, O., Pfenning, A.R., Howard, J.T., Blatti, C.A., Liu, F., Ward, J.M., Wang, R., Audet, J.N., Kellis, M., Mukherjee, S., et al. (2014). Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346, 1256780.10.1126/science.1256780Search in Google Scholar PubMed PubMed Central

Woods, D.L., Stecker, G.C., Rinne, T., Herron, T.J., Cate, A.D., Yund, E.W., Liao, I., and Kang, X. (2009). Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS One 4, e5183.10.1371/journal.pone.0005183Search in Google Scholar PubMed PubMed Central

Young, L.J. and Wang, Z. (2004). The neurobiology of pair bonding. Nat. Neurosci. 7, 1048–1054.10.1038/nn1327Search in Google Scholar PubMed

Zatorre, R.J. (2013). Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 342, 585–589.10.1126/science.1238414Search in Google Scholar PubMed

Zatorre, R.J. and Halpern, A.R. (2005). Mental concepts: music imagery and auditory cortex. Neuron 47, 9–12.10.1016/j.neuron.2005.06.013Search in Google Scholar PubMed

Zatorre, R.J., Chen, J.L., and Penhune, V.B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558.10.1038/nrn2152Search in Google Scholar PubMed

Zentner, M. and Eerola, T. (2010). Rhythmic engagement with music in infancy. Proc. Natl. Acad. Sci. U. S. A. 107, 5768–5773.10.1073/pnas.1000121107Search in Google Scholar PubMed PubMed Central


Article note

This review is inspired by the late professor Renato Musto, a physicist and pioneer in the studies of music and brain, who taught us that music helps to comprehend culture as a natural phenomenon.


Received: 2016-8-2
Accepted: 2016-11-4
Published Online: 2017-1-20
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0046/pdf?lang=en
Scroll to top button