Abstract
Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease.
References
Albensi, B.C. and Mattson, M.P. (2000). Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse 35, 151–159.10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-PSearch in Google Scholar
Alberini C.M. (2009). Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145.10.1152/physrev.00017.2008Search in Google Scholar
Alberini, C.M. and Kandel, E.R. (2014). The regulation of transcription in memory consolidation. Cold Spring Harbor Perspect. Biol. 7, a021741.10.1101/cshperspect.a021741Search in Google Scholar
Alberini, C.M., Ghirardl, M., Metz, R., and Kandel, E.R. (1994). C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in aplysia. Cell 76, 1099–1114.10.1016/0092-8674(94)90386-7Search in Google Scholar
Andersson, M., Westin, J.E., and Cenci, M.A. (2003). Time course of striatal ΔFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment. Eur. J. Neurosci. 17, 661–666.10.1046/j.1460-9568.2003.02469.xSearch in Google Scholar
Athos, J., Impey, S., Pineda, V.V., Chen, X., and Storm, D.R. (2002). Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nat. Neurosci. 5, 1119–1120.10.1038/nn951Search in Google Scholar
Avital, A., Segal, M., and Richter-Levin, G. (2006). Contrasting roles of corticosteroid receptors in hippocampal plasticity. J. Neurosci. 26, 9130–9134.10.1523/JNEUROSCI.1628-06.2006Search in Google Scholar
Bading, H., Ginty, D., and Greenberg, M. (1993). Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186.10.1126/science.8097060Search in Google Scholar
Bambah-Mukku, D., Travaglia, A., Chen, D.Y., Pollonini, G., and Alberini, C.M. (2014). A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J. Neurosci. 34, 12547–12559.10.1523/JNEUROSCI.0324-14.2014Search in Google Scholar
Barco, A., Alarcon, J.M., and Kandel, E.R. (2002). Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703.10.1016/S0092-8674(02)00657-8Search in Google Scholar
Bekinschtein, P., Cammarota, M., Igaz, L.M., Bevilaqua, L.R.M., Izquierdo, I., and Medina, J.H. (2007). Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53, 261–277.10.1016/j.neuron.2006.11.025Search in Google Scholar
Benito, E. and Barco, A. (2010). CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci. 33, 230–240.10.1016/j.tins.2010.02.001Search in Google Scholar
Berger, S., Wolfer, D.P., Selbach, O., Alter, H., Erdmann, G., Reichardt, H.M., Chepkova, A.N., Welzl, H., Haas, H.L., Lipp H-P, et al. (2006). Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proc. Natl. Acad. Sci. USA 103, 195–200.10.1073/pnas.0503878102Search in Google Scholar
Bertaina-Anglade, V., Tramu, G., and Destrade, C. (2000). Differential learning-stage dependent patterns of c-Fos protein expression in brain regions during the acquisition and memory consolidation of an operant task in mice. Eur. J. Neurosci. 12, 3803–3812.10.1046/j.1460-9568.2000.00258.xSearch in Google Scholar
Bito, H., Deisseroth, K., and Tsien, R.W. (1996). CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.10.1016/S0092-8674(00)81816-4Search in Google Scholar
Boersma, M.C.H., Dresselhaus, E.C., De Biase, L.M., Mihalas, A.B., Bergles, D.E., and Meffert, M.K. (2011). A requirement for nuclear factor-κB in developmental and plasticity-associated synaptogenesis. J. Neurosci. 31, 5414–5425.10.1523/JNEUROSCI.2456-10.2011Search in Google Scholar
Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A.J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.10.1016/0092-8674(94)90400-6Search in Google Scholar
Brown, J.R., Ye, H., Bronson, R.T., Dikkes, P., and Greenberg, M.E. (1996). A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86, 297–309.10.1016/S0092-8674(00)80101-4Search in Google Scholar
Cammarota, M., Bevilaqua, L.R.M., Ardenghi, P., Paratcha, G., Levi de Stein, M., Izquierdo, I., and Medina, J.H. (2000). Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Mol. Brain. Res. 76, 36–46.10.1016/S0169-328X(99)00329-0Search in Google Scholar
Carle, T.L., Ohnishi, Y.N., Ohnishi, Y.H., Alibhai, I.N., Wilkinson, M.B., Kumar, A., and Nestler, E.J. (2007). Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for ΔFosB stability. Eur. J. Neurosci. 25, 3009–3019.10.1111/j.1460-9568.2007.05575.xSearch in Google Scholar PubMed
Cesari, F., Brecht, S., Vintersten, K., Vuong, L.G., Hofmann, M., Klingel, K., Schnorr, J.-J., Arsenian, S., Schild, H., Herdegen, T., et al. (2004). Mice deficient for the Ets transcription factor Elk-1 show normal immune responses and mildly impaired neuronal gene activation. Mol. Cell. Biol. 24, 294–305.10.1128/MCB.24.1.294-305.2004Search in Google Scholar
Chen, J., Zhang, Y., Kelz, M.B., Steffen, C., Ang, E.S., Zeng, L., Nestler, E.J. (2000). Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of ΔFosB. J. Neurosci. 20, 8965–8971.10.1523/JNEUROSCI.20-24-08965.2000Search in Google Scholar
Chen, A., Muzzio, I.A., Malleret, G., Bartsch, D., Verbitsky, M., Pavlidis, P., Yonan, A.L., Vronskaya, S., Grody, M.B., Cepeda, I., et al. (2003). Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2). and C/EBP proteins. Neuron 39, 655–669.10.1016/S0896-6273(03)00501-4Search in Google Scholar
Chrivia, J.C., Kwok, R.P.S., Lamb, N., Hagiwara, M., Montminy, M.R., Goodman, R.H. (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.10.1038/365855a0Search in Google Scholar
Condorelli, D.F., Albani, P.D., Amico, C., Lukasiuk, K., Kaczmarek, L., Giuffrida-Stella, A.M. (1994). Glutamate receptor-driven activation of transcription factors in primary neuronal cultures. Neurochem. Res. 19, 489–499.10.1007/BF00967329Search in Google Scholar
Conway, A.M., James, A.B., Zang, J., and Morris, B.J. (2007). Regulation of neuronal cdc20 (p55cdc) expression by the plasticity-related transcription factor zif268. Synapse 61, 463–468.10.1002/syn.20387Search in Google Scholar
Cruz, F.C., Javier Rubio, F., and Hope, B.T. (2015). Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res. 1628, 157–173.10.1016/j.brainres.2014.11.005Search in Google Scholar
Dash, P.K., Orsi, S.A., and Moore, A.N. (2005). Sequestration of serum response factor in the hippocampus impairs long-term spatial memory. J. Neurochem. 93, 269–278.10.1111/j.1471-4159.2004.03016.xSearch in Google Scholar
Davis, S., Vanhoutte, P., Pagès, C., Caboche, J., and Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572.10.1523/JNEUROSCI.20-12-04563.2000Search in Google Scholar
Deisseroth, K., Bito, H., and Tsien, R.W. (1996). Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101.10.1016/S0896-6273(00)80026-4Search in Google Scholar
Dobrazanski, P., Noguchi, T., Kovary, K., Rizzo, C.A., Lazo, P.S., and Bravo, R. (1991). Both products of the fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol. Cell Biol. 11, 5470–5478.Search in Google Scholar
Dong, Y., Green, T., Saal, D., Marie, H., Neve, R., Nestler, E.J., and Malenka, R.C. (2006). CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477.10.1038/nn1661Search in Google Scholar
Dragunow, M. and Robertson, H.A. (1987). Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329, 441–442.10.1038/329441a0Search in Google Scholar
Dragunow, M., Abraham, W.C., Goulding, M., Mason, S.E., Robertson, H.A., Faull, R.L.M. (1989). Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci. Lett. 101, 274–280.10.1016/0304-3940(89)90545-4Search in Google Scholar
Eagle, A.L., Gajewski, P.A., Yang, M., Kechner, M.E., Al Masraf, B.S., Kennedy, P.J., Wang, H., Mazei-Robison, M.S., and Robison, A.J. (2015). Experience-dependent induction of hippocampal ΔFosB controls learning. J. Neurosci. 35, 13773–13783.10.1523/JNEUROSCI.2083-15.2015Search in Google Scholar PubMed PubMed Central
Etkin, A., Alarcón, J.M., Weisberg, S.P., Touzani, K., Huang, Y.Y., Nordheim, A., and Kandel, E.R. (2006). A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50, 127–143.10.1016/j.neuron.2006.03.013Search in Google Scholar PubMed
Ferrara, P., Andermarcher, E., Bossis, G., Acquaviva, C., Brockly, F., Jariel-Encontre, I., and Piechaczyk, M. (2003). The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression. Oncogene 22, 1461–1474.10.1038/sj.onc.1206266Search in Google Scholar PubMed
Fleischmann, A., Hvalby, O., Jensen, V., Strekalova, T., Zacher, C., Layer, L.E., Kvello, A., Reschke. M., Spanagel, R., Sprengel, R., et al. (2003). Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci. 23, 9116–9122.10.1523/JNEUROSCI.23-27-09116.2003Search in Google Scholar
Frey, U., Huang, Y.Y., and Kandel, E.R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664.10.1126/science.8389057Search in Google Scholar PubMed
Garner, A.R., Rowland, D.C., Hwang, S.Y., Baumgaertel, K., Roth, B.L., Kentros, C., and Mayford, M. (2012). Generation of a synthetic memory trace. Science 335, 1513–1516.10.1126/science.1214985Search in Google Scholar PubMed PubMed Central
Gass, P., Wolfer, D.P., Balschun, D., Rudolph, D., Frey, U., Lipp, H.-P., and Schütz, G. (1998). Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn Memory 5, 274–288.10.1101/lm.5.4.274Search in Google Scholar
Ghosh, A., Ginty, D.D., Bading, H., and Greenberg, M.E. (1994). Calcium regulation of gene expression in neuronal cells. J. Neurobiol. 25, 294–303.10.1002/neu.480250309Search in Google Scholar
Govindarajan, A., Kelleher, R.J., and Tonegawa, S. (2006). A clustered plasticity model of long-term memory engrams. Nat. Rev. Neurosci. 7, 575–583.10.1038/nrn1937Search in Google Scholar
Gray, J.D., Milner, T.A., and McEwen, B.S. (2013). Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience 239, 214–227.10.1016/j.neuroscience.2012.08.034Search in Google Scholar
Grigoriadis, A., Schellander, K., Wang, Z., and Wagner, E. (1993). Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell. Biol. 122, 685–701.10.1083/jcb.122.3.685Search in Google Scholar
Grimm, R., Schicknick, H., Riede, I., Gundelfinger, E.D., Herdegen, T., Zuschratter, W., and Tischmeyer, W. (1997). Suppression of c-fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Memory 3, 402–413.10.1101/lm.3.5.402Search in Google Scholar
Grueter, B.A., Robison, A.J., Neve, R.L., Nestler, E.J., and Malenka, R.C. (2013). FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc. Natl. Acad. Sci. USA 110, 1923–1928.10.1073/pnas.1221742110Search in Google Scholar
Guan, Z., Giustetto, M., Lomvardas, S., Kim, J.-H., Miniaci, M.C., Schwartz, J.H., Thanos, D., and Kandel, E.R. (2002). Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493.10.1016/S0092-8674(02)01074-7Search in Google Scholar
Guzowski, J.F., Setlow, B., Wagner, E.K., and McGaugh, J.L. (2001). Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098.10.1523/JNEUROSCI.21-14-05089.2001Search in Google Scholar
Han, J.-H., Kushner, S.A., Yiu, A.P., Cole, C.J., Matynia, A., Brown, R.A., Neve, R.L., Guzowski, J.F., Silva, A.J., and Josselyn, S.A. (2007). Neuronal competition and selection during memory formation. Science 316, 457–460.10.1126/science.1139438Search in Google Scholar PubMed
Herdegen, T., Kovary, K., Buhl, A., Bravo, R., Zimmermann, M., and Gass, P. (1995). Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain. J. Compar. Neurol. 354, 39–56.10.1002/cne.903540105Search in Google Scholar PubMed
Herdegen, T., Blume, A., Buschmann, T., Georgakopoulos, E., Winter, C., Schmid, W., Hsieh, T.F., Zimmermann, M., and Gass, P. (1997). Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience 81, 199–212.10.1016/S0306-4522(97)00170-XSearch in Google Scholar
Hess, U., Lynch, G., and Gall, C. (1995). Changes in c-fos mRNA expression in rat brain during odor discrimination learning: differential involvement of hippocampal subfields CA1 and CA3. J. Neurosci. 15, 4786–4795.10.1523/JNEUROSCI.15-07-04786.1995Search in Google Scholar
Hipskind, R.A., Roa, V.N., Muller, C.G.F., Raddy, E.S.P., and Nordheim, A. (1991). Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature 354, 531–534.10.1038/354531a0Search in Google Scholar
Hope, B.T., Nye, H.E., Kelz, M.B., Self, D.W., Iadarola, M.J., Nakabeppu, Y., Duman, R.S., and Nestler, E.J. (1994). Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244.10.1016/0896-6273(94)90061-2Search in Google Scholar
Huber, K.M., Kayser, M.S., and Bear, M.F. (2000). Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257.10.1126/science.288.5469.1254Search in Google Scholar
James, A.B., Conway, A.M., and Morris, B.J. (2005). Genomic profiling of the neuronal target genes of the plasticity-related transcription factor – Zif268. J. Neurochem. 95, 796–810.10.1111/j.1471-4159.2005.03400.xSearch in Google Scholar
Janknecht, R. and Nordheim, A. (1992). Elk-1 protein domains required for direct and SRF-assisted DNA-binding. Nucleic. Acids Res. 20, 3317–3324.10.1093/nar/20.13.3317Search in Google Scholar
Janknecht, R. and Nordheim, A. (1993). Gene regulation by Ets proteins. Biochim Biophys Acta 1155, 346–356.10.1016/0304-419X(93)90014-4Search in Google Scholar
Janknecht, R. and Nordheim, A. (1996). MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem. Biophys Res. Commun. 228, 831–837.10.1006/bbrc.1996.1740Search in Google Scholar PubMed
Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V.P., Garel, S., Charnay, P., Bozon, B., Laroche, S., and Davis, S. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.10.1038/85138Search in Google Scholar PubMed
Kaczmarek, L. (1993). Molecular biology of vertebrate learning: is c-fos a new beginning? J. Neurosci. Res. 34, 377–381.10.1002/jnr.490340402Search in Google Scholar
Kaczmarek, L., Siedlecki, J.A., and Danysz, W. (1988). Proto-oncogene c-fos induction in rat hippocampus. Mol. Brain Res. 3, 183–186.10.1016/0169-328X(88)90064-2Search in Google Scholar
Kaltschmidt, B., Ndiaye, D., Korte, M., Pothion, S., Arbibe, L., Prüllage, M., Pfeiffer, J., Lindecke, A., Staiger, V., Israël, A., et al. (2006). NF-κB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol. Cell Biol. 26, 2936–2946.10.1128/MCB.26.8.2936-2946.2006Search in Google Scholar PubMed PubMed Central
Kathirvelu, B., East, B.S., Hill, A.R., Smith, C.A., and Colombo, P.J. (2013). Lentivirus-mediated chronic expression of dominant-negative CREB in the dorsal hippocampus impairs memory for place learning and contextual fear conditioning. Neurobiol. Learn Mem. 99, 10–16.10.1016/j.nlm.2012.10.008Search in Google Scholar PubMed
Kelz, M.B., Chen, J., Carlezon, W.A., Whisler, K., Gilden, L., Beckmann, A.M., Steffen, C., Zhang, Y.-J., Marotti, L., Self, D.W., et al. (1999). Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276.10.1038/45790Search in Google Scholar PubMed
Kemp, A., Tischmeyer, W., and Manahan-Vaughan, D. (2013). Learning-facilitated long-term depression requires activation of the immediate early gene, c-fos, and is transcription dependent. Behav. Brain. Res. 254, 83–91.10.1016/j.bbr.2013.04.036Search in Google Scholar PubMed
Kida, S., Josselyn, S.A., de Ortiz, S.P., Kogan, J.H., Chevere, I., Masushige, S., and Silva, A.J. (2002). CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355.10.1038/nn819Search in Google Scholar PubMed
Kim, J.J. and Diamond, D.M. (2002). The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462.10.1038/nrn849Search in Google Scholar PubMed
Kim, J., Kwon, J.T., Kim, H.S., Josselyn, S.A., and Han, J.H. (2014). Memory recall and modifications by activating neurons with elevated CREB. Nat. Neurosci. 17, 65–72.10.1038/nn.3592Search in Google Scholar PubMed
Knapska, E. and Kaczmarek, L. (2004). A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog. Neurobiol. 74, 183–211.10.1016/j.pneurobio.2004.05.007Search in Google Scholar PubMed
Knöll, B. and Nordheim, A. (2009). Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci. 32, 432–442.10.1016/j.tins.2009.05.004Search in Google Scholar
Knöll, B., Kretz, O., Fiedler, C., Alberti, S., Schutz, G., Frotscher, M., Nordheim, A. (2006). Serum response factor controls neuronal circuit assembly in the hippocampus. Nat. Neurosci. 9, 195–204.10.1038/nn1627Search in Google Scholar
Kovács, K.J. (1998). Invited review c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 33, 287–297.10.1016/S0197-0186(98)00023-0Search in Google Scholar
Kuo, C.F., Xanthopoulos, K.G., and Darnell, Jr, J.E. (1990). Fetal and adult localization of C/EBP: evidence for combinatorial action of transcription factors in cell-specific gene expression. Development 109, 473–481.10.1242/dev.109.2.473Search in Google Scholar PubMed
Lakhina, V., Arey Rachel, N., Kaletsky, R., Kauffman, A., Stein, G., Keyes, W., Xu, D., and Murphy Coleen, T. (2015). Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 85, 330–345.10.1016/j.neuron.2014.12.029Search in Google Scholar PubMed PubMed Central
Latinkic, B.V., Zeremski, M., and Lau, L.F. (1996). Elk-1 can recruit SRF to form a ternary complex upon the serum response element. Nucleic. Acids Res. 24, 1345–1351.10.1093/nar/24.7.1345Search in Google Scholar PubMed PubMed Central
Lee, J.L.C., Everitt, B.J., and Thomas, K.L. (2004). Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843.10.1126/science.1095760Search in Google Scholar PubMed
Li, C.L., Sathyamurthy, A., Oldenborg, A., Tank, D., and Ramanan, N. (2014). SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons. J. Neurosci. 34, 4027–4042.10.1523/JNEUROSCI.4677-12.2014Search in Google Scholar PubMed PubMed Central
Lindecke, A., Korte, M., Zagrebelsky, M., Horejschi, V., Elvers, M., Widera, D., Prüllage, M., Pfeiffer, J., Kaltschmidt, B., and Kaltschmidt, C. (2006). Long-term depression activates transcription of immediate early transcription factor genes: involvement of serum response factor/Elk-1. Eur. J. Neurosci. 24, 555–563.10.1111/j.1460-9568.2006.04909.xSearch in Google Scholar PubMed
Liu, X., Ramirez, S., Pang, P.T., Puryear, C.B., Govindarajan, A., Deisseroth, K., and Tonegawa. S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385.10.1038/nature11028Search in Google Scholar PubMed PubMed Central
Liu, J., Pasini, S., Shelanski, M.L., and Greene, L.A. (2014). Activating transcription factor 4 (ATF4). modulates post-synaptic development and dendritic spine morphology. Front Cell Neurosci. 8, 177.10.3389/fncel.2014.00177Search in Google Scholar
Lonze, B.E. and Ginty, D.D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623.10.1016/S0896-6273(02)00828-0Search in Google Scholar
Lopez de Armentia, M., Jancic, D., Olivares, R., Alarcon, J.M., Kandel, E.R., Barco, A. (2007). cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 13909–13918.10.1523/JNEUROSCI.3850-07.2007Search in Google Scholar
Malinow, R., Schulman, H., and Tsien, R. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.10.1126/science.2549638Search in Google Scholar
Manahan-Vaughan, D., Kulla, A., and Frey, J.U. (2000). Requirement of translation but not transcription for the maintenance of long-term depression in the CA1 region of freely moving rats. J. Neurosci. 20, 8572–8576.10.1523/JNEUROSCI.20-22-08572.2000Search in Google Scholar
Marais, R., Wynne, J., and Treisman, R. (1993). The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393.10.1016/0092-8674(93)90237-KSearch in Google Scholar
Marie, H., Morishita, W., Yu, X., Calakos, N., and Malenka, R.C. (2005). Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752.10.1016/j.neuron.2005.01.039Search in Google Scholar PubMed
Matsuo, K., Owens, J.M., Tonko, M., Elliott, C., Chambers, T.J., and Wagner, E.F. (2000). Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184–187.10.1038/72855Search in Google Scholar PubMed
Matsuo, K., Galson, D.L., Zhao, C., Peng, L., Laplace, C., Wang, K.Z.Q., Bachler, M.A., Amano, H., Aburatani, H., Ishikawa, H., et al. (2004). Nuclear factor of activated T-cells (NFAT). rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279, 26475–26480.10.1074/jbc.M313973200Search in Google Scholar PubMed
Matthews, C.P., Colburn, N.H., and Young, M.R. (2007). AP-1 a target for cancer prevention. Curr Cancer Drug Targets 7, 317–324.10.2174/156800907780809723Search in Google Scholar PubMed
Mayr, B. and Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609.10.1038/35085068Search in Google Scholar
McGahan, L., Hakim, A.M., Nakabeppu, Y., and Robertson, G.S. (1998). Ischemia-induced CA1 neuronal death is preceded by elevated FosB and Jun expression and reduced NGFI-A and JunB levels. Mol. Brain Res, 56, 146–161.10.1016/S0169-328X(98)00039-4Search in Google Scholar
McGaugh, J.L. (2000). Memory – a century of consolidation. Science 287, 248–251.10.1126/science.287.5451.248Search in Google Scholar
Meffert, M.K., Chang, J.M., Wiltgen, B.J., Fanselow, M.S., and Baltimore, D. (2003). NF-κB functions in synaptic signaling and behavior. Nat. Neurosci, 6, 1072–1078.10.1038/nn1110Search in Google Scholar
Miano, J.M., Long, X., and Fujiwara, K. (2007). Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am. J. Physiol. Cell Physiol. 292, C70–C81.10.1152/ajpcell.00386.2006Search in Google Scholar
Minatohara, K., Akiyoshi, M., and Okuno, H. (2015). Role of immediate–early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol. Neurosci. 8, 78.10.3389/fnmol.2015.00078Search in Google Scholar
Miranti, C.K., Ginty, D.D., Huang, G., Chatila, T., and Greenberg, M.E. (1995). Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell Biol. 15, 3672–3684.10.1128/MCB.15.7.3672Search in Google Scholar
Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., and Nabeshima, T. (2002). CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav. Brain Res. 133, 135–141.10.1016/S0166-4328(01)00470-3Search in Google Scholar
Mo, J., Kim, C.-H., Lee, D., Sun, W., Lee, H.W., and Kim, H. (2015). Early growth response 1 (Egr-1). directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus. J. Neurochem. 133, 489–500.10.1111/jnc.13077Search in Google Scholar PubMed
Montminy, M.R., Bilezikjian, L.M. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175–178.10.1038/328175a0Search in Google Scholar PubMed
Mouravlev, A., Young, D., and During, M.J. (2007). Phosphorylation-dependent degradation of transgenic CREB protein initiated by heterodimerization. Brain Res. 1130, 31–37.10.1016/j.brainres.2006.10.076Search in Google Scholar
Nakabeppu, Y. and Nathans, D. (1991). A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64, 751–759.10.1016/0092-8674(91)90504-RSearch in Google Scholar
Nestler, E.J. (2015). ΔFosB: a transcriptional regulator of stress and antidepressant responses. Eur. J. Pharmacol. 753, 66–72.10.1016/j.ejphar.2014.10.034Search in Google Scholar
Nestler, E.J., Kelz, M.B., and Chen, J. (1999). ΔFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res. 835, 10–17.10.1016/S0006-8993(98)01191-3Search in Google Scholar
Neves, G., Cooke, S.F., and Bliss, T.V.P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75.10.1038/nrn2303Search in Google Scholar
Nguyen, P.V., Abel, T., and Kandel, E.R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107.10.1126/science.8066450Search in Google Scholar
Nikolaev, E., Kaminska, B., Tischmeyer, W., Matthies, H., and Kaczmarek, L. (1992). Induction of expression of genes encoding transcription factors in the rat brain elicited by behavioral training. Brain Res. Bull 28, 479–484.10.1016/0361-9230(92)90050-8Search in Google Scholar
Pasini, S., Corona, C., Liu, J., Greene Lloyd, A., and Shelanski Michael, L. (2015). Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep. 11, 183–191.10.1016/j.celrep.2015.03.025Search in Google Scholar PubMed PubMed Central
Penke, Z., Chagneau, C., and Laroche, S. (2011). Contribution of Egr1/zif268 to activity-dependent Arc/Arg3.1 transcription in the dentate gyrus and area CA1 of the hippocampus. Front Behav. Neurosci, 5, 48.10.3389/fnbeh.2011.00048Search in Google Scholar PubMed PubMed Central
Penke, Z., Morice, E., Veyrac, A., Gros, A., Chagneau, C., LeBlanc, P., Samson, N., Baumgärtel, K., Mansuy, I.M., Davis, S., et al. (2014). Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Phil. Trans. R Soc. Lond B: Biol. Sci. 369, 20130159.10.1098/rstb.2013.0159Search in Google Scholar PubMed PubMed Central
Perrotti, L.I., Hadeishi, Y., Ulery, P.G., Barrot, M., Monteggia, L., Duman, R.S., Nestler, E.J. (2004). Induction of ΔFosB in reward-related brain structures after chronic stress. J. Neurosci. 24, 10594–10602.10.1523/JNEUROSCI.2542-04.2004Search in Google Scholar
Perrotti, L.I., Weaver, R.R., Robison, B., Renthal, W., Maze, I., Yazdani. S., Elmore, R.G., Knapp, D.J., Selley, D.E., Martin, B.R., et al. (2008). Distinct patterns of ΔFosB induction in brain by drugs of abuse. Synapse 62, 358–369.10.1002/syn.20500Search in Google Scholar
Pittenger, C., Huang, Y.Y., Paletzki, R.F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., and Kandel, E.R. (2002). Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447–462.10.1016/S0896-6273(02)00684-0Search in Google Scholar
Qin, X., Jiang, Y., Tse, Y.C., Wang, Y., Wong, T.P., and Paudel, H.K. (2015). Early growth response 1 (Egr-1). regulates N-Methyl-d-aspartate receptor (NMDAR)-dependent transcription of PSD-95 and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking in hippocampal primary neurons. J. Biol. Chem. 290, 29603–29616.10.1074/jbc.M115.668889Search in Google Scholar PubMed PubMed Central
Ramanan, N., Shen, Y., Sarsfield, S., Lemberger, T., Schutz, G., Linden, D.J., and Ginty, D.D. (2005). SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8, 759–767.10.1038/nn1462Search in Google Scholar PubMed
Rao, V., Huebner, K., Isobe, M., ar-Rushdi, A., Croce, C., and Reddy, E. (1989). elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Science 244, 66–70.10.1126/science.2539641Search in Google Scholar PubMed
Rashid, A.J., Cole, C.J., and Josselyn, S.A. (2014). Emerging roles for MEF2 transcription factors in memory. Genes. Brain. Behav, 13, 118–125.10.1111/gbb.12058Search in Google Scholar PubMed
Renaudineau, S., Poucet, B., Laroche, S., Davis, S., and Save, E. (2009). Impaired long-term stability of CA1 place cell representation in mice lacking the transcription factor zif268/egr1. Proc. Natl. Acad. Sci. USA 106, 11771–11775.10.1073/pnas.0900484106Search in Google Scholar PubMed PubMed Central
Renthal, W., Carle, T.L., Maze, I., Covington, H.E., Truong, H.-T., Alibhai, I., Kumar, A., Montgomery, R.L., Olson, E.N., and Nestler, E.J. (2008). ΔFosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J. Neurosci. 28, 7344–7349.10.1523/JNEUROSCI.1043-08.2008Search in Google Scholar PubMed PubMed Central
Restivo, L., Tafi, E., Ammassari-Teule, M., and Marie, H. (2009). Viral-mediated expression of a constitutively active form of CREB in hippocampal neurons increases memory. Hippocampus 19, 228–234.10.1002/hipo.20527Search in Google Scholar PubMed
Robison, A.J. and Nestler, E.J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12, 623–637.10.1038/nrn3111Search in Google Scholar
Robison, A.J., Vialou, V., Mazei-Robison, M., Feng, J., Kourrich, S., Collins, M., Wee, S., Koob, G., Turecki, G., Neve, R., et al. (2013). Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J. Neurosci. 33, 4295–4307.10.1523/JNEUROSCI.5192-12.2013Search in Google Scholar
Robison, A.J., Vialou, V., Sun, H.S., Labonte, B., Golden, S., Dias, C., Turecki, G., Tamminga, C., Russo, S., Mazei-Robison, M., et al. (2014). Fluoxetine epigenetically alters the CaMKIIα promoter in nucleus accumbens to regulate ΔFosB binding and antidepressant effects. Neuropsychopharmacology 39, 1178–1186.10.1038/npp.2013.319Search in Google Scholar
Sagar, S., Sharp, F., and Curran, T. (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328–1331.10.1126/science.3131879Search in Google Scholar
Sananbenesi, F., Fischer, A., Schrick, C., Spiess, J., and Radulovic, J. (2002). Phosphorylation of hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during contextual fear conditioning: interactions between Erk-1/2 and Elk-1. Mol. Cell Neurosci. 21, 463–476.10.1006/mcne.2002.1188Search in Google Scholar
Sealy, L., Malone, D., and Pawlak, M. (1997). Regulation of the cfos serum response element by C/EBPβ. Mol. Cell Biol. 17, 1744–1755.10.1128/MCB.17.3.1744Search in Google Scholar
Sgambato, V., Vanhoutte, P., Pagès, C., Rogard, M., Hipskind, R., Besson, M.-J., Caboche, J. (1998). In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J. Neurosci. 18, 214–226.10.1523/JNEUROSCI.18-01-00214.1998Search in Google Scholar
Sheng, M. and Greenberg, M.E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477–485.10.1016/0896-6273(90)90106-PSearch in Google Scholar
Sheng, M., McFadden, G., and Greenberg, M.E. (1990). Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582.10.1016/0896-6273(90)90115-VSearch in Google Scholar
Shore, P. and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur. J. Biochem. 229, 1–13.10.1007/978-3-642-85252-7_7Search in Google Scholar
Silva, A.J., Zhou, Y., Rogerson, T., Shobe, J., and Balaji, J. (2009). Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395.10.1126/science.1174519Search in Google Scholar
Stringer, J.L., Belaguli, N.S., Iyer, D., Schwartz, R.J., and Balasubramanyam, A. (2002). Developmental expression of serum response factor in the rat central nervous system. Dev. Brain Res. 138, 81–86.10.1016/S0165-3806(02)00467-4Search in Google Scholar
Stritt, C. and Knöll, B. (2010). Serum response factor regulates hippocampal lamination and dendrite development and Is connected with reelin signaling. Mol. Cell Biol. 30, 1828–1837.10.1128/MCB.01434-09Search in Google Scholar
Stritt, C., Stern, S., Harting, K., Manke, T., Sinske, D., Schwarz, H., Vingron, M., Nordheim, A., and Knoll, B. (2009). Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat. Neurosci. 12, 418–427.10.1038/nn.2280Search in Google Scholar
Suzuki, A., Fukushima, H., Mukawa, T., Toyoda, H., Wu, L.-J., Zhao, M.-G., Xu, H., Shang, Y., Endoh, K., Iwamoto, T., et al. (2011). Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J. Neurosci. 31, 8786–8802.10.1523/JNEUROSCI.3257-10.2011Search in Google Scholar
Sweatt, J.D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 14, 311–317.10.1016/j.conb.2004.04.001Search in Google Scholar
Tao, X., Finkbeiner, S., Arnold, D.B., Shaywitz, A.J., and Greenberg, M.E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726.10.1016/S0896-6273(00)81010-7Search in Google Scholar
Taubenfeld, S.M., Milekic, M.H., Monti, B., and Alberini, C.M. (2001a). The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nat. Neurosci. 4, 813–818.10.1038/90520Search in Google Scholar PubMed
Taubenfeld, S.M., Wiig, K.A., Monti, B., Dolan, B., Pollonini, G., and Alberini, C.M. (2001b). Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein β and δ co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. J. Neurosci. 21, 84–91.10.1523/JNEUROSCI.21-01-00084.2001Search in Google Scholar
Thiels, E., Kanterewicz, B.I., Norman, E.D., Trzaskos, J.M., and Klann, E. (2002). Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. J. Neurosci. 22, 2054–2062.10.1523/JNEUROSCI.22-06-02054.2002Search in Google Scholar
Tischmeyer, W., Kaczmarek, L., Strauss, M., Jork, R., and Matthies, H. (1990). Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behav. Neural. Biol. 54, 165–171.10.1016/0163-1047(90)91366-JSearch in Google Scholar
Treisman, R. (1987). Identification and purification of a polypeptide that binds to the c-fos serum response element. EMBO J. 6, 2711–2717.10.1002/j.1460-2075.1987.tb02564.xSearch in Google Scholar PubMed PubMed Central
Ulery, P.G., Rudenko, G., and Nestler, E.J. (2006). Regulation of ΔFosB stability by phosphorylation. J. Neurosci. 26, 5131–5142.10.1523/JNEUROSCI.4970-05.2006Search in Google Scholar PubMed PubMed Central
Ulery-Reynolds, P.G., Castillo, M.A., Vialou, V., Russo, S.J., and Nestler, E.J. (2009). Phosphorylation of ΔFosB mediates its stability in vivo. Neuroscience 158, 369–372.10.1016/j.neuroscience.2008.10.059Search in Google Scholar PubMed PubMed Central
Vanhoutte, P., Barnier, J.-V., Guibert, B., Pagès, C., Besson, M.-J., Hipskind, R.A., and Caboche, J. (1999). Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol. Cell Biol, 19, 136–146.10.1128/MCB.19.1.136Search in Google Scholar PubMed PubMed Central
Veyrac, A., Besnard, A., Caboche, J., Davis, S., and Laroche, S. (2014). The transcription factor Zif268/Egr1, brain plasticity, and memory. In: Molecular Basis of Memory: Progress in Molecular Biology and Translational Science. (New York, USA: Academic Press), pp. 89–129.10.1016/B978-0-12-420170-5.00004-0Search in Google Scholar PubMed
Vialou, V., Robison, A.J., Laplant, Q.C., Covington, H.E. 3rd, Dietz, D.M., Ohnishi, Y.N., Mouzon, E., Rush, A.J. 3rd, Watts, E.L., Wallace, D.L., et al. (2010). DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat. Neurosci. 13, 745–752.10.1038/nn.2551Search in Google Scholar PubMed PubMed Central
Vialou, V., Feng, J., Robison, A.J., Ku, S.M., Ferguson, D., Scobie, K.N., Mazei-Robison, M.S., Mouzon, E., Nestler, E.J. (2012). Serum response factor and cAMP response element binding protein are both required for cocaine induction of ΔFosB. J. Neurosci. 32, 7577–7584.10.1523/JNEUROSCI.1381-12.2012Search in Google Scholar PubMed PubMed Central
Vialou, V., Thibault, M., Kaska, S., Cooper, S., Gajewski, P., Eagle, A., Mazei-Robison, M., Nestler, E.J., and Robison, A.J. (2015). Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress. Neuropharmacology 99, 28–37.10.1016/j.neuropharm.2015.07.005Search in Google Scholar PubMed PubMed Central
West, A.E. and Greenberg, M.E. (2011). Neuronal activity–regulated gene transcription in synapse development and cognitive function. Cold Spring Harbor Perspect. Biol. 3, a005744.10.1101/cshperspect.a005744Search in Google Scholar PubMed PubMed Central
Wheeler, D.G., Groth, R.D., Ma, H., Barrett, C.F., Owen, S.F., Safa, P., and Tsien, R.W. (2012). Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca2+ signaling to control CREB-dependent gene expression. Cell 149, 1112–1124.10.1016/j.cell.2012.03.041Search in Google Scholar
Wisden, W., Errington, M.L., Williams, S., Dunnett, S.B., Waters, C., Hitchcock, D., Evan, G., Bliss, T.V.P., and Hunt, S.P. (1990). Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4, 603–614.10.1016/0896-6273(90)90118-YSearch in Google Scholar
Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Oliveira, A.M.M., Lombardi, T.L., and Abel, T. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Memory 12, 111–119.10.1101/lm.86605Search in Google Scholar
Wood, M.A., Attner, M.A., Oliveira, A.M.M., Brindle, P.K., and Abel, T. (2006). A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn Memory 13, 609–617.10.1101/lm.213906Search in Google Scholar
Worley, P.F., Bhat, R.V., Baraban, J.M., Erickson, C.A., McNaughton, B.L., and Barnes, C.A. (1993). Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J. Neurosci. 13, 4776–4786.10.1523/JNEUROSCI.13-11-04776.1993Search in Google Scholar
Xia, Z., Dudek, H., Miranti, C.K., Greenberg, M.E. (1996). Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436.10.1523/JNEUROSCI.16-17-05425.1996Search in Google Scholar
Yin, J.C.P., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.10.1016/0092-8674(94)90399-9Search in Google Scholar
Ying, S.W., Futter, M., Rosenblum, K., Webber, M.J., Hunt, S.P., Bliss, T.V., and Bramham, C.R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540.10.1523/JNEUROSCI.22-05-01532.2002Search in Google Scholar
Yiu, A.P., Mercaldo, V., Yan, C., Richards, B., Rashid, A.J., Hsiang, H.L., Pressey, J., Mahadevan, V., Tran, M.M., Kushner, S.A., et al. (2014). Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735.10.1016/j.neuron.2014.07.017Search in Google Scholar PubMed
Yutsudo, N., Kamada, T., Kajitani, K., Nomaru, H., Katogi, A., Ohnishi, Y.H., Ohnishi, Y.N., Takase, K.-i., Sakumi, K., Shigeto, H., et al. (2013). fosB-null mice display impaired adult hippocampal neurogenesis and spontaneous epilepsy with depressive behavior. Neuropsychopharmacology 38, 895–906.10.1038/npp.2012.260Search in Google Scholar PubMed PubMed Central
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Role of hippocampal activity-induced transcription in memory consolidation
- Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory
- The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression
- The role of the low-density lipoprotein receptor–related protein 1 (LRP-1) in regulating blood-brain barrier integrity
- Deciphering variability in the role of interleukin-1β in Parkinson’s disease
- Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review
Articles in the same Issue
- Frontmatter
- Role of hippocampal activity-induced transcription in memory consolidation
- Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory
- The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression
- The role of the low-density lipoprotein receptor–related protein 1 (LRP-1) in regulating blood-brain barrier integrity
- Deciphering variability in the role of interleukin-1β in Parkinson’s disease
- Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review