Home Situationally appropriate behavior: translating situations into appetitive behavior modes
Article
Licensed
Unlicensed Requires Authentication

Situationally appropriate behavior: translating situations into appetitive behavior modes

  • Ralf-Peter Behrendt EMAIL logo
Published/Copyright: November 21, 2013
Become an author with De Gruyter Brill

Abstract

If an organism’s responding to its present location or more abstract situation is similar to its responding to discrete motivationally salient stimuli, then principles of stimulus-response relationships and their acquisition may apply to the organization of behavior that appears to be sensitive and appropriate to the organism’s external context. Locations or situations become motivationally salient, insofar as they acquire the ability to compel the organism to obtain a specific type of reward through more or less constrained exploratory or foraging behavior. The ventral hippocampus is proposed to play a key role in linking a salient situation or location with an appropriate mode of behavior, whereas allocentric information predicted and updated by the dorsal hippocampus may be associated with, or translated into, a sequence of orienting and locomotor actions. The impact of ventral hippocampal representations of salient situations on behavior is mediated by the ventral subiculum, ventromedial prefrontal cortex, and ventral striatum. Projecting via the ventral subiculum to the ventromedial prefrontal cortex and ventral striatum, the ventral hippocampus maps motivationally salient environmental information, as well as emotional information reflective of the internal physiological milieu, onto an instrumental or emotional behavior mode that represents a specialized, more or less purposeful, state of behavioral arousal and global locomotor activation.


Corresponding author: Ralf-Peter Behrendt, Elderly Mental Health Team, Princess Elizabeth Hospital, St. Martin’s, Guernsey, GY4 6UU, UK, e-mail:

  1. 1

    A useful distinction can be made between memory for items and ‘relational memory’. While the hippocampus supports the capacity for memory of an episode on which an object was experienced, the perirhinal cortex supports task performance based on stimulus familiarity alone (Brown and Aggleton, 2001; Eichenbaum et al., 2007). Research into human amnesia confirms that, while the perirhinal cortex supports memory for items (Barense et al., 2005), the hippocampus is critically involved in the formation and flexible use of representations of relations among items in scenes or events (relational memory) (Ryan et al., 2000).

  2. 2

    This is not inconsistent with the implication by Izaki et al. (2008) of the pathway from the dorsal hippocampus (with which the intermediate hippocampus overlaps) to the medial prefrontal cortex in short-term working memory processes.

  3. 3

    Only dopaminergic neurons that have become spontaneously active can be induced by excitatory input (such as from the pedunculopontine tegmental nucleus) to burst fire. Thus, the ventral subiculum is in a position to determine which dopaminergic neurons can be recruited into burst-firing mode by excitatory inputs (Lodge and Grace, 2006, 2007).

  4. 4

    Due to its processing of interoceptive information (and, hence, its ability to represent bodily states), the insula has been implicated in conscious emotional experience and feeling (Damasio, 1997, 2001; Singer, 2007). Information from the insular cortex reaches the anterior part of the hippocampus via the lateral entorhinal cortex, similarly to olfactory information and information processed by the perirhinal cortex (reviewed in Mohedano-Moriano et al., 2007). Emotional information from the agranular insula may thus be in a position to influence emotional aspects of event memory formation and maintain the subject’s emotional experience of his or her situation, assuming that event memory formation and recall, including the formation and recall of emotional memories, are closely related to mechanisms that support conscious experience (Behrendt, 2010).

  5. 5

    Default-mode network activity also supports exploratory monitoring of the external world and monitoring for unexpected events, during which, similarly to internal cognition (introspection), a broad low-level focus of attention is adopted (relaxed attention) (Buckner et al., 2008).

References

Addis, D.R., Wong, A.T., and Schacter, D.L. (2007). Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377.10.1016/j.neuropsychologia.2006.10.016Search in Google Scholar

Ahn, S. and Phillips, A.G. (2002). Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J. Neurosci. 22, 10958–10965.10.1523/JNEUROSCI.22-24-10958.2002Search in Google Scholar

Andersen, R.A. and Buneo, C.A. (2002). Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220.10.1146/annurev.neuro.25.112701.142922Search in Google Scholar

Anderson, M.I. and Jeffery, K.J. (2003). Heterogeneous modulation of place cell firing by changes in context. J. Neurosci. 23, 8827–8835.10.1523/JNEUROSCI.23-26-08827.2003Search in Google Scholar

Aragona, B.J. and Wang, Z. (2009). Dopamine regulation of social choice in a monogamous rodent species. Front. Behav. Neurosci. 3, 15.10.3389/neuro.08.015.2009Search in Google Scholar

Arana, F.S., Parkinson, J.A., Hinton, E., Holland, A.J., Owen, A.M., and Roberts, A.C. (2003). Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J. Neurosci. 23, 9632–9638.10.1523/JNEUROSCI.23-29-09632.2003Search in Google Scholar

Aron, A.R. and Poldrack, R.A. (2006). Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433.10.1523/JNEUROSCI.4682-05.2006Search in Google Scholar

Balleine, B.W. and Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419.10.1016/S0028-3908(98)00033-1Search in Google Scholar

Balleine, B.W., Killcross, A.S., and Dickinson, A. (2003). The effect of lesions of the basolateral amygdala on instrumental conditioning. J. Neurosci. 23, 666–675.10.1523/JNEUROSCI.23-02-00666.2003Search in Google Scholar

Bannerman, D.M., Rawlins, J.N., McHugh, S.B., Deacon, R.M., Yee, B.K., Bast, T., Zhang, W.N., Pothuizen, H.H., and Feldon, J. (2004). Regional dissociations within the hippocampus – memory and anxiety. Neurosci. Biobehav. Rev. 28, 273–283.10.1016/j.neubiorev.2004.03.004Search in Google Scholar PubMed

Barense, M.D., Bussey, T.J., Lee, A.C., Rogers, T.T., Davies, R.R., Saksida, L.M., Murray, E.A., and Graham, K.S. (2005). Functional specialization in the human medial temporal lobe. J. Neurosci. 25, 10239–10246.10.1523/JNEUROSCI.2704-05.2005Search in Google Scholar

Bast, T., Wilson, I.A., Witter, M.P., and Morris, R.G. (2009). From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol. 7, e1000089.10.1371/journal.pbio.1000089Search in Google Scholar

Bechara, A., Damasio, H., and Damasio, A.R. (2000). Emotion, decision-making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307.10.1093/cercor/10.3.295Search in Google Scholar

Behrendt, R.P. (2010). Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucinations. Neurosci. Biobehav. Rev. 34, 1121–1136.10.1016/j.neubiorev.2009.12.009Search in Google Scholar

Belujon, P. and Grace, A.A. (2008). Critical role of the prefrontal cortex in the regulation of hippocampus-accumbens information flow. J. Neurosci. 28, 9797–9805.10.1523/JNEUROSCI.2200-08.2008Search in Google Scholar

Berridge, K.C. (2007). The debate over dopamine’s role in reward: the case for incentive salience? Psychopharmacology (Berlin) 191, 391–431.10.1007/s00213-006-0578-xSearch in Google Scholar

Berridge, K.C. and Robinson, T.E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning or incentive salience? Brain Res. Rev. 28, 309–369.10.1016/S0165-0173(98)00019-8Search in Google Scholar

Boly, M., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A., Phillips, C., Peigneux, P., Maquet, P., and Laureys, S. (2007). Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. USA 104, 12187–12192.10.1073/pnas.0611404104Search in Google Scholar PubMed PubMed Central

Brady, A.M. and O’Donnell, P. (2004). Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J. Neurosci. 24, 1040–1049.10.1523/JNEUROSCI.4178-03.2004Search in Google Scholar PubMed PubMed Central

Brass, M. and von Cramon, D.Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. J. Cognit. Neurosci. 16, 609–620.10.1162/089892904323057335Search in Google Scholar PubMed

Brown, M.W. and Aggleton, J.P. (2001). Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61.10.1038/35049064Search in Google Scholar

Brun, V.H., Otnass, M.K., Molden, S., Steffenach, H.A., Witter, M.P., Moser, M.B., and Moser, E.I. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246.10.1126/science.1071089Search in Google Scholar

Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38.10.1196/annals.1440.011Search in Google Scholar

Bures, J., Fenton, A.A., Kaminsky, Y., and Zinyuk, L. (1997). Place cells and place navigation. Proc. Natl. Acad. Sci. USA 94, 343–350.10.1073/pnas.94.1.343Search in Google Scholar

Burgess, N., Becker, S., King, J.A., and O′Keefe, J. (2001). Memory for events and their spatial context: models and experiments. Philos. Trans. R. Soc., B 356, 1493–1503.10.1098/rstb.2001.0948Search in Google Scholar

Burton, B.G., Hok, V., Save, E., and Poucet, B. (2009). Lesion of the ventral and intermediate hippocampus abolishes anticipatory activity in the medial prefrontal cortex of the rat. Behav. Brain Res. 199, 222–234.10.1016/j.bbr.2008.11.045Search in Google Scholar

Buzsáki, G. (1996). The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92.10.1093/cercor/6.2.81Search in Google Scholar

Byrne, P., Becker, S., and Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375.10.1037/0033-295X.114.2.340Search in Google Scholar

Cardinal, R.N. and Cheung, T.H. (2005). Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci. 6, 9.10.1186/1471-2202-6-9Search in Google Scholar

Cardinal, R.N., Parkinson, J.A., Hall, J., and Everitt, B.J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352.10.1016/S0149-7634(02)00007-6Search in Google Scholar

Carr, D.B. and Sesack, S.R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20, 3864–3873.10.1523/JNEUROSCI.20-10-03864.2000Search in Google Scholar

Cavada, C., Compañy, T., Tejedor, J., Cruz-Rizzolo, R.J., and Reinoso-Suárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10, 220–242.10.1093/cercor/10.3.220Search in Google Scholar PubMed

Cenquizca, L.A. and Swanson, L.W. (2006). Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J. Comp. Neurol. 497, 101–114.10.1002/cne.20985Search in Google Scholar PubMed PubMed Central

Cenquizca, L.A. and Swanson, L.W. (2007). Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Rev. 56, 1–26.10.1016/j.brainresrev.2007.05.002Search in Google Scholar PubMed PubMed Central

Charara, A. and Grace, A.A. (2003). Dopamine receptor subtypes selectively modulate excitatory afferents from the hippocampus and amygdala to rat nucleus accumbens neurons. Neuropsychopharmacology 28, 1412–1421.10.1038/sj.npp.1300220Search in Google Scholar PubMed

Cheung, T.H. and Cardinal, R.N. (2005). Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci. 6, 36.10.1186/1471-2202-6-36Search in Google Scholar PubMed PubMed Central

Choi, D.C., Furay, A.R., Evanson, N.K., Ostrander, M.M., Ulrich-Lai, Y.M., and Herman, J.P. (2007). Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J. Neurosci. 27, 2025–2034.10.1523/JNEUROSCI.4301-06.2007Search in Google Scholar PubMed PubMed Central

Colby, C.L. and Goldberg, M.E. (1999). Space and attention in parietal cortex. Ann. Rev. Neurosci. 22, 319–349.10.1146/annurev.neuro.22.1.319Search in Google Scholar PubMed

Congdon, E. and Canli, T. (2005). The endophenotype of impulsivity: reaching consilience through behavioral, genetic, and neuroimaging approaches. Behav. Cognit. Neurosci. Rev. 4, 262–281.10.1177/1534582305285980Search in Google Scholar PubMed

Contreras, M., Ceric, F., and Torrealba, F. (2007). Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318, 655–658.10.1126/science.1145590Search in Google Scholar PubMed

Cooper, D.C., Chung, S., and Spruston, N. (2005). Output-mode transitions are controlled by prolonged inactivation of sodium channels in pyramidal neurons of subiculum. PLoS Biol. 3, e175.10.1371/journal.pbio.0030175Search in Google Scholar

Corbit, L.H. and Balleine, B.W. (2003). The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146, 145–157.10.1016/j.bbr.2003.09.023Search in Google Scholar

Corbit, L.H., Muir, J.L., and Balleine, B.W. (2001). The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J. Neurosci. 21, 3251–3260.10.1523/JNEUROSCI.21-09-03251.2001Search in Google Scholar

Corcoran, K.A. and Quirk, G.J. (2007). Activity in the prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 27, 840–844.10.1523/JNEUROSCI.5327-06.2007Search in Google Scholar

Critchley, H.D., Mathias, C.J., and Dolan, R.J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29, 537–545.10.1016/S0896-6273(01)00225-2Search in Google Scholar

Croft, K.E., Duff, M.C., Kovach, C.K., Anderson, S.W., Adolphs, R., and Tranel, D. (2010). Detestable or marvelous? Neuroanatomical correlates of character judgments. Neuropsychologia 48, 1789–1801.10.1016/j.neuropsychologia.2010.03.001Search in Google Scholar PubMed PubMed Central

Damasio, A.R. (1997). Neuropsychology: towards a neuropathology of emotion and mood. Nature 386, 769–770.10.1038/386769a0Search in Google Scholar PubMed

Davidson, T.J., Kloosterman, F., and Wilson, M.A. (2009). Hippocampal replay of extended experience. Neuron 63, 497–507.10.1016/j.neuron.2009.07.027Search in Google Scholar PubMed PubMed Central

Dean, H.L. and Platt, M.L. (2006). Allocentric spatial referencing of neuronal activity in macaque posterior cingulate cortex. J. Neurosci. 26, 1117–1127.10.1523/JNEUROSCI.2497-05.2006Search in Google Scholar PubMed PubMed Central

Depue, R.A. and Morrone-Strupinsky, J.V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualising a human trait of affiliation. Behav. Brain Sci. 28, 313–350.10.1017/S0140525X05000063Search in Google Scholar PubMed

DeVito, L.M. and Eichenbaum, H. (2010). Distinct contributions of the hippocampus and medial prefrontal cortex to the “what-where-when” components of episodic-like memory in mice. Behav. Brain Res. 215, 318–325.10.1016/j.bbr.2009.09.014Search in Google Scholar

DeVito, L.M., Lykken, C., Kanter, B.R., and Eichenbaum, H. (2010). Prefrontal cortex: role in acquisition of overlapping associations and transitive inference. Learn. Mem. 17, 161–167.10.1101/lm.1685710Search in Google Scholar

de Wit, S., Kosaki, Y., Balleine, B.W., and Dickinson, A. (2006). Dorsomedial prefrontal cortex resolves response conflict in rats. J. Neurosci. 26, 5224–5229.10.1523/JNEUROSCI.5175-05.2006Search in Google Scholar

Diba, K. and Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242.10.1038/nn1961Search in Google Scholar

Di Chiara, G. (2002). Nucleus accumbens shell and core: differential role in behavior and addiction. Behav. Brain Res. 137, 75–114.10.1016/S0166-4328(02)00286-3Search in Google Scholar

Dosenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A., Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 104, 11073–11078.10.1073/pnas.0704320104Search in Google Scholar PubMed PubMed Central

Eichenbaum, H. and Fortin, N.J. (2005). Bridging the gap between brain and behavior: cognitive and neural mechanisms of episodic memory. J. Exp. Anal. Behav. 84, 619–629.10.1901/jeab.2005.80-04Search in Google Scholar PubMed PubMed Central

Eisenberger, N.I. and Lieberman, M.D. (2004). Why rejection hurts: A common neural alarm system for physical and social pain. Trends Cognit. Sci. 8, 294–300.10.1016/j.tics.2004.05.010Search in Google Scholar PubMed

Eisenberger, N.I., Lieberman, M.D., and Williams, K.D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science 302, 290–292.10.1126/science.1089134Search in Google Scholar PubMed

Eisenberger, N.I., Jarcho, J.M., Lieberman, M.D., and Naliboff, B.D. (2006). An experimental study of shared sensitivity to physical pain and social rejection. Pain 126, 132–138.10.1016/j.pain.2006.06.024Search in Google Scholar PubMed

Ergorul, C. and Eichenbaum, H. (2004). The hippocampus and memory for “what,” “where,” and “when”. Learn Mem. 11, 397–405.10.1101/lm.73304Search in Google Scholar PubMed PubMed Central

Euston, D.R. and McNaughton, B.L. (2006). Apparent encoding of sequential context in rat medial prefrontal cortex is accounted for by behavioral variability. J. Neurosci. 26, 13143–13155.10.1523/JNEUROSCI.3803-06.2006Search in Google Scholar PubMed PubMed Central

Euston, D.R., Tatsuno, M., and McNaughton, B.L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150.10.1126/science.1148979Search in Google Scholar PubMed

Fales, C.L., Barch, D.M., Rundle, M.M., Mintun, M.A., Snyder, A.Z., Cohen, J.D., Mathews, J., and Sheline, Y.I. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol. Psychiatr. 63, 377–384.10.1016/j.biopsych.2007.06.012Search in Google Scholar PubMed PubMed Central

Floresco, S.B. (2007). Dopaminergic regulation of limbic-striatal interplay. J. Psychiatr. Neurosci. 32, 400–411.Search in Google Scholar

Floresco, S.B. and Grace, A.A. (2003). Gating of hippocampal- evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. J. Neurosci. 23, 3930–3943.10.1523/JNEUROSCI.23-09-03930.2003Search in Google Scholar

Floresco, S.B., Seamans, J.K., and Phillips, A.G. (1997). Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 17, 1880–1890.10.1523/JNEUROSCI.17-05-01880.1997Search in Google Scholar

Floresco, S.B., Braaksma, D.N., and Phillips, A.G. (1999). Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze. J. Neurosci. 19, 11061–11071.10.1523/JNEUROSCI.19-24-11061.1999Search in Google Scholar

Floresco, S.B., Todd, C.L., and Grace, A.A. (2001). Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J. Neurosci. 21, 4915–4922.10.1523/JNEUROSCI.21-13-04915.2001Search in Google Scholar

Floresco, S.B., West, A.R., Ash, B., Moore, H., and Grace, A.A. (2003). Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973.10.1038/nn1103Search in Google Scholar PubMed

Forster, S.E. and Brown, J.W. (2011). Medial prefrontal cortex predicts and evaluates the timing of action outcomes. Neuroimage 55, 253–265.10.1016/j.neuroimage.2010.11.035Search in Google Scholar PubMed PubMed Central

Foster, D.J. and Wilson, M.A. (2006). Reverse replay of behavioral sequences in hippocampal place cells during the awake state. Nature 440, 680–683.10.1038/nature04587Search in Google Scholar

Frankland, P.W. and Bontempi, B. (2006). Fast track to the medial prefrontal cortex. Proc. Natl. Acad. Sci. USA 103, 509–510.10.1073/pnas.0510133103Search in Google Scholar

Gabbott, P.L., Headlam, A., and Busby, S.J. (2002). Morphological evidence that CA1 hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (areas 25/32) of the rat. Brain Res. 946, 314–322.10.1016/S0006-8993(02)02487-3Search in Google Scholar

Gabbott, P.L., Warner, T.A., Jays, P.R., Salway, P., and Busby, S.J. (2005). Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol. 492, 145–177.10.1002/cne.20738Search in Google Scholar PubMed

Gabbott, P.L., Warner, T.A., and Busby, S.J. (2006). Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139, 1039–1048.10.1016/j.neuroscience.2006.01.026Search in Google Scholar PubMed

German, P.W. and Fields, H.L. (2007). Rat nucleus accumbens neurons persistently encode locations associated with morphine reward. J. Neurophysiol. 97, 2094–2106.10.1152/jn.00304.2006Search in Google Scholar PubMed

Ghitza, U.E., Fabbricatore, A.T., Prokopenko, V., Pawlak, A.P., and West, M.O. (2003). Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine. J. Neurosci. 23, 7239–7245.10.1523/JNEUROSCI.23-19-07239.2003Search in Google Scholar

Ghitza, U.E., Fabbricatore, A.T., Prokopenko, V.F., and West, M.O. (2004). Differences between accumbens core and shell neurons exhibiting phasic firing patterns related to drug-seeking behavior during a discriminative-stimulus task. J. Neurophysiol. 92, 1608–1614.10.1152/jn.00268.2004Search in Google Scholar PubMed

Gilboa, A., Winocur, G., Grady, C.L., Hevenor, S.J., and Moscovitch, M. (2004). Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex 14, 1214–1225.10.1093/cercor/bhh082Search in Google Scholar PubMed

Gotlib, I.H., Sivers, H., Gabrieli, J.D., Whitfield-Gabrieli, S., Goldin, P., Minor, K.L., and Canli, T. (2005). Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. NeuroReport 16, 1731–1734.10.1097/01.wnr.0000183901.70030.82Search in Google Scholar PubMed

Goto, Y. and Grace, A.A. (2005). Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 8, 805–812.10.1038/nn1471Search in Google Scholar PubMed

Goto, Y. and Grace, A.A. (2008). Dopamine modulation of hippocampal-prefrontal cortical interaction drives memory-guided behavior. Cereb. Cortex 18, 1407–1414.10.1093/cercor/bhm172Search in Google Scholar PubMed PubMed Central

Goto, Y., Otani, S., and Grace, A.A. (2007). The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53, 583–587.10.1016/j.neuropharm.2007.07.007Search in Google Scholar PubMed PubMed Central

Grace, A.A. (2010). Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotoxic. Res. 18, 367–376.10.1007/s12640-010-9154-6Search in Google Scholar PubMed PubMed Central

Grace, A.A., Floresco, S.B., Goto, Y., and Lodge, D.J. (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227.10.1016/j.tins.2007.03.003Search in Google Scholar PubMed

Greicius, M.D., Srivastava, G., Reiss, A.L., and Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA 101, 4637–4642.10.1073/pnas.0308627101Search in Google Scholar PubMed PubMed Central

Gruber, A.J. and O’Donnell, P. (2009). Bursting activation of prefrontal cortex drives sustained up states in nucleus accumbens spiny neurons in vivo. Synapse 63, 173–180.10.1002/syn.20593Search in Google Scholar PubMed PubMed Central

Gruber, A.J., Hussain, R.J., and O’Donnell, P. (2009). The nucleus accumbens: a switchboard for goal-directed behaviors. PLoS One 4, e5062.10.1371/journal.pone.0005062Search in Google Scholar PubMed PubMed Central

Gupta, R., Duff, M.C., Denburg, N.L., Cohen, N.J., Bechara, A., and Tranel, D. (2009). Declarative memory is critical for sustained advantageous complex decision-making. Neuropsychologia 47, 1686–1693.10.1016/j.neuropsychologia.2009.02.007Search in Google Scholar PubMed PubMed Central

Haas, B.W., Omura, K., Constable, R.T., and Canli, T. (2007). Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav. Neurosci. 121, 249–256.10.1037/0735-7044.121.2.249Search in Google Scholar PubMed

Haddon, J.E. and Killcross, S. (2006). Prefrontal cortex lesions disrupt the contextual control of response conflict. J. Neurosci. 26, 2933–2940.10.1523/JNEUROSCI.3243-05.2006Search in Google Scholar

Hannula, D.E. and Ranganath, C. (2008). Medial temporal lobe activity predicts successful relational memory binding. J. Neurosci. 28, 116–124.10.1523/JNEUROSCI.3086-07.2008Search in Google Scholar

Hannula, D.E., Tranel, D., and Cohen, N.J. (2006). The long and the short of it: relational memory impairments in amnesia, even at short lags. J. Neurosci. 26, 8352–8359.10.1523/JNEUROSCI.5222-05.2006Search in Google Scholar

Harris, J.A., Petersen, R.S., and Diamond, M.E. (2001). The cortical distribution of sensory memories. Neuron 30, 315–318.10.1016/S0896-6273(01)00300-2Search in Google Scholar

Herman, J.P. and Mueller, N.K. (2006). Role of the ventral subiculum in stress integration. Behav. Brain Res. 174, 215–224.10.1016/j.bbr.2006.05.035Search in Google Scholar PubMed

Hikosaka, K. and Watanabe, M. (2000). Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb. Cortex 10, 263–271.10.1093/cercor/10.3.263Search in Google Scholar PubMed

Hok, V., Save, E., Lenck-Santini, P.P., and Poucet, B. (2005). Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex. Proc. Natl. Acad. Sci. USA 102, 4602–4607.10.1073/pnas.0407332102Search in Google Scholar PubMed PubMed Central

Hok, V., Lenck-Santini, P.P., Roux, S., Save, E., Muller, R.U., and Poucet, B. (2007). Goal-related activity in hippocampal place cells. J. Neurosci. 27, 472–482.10.1523/JNEUROSCI.2864-06.2007Search in Google Scholar PubMed PubMed Central

Holland, P.C. and Petrovich, G.D. (2005). A neural systems analysis of the potentiation of feeding by conditioned stimuli. Physiol. Behav. 86, 747–761.10.1016/j.physbeh.2005.08.062Search in Google Scholar PubMed PubMed Central

Hoover, W.B. and Vertes, R.P. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179.10.1007/s00429-007-0150-4Search in Google Scholar PubMed

Howland, J.G., Taepavarapruk, P., and Phillips, A.G. (2002). Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J. Neurosci. 22, 1137–1145.10.1523/JNEUROSCI.22-03-01137.2002Search in Google Scholar

Hsieh, J.C., Stone-Elander, S., and Ingvar, M. (1999). Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neurosci. Lett. 262, 61–64.10.1016/S0304-3940(99)00060-9Search in Google Scholar

Hu, D. and Amsel, A. (1995). A simple test of the vicarious trial-and-error hypothesis of hippocampal function. Proc. Natl. Acad. Sci. USA 92, 5506–5509.10.1073/pnas.92.12.5506Search in Google Scholar

Hyman, J.M., Zilli, E.A., Paley, A.M., and Hasselmo, M.E. (2005). Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15, 739–749.10.1002/hipo.20106Search in Google Scholar

Hyman, J.M., Ma, L., Balaguer-Ballester, E., Durstewitz, D., and Seamans, J.K. (2012). Contextual encoding by ensembles of medial prefrontal cortex neurons. Proc. Natl. Acad. Sci. USA 109, 5086–5091.10.1073/pnas.1114415109Search in Google Scholar

Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56, 27–78.10.1016/j.brainresrev.2007.05.004Search in Google Scholar

Ikemoto, S. and Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Rev. 31, 6–41.10.1016/S0165-0173(99)00023-5Search in Google Scholar

Ishikawa, A. and Nakamura, S. (2003). Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat. J. Neurosci. 23, 9987–9995.10.1523/JNEUROSCI.23-31-09987.2003Search in Google Scholar

Ishikawa, A. and Nakamura, S. (2006). Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat. J. Neurophysiol. 96, 2134–2138.10.1152/jn.00069.2006Search in Google Scholar PubMed

Ito, R. and Hayen, A. (2011). Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. J. Neurosci. 31, 6001–6007.10.1523/JNEUROSCI.6588-10.2011Search in Google Scholar PubMed PubMed Central

Ito, R., Robbins, T.W., Pennartz, C.M., and Everitt, B.J. (2008). Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J. Neurosci. 28, 6950–6959.10.1523/JNEUROSCI.1615-08.2008Search in Google Scholar

Izaki, Y., Takita, M., Nomura, M., and Akema, T. (2003). Differences between paired-pulse facilitation and long-term potentiation in the dorsal and ventral hippocampal CA1-prefrontal pathways of rats. Brain Res. 992, 142–145.10.1016/S0006-8993(03)03538-8Search in Google Scholar

Izaki, Y., Takita, M., and Akema, T. (2008). Specific role of the posterior dorsal hippocampus-prefrontal cortex in short-term working memory. Eur. J. Neurosci. 27, 3029–3034.10.1111/j.1460-9568.2008.06284.xSearch in Google Scholar

Jackson, M.E. and Moghaddam, B. (2001). Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J. Neurosci. 21, 676–681.10.1523/JNEUROSCI.21-02-00676.2001Search in Google Scholar

Jay, T.M. and Witter, M.P. (1991). Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 313, 574–586.10.1002/cne.903130404Search in Google Scholar

Jay, T.M., Glowinski, J., and Thierry, A.M. (1989). Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res. 505, 337–340.10.1016/0006-8993(89)91464-9Search in Google Scholar

Johansen, J.P., Fields, H.L., and Manning, B.H. (2001). The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98, 8077–8082.10.1073/pnas.141218998Search in Google Scholar

Johnson, A. and Redish, A.D. (2007). Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189.10.1523/JNEUROSCI.3761-07.2007Search in Google Scholar

Jones, M.W. and Wilson, M.A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402.10.1371/journal.pbio.0030402Search in Google Scholar

Keating, G.L. and Winn, P. (2002). Examination of the role of the pedunculopontine tegmental nucleus in radial maze tasks with or without a delay. Neuroscience 112, 687–696.10.1016/S0306-4522(02)00108-2Search in Google Scholar

Kelley, A.E., Baldo, B.A., Pratt, W.E., and Will, M.J. (2005). Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 86, 773–795.10.1016/j.physbeh.2005.08.066Search in Google Scholar PubMed

Kesner, R.P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learn. Mem. 14, 771–781.10.1101/lm.688207Search in Google Scholar PubMed

Kim, H. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage 50, 1648–1657.10.1016/j.neuroimage.2010.01.051Search in Google Scholar PubMed

Klein, T.A., Neumann, J., Reuter, M., Hennig, J., von Cramon, D.Y., and Ullsperger, M. (2007). Genetically determined differences in learning from errors. Science 318, 1642–1645.10.1126/science.1145044Search in Google Scholar PubMed

Krieghoff, V., Brass, M., Prinz, W., and Waszak, F. (2009). Dissociating what and when of intentional actions. Front. Hum. Neurosci. 3, 3.10.3389/neuro.09.003.2009Search in Google Scholar PubMed PubMed Central

Kringelbach, M.L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702.10.1038/nrn1747Search in Google Scholar PubMed

Kubik, S., Miyashita, T., and Guzowski, J.F. (2007). Using immediate-early genes to map hippocampal subregional functions. Learn. Mem. 14, 758–770.10.1101/lm.698107Search in Google Scholar PubMed

Lansink, C.S., Goltstein, P.M., Lankelma, J.V., Joosten, R.N., McNaughton, B.L., and Pennartz, C.M. (2008). Preferential reactivation of motivationally relevant information in the ventral striatum. J. Neurosci. 28, 6372–6382.10.1523/JNEUROSCI.1054-08.2008Search in Google Scholar PubMed PubMed Central

Lathe, R. (2001). Hormones and the hippocampus. J. Endocrinol. 169, 205–231.10.1677/joe.0.1690205Search in Google Scholar PubMed

Laviolette, S.R. (2007). Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia? Schizophr. Bull. 33, 971–981.10.1093/schbul/sbm048Search in Google Scholar PubMed PubMed Central

Lee, I. and Kesner, R.P. (2003). Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J. Neurosci. 23, 1517–1523.10.1523/JNEUROSCI.23-04-01517.2003Search in Google Scholar

Lee, I. and Solivan, F. (2008). The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task. Learn. Mem. 15, 357–367.10.1101/lm.902708Search in Google Scholar PubMed PubMed Central

Lisman, J.E. and Grace, A.A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713.10.1016/j.neuron.2005.05.002Search in Google Scholar PubMed

Lodge, D.J. and Grace, A.A. (2006). The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31, 1356–1361.10.1038/sj.npp.1300963Search in Google Scholar PubMed

Lodge, D.J. and Grace, A.A. (2007). Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J. Neurosci. 27, 11424–11430.10.1523/JNEUROSCI.2847-07.2007Search in Google Scholar PubMed PubMed Central

Lorenz, K. (1952/1957). The Past Twelve Years in the Comparative Study of Behavior. In: Instinctive Behavior: the Development of a Modern Concept. C.H. Schiller, ed. (New York: International Universities Press).Search in Google Scholar

Lorenz, K. and Tinbergen, N. (1938/1957). Taxis and Instinct. In: Instinctive Behavior: the Development of a Modern Concept. C.H. Schiller, ed. (New York: International Universities Press).Search in Google Scholar

Luhmann, C.C. (2009). Temporal decision-making: insights from cognitive neuroscience. Front. Behav. Neurosci. 3, 39.10.3389/neuro.08.039.2009Search in Google Scholar PubMed PubMed Central

Malin, E.L. and McGaugh, J.L. (2006). Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proc. Natl. Acad. Sci. USA 103, 1959–1963.10.1073/pnas.0510890103Search in Google Scholar PubMed PubMed Central

Malin, E.L., Ibrahim, D.Y., Tu, J.W., and McGaugh, J.L. (2007). Involvement of the rostral anterior cingulate cortex in consolidation of inhibitory avoidance memory: interaction with the basolateral amygdala. Neurobiol. Learn. Mem. 87, 295–302.10.1016/j.nlm.2006.09.004Search in Google Scholar PubMed PubMed Central

Mason, M.F., Norton, M.I., Van Horn, J.D., Wegner, D.M., Grafton, S.T., and Macrae, C.N. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395.10.1126/science.1131295Search in Google Scholar PubMed PubMed Central

Mayberg, H. (2001). Depression and Frontal-Subcortical Circuits. In: Frontal-Subcortical Circuits in Psychiatric and Neurological Disorders. Lichter, D.G., Cummings, J.L., eds. (New York: The Guilford Press).Search in Google Scholar

Mayberg, H.S., Brannan, S.K., Mahurin, R.K., Jerabek, P.A., Brickman, J.S., Tekell, J.L., Silva, J.A., McGinnis, S., Glass, T.G., Martin, C.C., et al. (1997). Cingulate function in depression: a potential predictor of treatment response. NeuroReport 8, 1057–1061.10.1097/00001756-199703030-00048Search in Google Scholar PubMed

McGinty, V.B. and Grace, A.A. (2008). Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. Cereb. Cortex 18, 1961–1972.10.1093/cercor/bhm223Search in Google Scholar

McNaughton, N. (2006). The role of the subiculum within the behavioral inhibition system. Behav. Brain Res. 174, 232–250.10.1016/j.bbr.2006.05.037Search in Google Scholar

McNaughton, N. and Corr, P.J. (2004). A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28, 285–305.10.1016/j.neubiorev.2004.03.005Search in Google Scholar

McNaughton, N. and Wickens, J. (2003). Hebb, pandemonium and catastrophic hypermnesia: the hippocampus as a suppressor of inappropriate associations. Cortex 39, 1139–1163.10.1016/S0010-9452(08)70882-7Search in Google Scholar

Mohedano-Moriano, A., Pro-Sistiaga, P., Arroyo-Jimenez, M.M., Artacho-Pérula, E., Insausti, A.M., Marcos, P., Cebada-Sánchez, S., Martínez-Ruiz, J., Muñoz, M., Blaizot, X., et al. (2007). Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. J. Anat. 211, 250–260.10.1111/j.1469-7580.2007.00764.xSearch in Google Scholar

Morris, R.G., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M., and O′Carroll, C. (2003). Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc., B 358, 773–786.10.1098/rstb.2002.1264Search in Google Scholar

Naqvi, N.H. and Bechara, A. (2009). The hidden island of addiction: the insula. Trends Neurosci. 32, 56–67.10.1016/j.tins.2008.09.009Search in Google Scholar

Nitschke, J.B., Sarinopoulos, I., Mackiewicz, K.L., Schaefer, H.S., and Davidson, R.J. (2006). Functional neuroanatomy of aversion and its anticipation. NeuroImage 29, 106–116.10.1016/j.neuroimage.2005.06.068Search in Google Scholar

Numan, M. (2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behav. Cognit. Neurosci. Rev. 5, 163–190.10.1177/1534582306288790Search in Google Scholar

O’Donnell, P. and Grace, A.A. (1994). Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res. 634, 105–112.10.1016/0006-8993(94)90263-1Search in Google Scholar

Olson, I.R., Page, K., Moore, K.S., Chatterjee, A., and Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. J. Neurosc. 26, 4596–4601.10.1523/JNEUROSCI.1923-05.2006Search in Google Scholar

Öngür, D., An, X., and Price, J.L. (1998). Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505.10.1002/(SICI)1096-9861(19981130)401:4<480::AID-CNE4>3.0.CO;2-FSearch in Google Scholar

O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109.10.1016/0014-4886(76)90055-8Search in Google Scholar

O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175.10.1016/0006-8993(71)90358-1Search in Google Scholar

O’Mara, S.M., Commins, S., Anderson, M., and Gigg, J. (2001). The subiculum: a review of form, physiology and function. Prog. Neurobiol. 64, 129–155.10.1016/S0301-0082(00)00054-XSearch in Google Scholar

Orr, J.M. and Weissman, D.H. (2009). Anterior cingulate cortex makes 2 contributions to minimizing distraction. Cereb. Cortex 19, 703–711.10.1093/cercor/bhn119Search in Google Scholar

Panksepp, J. (2003). Feeling the pain of social loss. Science 302, 237–239.10.1126/science.1091062Search in Google Scholar

Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W., and Everitt, B.J. (1999). Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci. 19, 2401–2411.10.1523/JNEUROSCI.19-06-02401.1999Search in Google Scholar

Parkinson, J.A., Cardinal, R.N., and Everitt, B.J. (2000). Limbic cortical-ventral striatal systems underlying appetitive conditioning. Prog. Brain Res. 126, 263–285.10.1016/S0079-6123(00)26019-6Search in Google Scholar

Pennartz, C.M., Lee, E., Verheul, J., Lipa, P., Barnes, C.A., and McNaughton, B.L. (2004). The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J. Neurosci. 24, 6446–6456.10.1523/JNEUROSCI.0575-04.2004Search in Google Scholar

Petrovich, G.D. and Gallagher, M. (2007). Control of food consumption by learned cues: a forebrain-hypothalamic network. Physiol. Behav. 91, 397–403.10.1016/j.physbeh.2007.04.014Search in Google Scholar

Petrovich, G.D., Canteras, N.S., and Swanson, L.W. (2001). Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res. Rev. 38, 247–289.10.1016/S0165-0173(01)00080-7Search in Google Scholar

Petrovich, G.D., Holland, P.C., and Gallagher, M. (2005). Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J. Neurosci. 25, 8295–8302.10.1523/JNEUROSCI.2480-05.2005Search in Google Scholar

Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S.I., and Battaglia, F.P. (2009). Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926.10.1038/nn.2337Search in Google Scholar

Peyron, R., Laurent, B., and García-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin. 30, 263–288.10.1016/S0987-7053(00)00227-6Search in Google Scholar

Phillips, A.G., Vacca, G., and Ahn, S. (2008). A top-down perspective on dopamine, motivation and memory. Pharmacol. Biochem. Behav. 90, 236–249.10.1016/j.pbb.2007.10.014Search in Google Scholar

Ploghaus, A., Becerra, L., Borras, C., and Borsook, D. (2003). Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cognit. Sci. 7, 197–200.10.1016/S1364-6613(03)00061-5Search in Google Scholar

Quinn, J.J., Ma, Q.D., Tinsley, M.R., Koch, C., and Fanselow, M.S. (2008). Inverse temporal contributions of the dorsal hippocampus and medial prefrontal cortex to the expression of long-term fear memories. Learn. Mem. 15, 368–372.10.1101/lm.813608Search in Google Scholar PubMed PubMed Central

Radley, J.J., Williams, B., and Sawchenko, P.E. (2008). Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary-adrenal responses to acute emotional stress. J. Neurosci. 28, 5806–5816.10.1523/JNEUROSCI.0552-08.2008Search in Google Scholar PubMed PubMed Central

Radley, J.J., Gosselink, K.L., and Sawchenko, P.E. (2009). A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J. Neurosci. 29, 7330–7340.10.1523/JNEUROSCI.5924-08.2009Search in Google Scholar PubMed PubMed Central

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., and Shulman, G.L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682.10.1073/pnas.98.2.676Search in Google Scholar

Rainville, P., Duncan, G.H., Price, D.D., Carrier, B., and Bushnell, M.C. (1997). Pain affect encoded in the human anterior cingulate but not somatosensory cortex. Science 277, 989–971.10.1126/science.277.5328.968Search in Google Scholar

Reynolds, S.M. and Berridge, K.C. (2001). Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J. Neurosci. 21, 3261–3270.10.1523/JNEUROSCI.21-09-03261.2001Search in Google Scholar

Richtand, N.M., Woods, S.C., Berger, S.P., and Strakowski, S.M. (2001). D3 dopamine receptor, behavioral sensitization, and psychosis. Neurosci. Biobehav. Rev. 25, 427–443.10.1016/S0149-7634(01)00023-9Search in Google Scholar

Robertson, R.G., Rolls, E.T., and Georges-François, P. (1998). Spatial view cells in the primate hippocampus: effects of removal of view details. J. Neurophysiol. 79, 1145–1156.10.1152/jn.1998.79.3.1145Search in Google Scholar PubMed

Rogers, R.D., Ramnani, N., Mackay, C., Wilson, J.L., Jezzard, P., Carter, C.S., and Smith, S.M. (2004). Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol. Psychiatry 55, 594–602.10.1016/j.biopsych.2003.11.012Search in Google Scholar PubMed

Rolls, E.T. (2004). Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. Anat. Rec., Part A 281, 1212–1225.10.1002/ar.a.20126Search in Google Scholar PubMed

Rolls, E.T. (2007). An attractor network in the hippocampus: theory and neurophysiology. Learn. Mem. 14, 714–731.10.1101/lm.631207Search in Google Scholar PubMed

Rolls, E.T. and Xiang, J.Z. (2005). Reward-spatial view representations and learning in the primate hippocampus. J. Neurosci. 25, 6167–6174.10.1523/JNEUROSCI.1481-05.2005Search in Google Scholar PubMed PubMed Central

Rolls, E.T., Treves, A., Robertson, R.G., Georges-François, P., and Panzeri, S. (1998). Information about spatial view in an ensemble of primate hippocampal cells. J. Neurophysiol. 79, 1797–1813.10.1152/jn.1998.79.4.1797Search in Google Scholar PubMed

Rolls, E.T., Xiang, J., and Franco, L. (2005). Object, space, and object-space representations in the primate hippocampus. J. Neurophysiol. 94, 833–844.10.1152/jn.01063.2004Search in Google Scholar

Ryan, J.D., Althoff, R.R., Whitlow, S., and Cohen, N.J. (2000). Amnesia is a deficit in relational memory. Psychol. Sci. 11, 454–461.10.1111/1467-9280.00288Search in Google Scholar

Salamone, J.D., Correa, M., Mingote, S., and Weber, M. (2003). Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp. Ther. 305, 1–8.10.1124/jpet.102.035063Search in Google Scholar

Schacter, D.L. and Addis, D.R. (2007). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philos. Trans. R. Soc., B 362, 773–786.10.1098/rstb.2007.2087Search in Google Scholar

Schoenbaum, G., Roesch, M.R., Stalnaker, T.A., and Takahashi, Y.K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behavior. Nat. Rev. Neurosci. 10, 885–892.10.1038/nrn2753Search in Google Scholar

Sederberg, P.B., Schulze-Bonhage, A., Madsen, J.R., Bromfield, E.B., McCarthy, D.C., Brandt, A., Tully, M.S., and Kahana, M.J. (2007). Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb. Cortex 17, 1190–1196.10.1093/cercor/bhl030Search in Google Scholar

Siapas, A.G., Lubenov, E.V., and Wilson, M.A. (2005). Prefrontal phase locking to hippocampal theta oscillations. Neuron 46, 141–151.10.1016/j.neuron.2005.02.028Search in Google Scholar

Singer, T. (2007). The neuronal basis of empathy and fairness. Novartis Found. Symp. 278, 20–30.Search in Google Scholar

Sirota, A. and Buzsáki, G. (2005). Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst. 3, 245–259.10.1017/S1472928807000258Search in Google Scholar

Sokolov, E.N., Nezlina, N.I., Polyanskii, V.B., and Evtikhin, D.V. (2002). The orienting reflex: the “targeting reaction” and “searchlight of attention”. Neurosci. Behav. Physiol. 32, 347–362.10.1023/A:1015820025297Search in Google Scholar

Swanson, L.W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164.10.1016/S0006-8993(00)02905-XSearch in Google Scholar

Takahata, R. and Moghaddam, B. (2000). Target-specific glutamatergic regulation of dopamine neurons in the ventral tegmental area. J. Neurochem. 75, 1775–1778.10.1046/j.1471-4159.2000.0751775.xSearch in Google Scholar

Takashima, A., Petersson, K.M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M.J., McNaughton, B.L., and Fernández, G. (2006). Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc. Natl. Acad. Sci. USA 103, 756–761.10.1073/pnas.0507774103Search in Google Scholar

Thompson, R.H. and Swanson, L.W. (1998). Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res. Rev. 27, 89–118.10.1016/S0165-0173(98)00010-1Search in Google Scholar

Tsai, C.T., Mogenson, G.J., Wu, M., and Yang, C.R. (1989). A comparison of the effects of electrical stimulation of the amygdala and hippocampus on subpallidal output neurons to the pedunculopontine nucleus. Brain Res. 494, 22–29.10.1016/0006-8993(89)90139-XSearch in Google Scholar

Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., Bito, H., and Morris, R.G. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–985.10.1126/science.1205274Search in Google Scholar PubMed

Valenti, O., Lodge, D.J., and Grace, A.A. (2011). Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. J. Neurosci. 31, 4280–4289.10.1523/JNEUROSCI.5310-10.2011Search in Google Scholar PubMed PubMed Central

van der Meer, M.A., and Redish, A.D. (2009). Covert expectation-of-reward in rat ventral striatum at decision points. Front. Integr. Neurosci. 3, 1.10.3389/neuro.07.001.2009Search in Google Scholar PubMed PubMed Central

van Kesteren, M.T., Fernández, G., Norris, D.G., and Hermans, E.J. (2010a). Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc. Natl. Acad. Sci. USA 107, 7550–7555.10.1073/pnas.0914892107Search in Google Scholar PubMed PubMed Central

van Kesteren, M.T., Rijpkema, M., Ruiter, D.J., and Fernández, G. (2010b). Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J. Neurosci. 30, 15888–15894.10.1523/JNEUROSCI.2674-10.2010Search in Google Scholar PubMed PubMed Central

Vertes, R.P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142, 1–20.10.1016/j.neuroscience.2006.06.027Search in Google Scholar PubMed

Vertes, R.P., Hoover, W.B., and Viana Di Prisco, G. (2004). Theta rhythm of the hippocampus: subcortical control and functional significance. Behav. Cognit. Neurosci. Rev. 3, 173–200.10.1177/1534582304273594Search in Google Scholar PubMed

Viard, A., Doeller, C.F., Hartley, T., Bird, C.M., and Burgess, N. (2011). Anterior hippocampus and goal-directed spatial decision-making. J. Neurosci. 31, 4613–4621.10.1523/JNEUROSCI.4640-10.2011Search in Google Scholar PubMed PubMed Central

Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., and Buckner, R.L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531.10.1152/jn.00048.2006Search in Google Scholar PubMed

Voss, J.L., Warren, D.E., Gonsalves, B.D., Federmeier, K.D., Tranel, D., and Cohen, N.J. (2011). Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. Proc. Natl. Acad. Sci. USA 108, E402–E409.10.1073/pnas.1100225108Search in Google Scholar PubMed PubMed Central

Wang, S.H., Tse, D., and Morris, R.G. (2012). Anterior cingulate cortex in schema assimilation and expression. Learn. Mem. 19, 315–318.10.1101/lm.026336.112Search in Google Scholar PubMed PubMed Central

Weible, A.P., Rowland, D.C., Monaghan, C.K., Wolfgang, N.T., and Kentros, C.G. (2012). Neural correlates of long-term object memory in the mouse anterior cingulate cortex. J. Neurosci. 32, 5598–5608.10.1523/JNEUROSCI.5265-11.2012Search in Google Scholar PubMed PubMed Central

Weissman, D.H., Warner, L.M., and Woldorff, M.G. (2004). The neural mechanisms for minimizing cross-modal distraction. J. Neurosci. 24, 10941–10949.10.1523/JNEUROSCI.3669-04.2004Search in Google Scholar PubMed PubMed Central

Weissman, D.H., Roberts, K.C., Visscher, K.M., and Woldorff, M.G. (2006). The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978.10.1038/nn1727Search in Google Scholar PubMed

Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097.10.1126/science.1128134Search in Google Scholar PubMed

Winstanley, C.A., Theobald, D.E.H., Cardinal, R.N., and Robbins, T.W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci. 24, 4718–4722.10.1523/JNEUROSCI.5606-03.2004Search in Google Scholar PubMed PubMed Central

Wise, R.A. (2004). Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494.10.1038/nrn1406Search in Google Scholar PubMed

Yin, H.H. and Knowlton, B.J. (2004). Contributions of striatal subregions to place and response learning. Learn. Mem. 11, 459–463.10.1101/lm.81004Search in Google Scholar PubMed PubMed Central

Yoon, T., Okada, J., Jung, M.W., and Kim, J.J. (2008). Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn. Mem. 15, 97–105.10.1101/lm.850808Search in Google Scholar PubMed PubMed Central

Young, J.J. and Shapiro, M.L. (2011). Dynamic coding of goal-directed paths by orbital prefrontal cortex. J. Neurosci. 31, 5989–6000.10.1523/JNEUROSCI.5436-10.2011Search in Google Scholar PubMed PubMed Central

Yun, I.A., Wakabayashi, K.T., Fields, H.L., and Nicola, S.M. (2004). The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J. Neurosci. 24, 2923–2933.10.1523/JNEUROSCI.5282-03.2004Search in Google Scholar PubMed PubMed Central

Zahm, D.S. and Heimer, L. (1990). Two transpallidal pathways originating in the rat nucleus accumbens. J. Comp. Neurol. 302, 437–446.10.1002/cne.903020302Search in Google Scholar PubMed

Received: 2013-8-28
Accepted: 2013-9-29
Published Online: 2013-11-21
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0037/pdf
Scroll to top button