Home The role of the actin cytoskeleton in regulating Drosophila behavior
Article
Licensed
Unlicensed Requires Authentication

The role of the actin cytoskeleton in regulating Drosophila behavior

  • Shamsideen A. Ojelade

    Shamsideen Ojelade received his B.S. in Biology from the University of Houston. He is presently a graduate student in the neuroscience program and works in the laboratory of Dr. Rothenfluh, Department of Psychiatry, University of Texas-Southwestern Medical Center in Dallas, Texas. He has received funding from NIH through a NIDA institutional grant (T32 DA7290) and currently is completing his thesis dissertation under an F31-NIAAA fellowship (F31 AA021340).

    , Summer F. Acevedo

    Summer F. Acevedo graduated with a B.A. in Biochemistry from the University of Northern Colorado, Greeley, CO and a PhD in Genetics from Texas A&M University, College Station, TX. She then completed a NIDA post-doctoral fellowship in Behavioral Neuroscience at Oregon Health & Science University in Portland, OR, before moving on as faculty in the Department of Pharmacology, Physiology & Toxicology, Program in Psychology at Ponce School of Medicine & Health Sciences in Puerto Rico. She is currently on the faculty in the Department of Psychiatry at UT Southwestern Medical Center, Dallas, TX.

    and Adrian Rothenfluh

    Adrian Rothenfluh received his Diploma in molecular biology from the Biocenter, University of Basel, Switzerland, and his PhD in genetics from Rockefeller University in New York. Following postdoctoral training at UCSF, he became an assistant professor in the Department of Psychiatry at UT Southwestern Medical Center in Dallas, TX in 2007. He is funded by the NIH (R01AA019526), the Brain & Behavior Research Foundation, and the Endowed Scholars Program at UTSW.

    EMAIL logo
Published/Copyright: September 28, 2013
Become an author with De Gruyter Brill

Abstract

Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.


Corresponding author: Adrian Rothenfluh, Department of Psychiatry, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA; and Program in Neuroscience, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA, e-mail:

About the authors

Shamsideen A. Ojelade

Shamsideen Ojelade received his B.S. in Biology from the University of Houston. He is presently a graduate student in the neuroscience program and works in the laboratory of Dr. Rothenfluh, Department of Psychiatry, University of Texas-Southwestern Medical Center in Dallas, Texas. He has received funding from NIH through a NIDA institutional grant (T32 DA7290) and currently is completing his thesis dissertation under an F31-NIAAA fellowship (F31 AA021340).

Summer F. Acevedo

Summer F. Acevedo graduated with a B.A. in Biochemistry from the University of Northern Colorado, Greeley, CO and a PhD in Genetics from Texas A&M University, College Station, TX. She then completed a NIDA post-doctoral fellowship in Behavioral Neuroscience at Oregon Health & Science University in Portland, OR, before moving on as faculty in the Department of Pharmacology, Physiology & Toxicology, Program in Psychology at Ponce School of Medicine & Health Sciences in Puerto Rico. She is currently on the faculty in the Department of Psychiatry at UT Southwestern Medical Center, Dallas, TX.

Adrian Rothenfluh

Adrian Rothenfluh received his Diploma in molecular biology from the Biocenter, University of Basel, Switzerland, and his PhD in genetics from Rockefeller University in New York. Following postdoctoral training at UCSF, he became an assistant professor in the Department of Psychiatry at UT Southwestern Medical Center in Dallas, TX in 2007. He is funded by the NIH (R01AA019526), the Brain & Behavior Research Foundation, and the Endowed Scholars Program at UTSW.

Shamsideen A. Ojelade has received funding from the NIH through a NIDA institutional grant (T32 DA7290) and currently is completing his thesis dissertation under a F31-NIAAA fellowship (F31 AA021340). Adrian Rothenfluh’s work is funded by the NIH (R01AA019526), the Brain & Behavior Research Foundation, and the Endowed Scholars Program at UTSW.

References

Ackermann, M. and Matus, A. (2003). Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat. Neurosci. 6, 1194–2000.10.1038/nn1135Search in Google Scholar PubMed

Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.10.1126/science.287.5461.2185Search in Google Scholar PubMed

Allansson, L., Khatibi, S., Olsson, T., and Hansson, E. (2001). Acute ethanol exposure induces [Ca2+]i transients, cell swelling and transformation of actin cytoskeleton in astroglial primary cultures. J. Neurochem. 76, 472–479.10.1046/j.1471-4159.2001.00097.xSearch in Google Scholar PubMed

Antar, L.N., Dictenberg, J.B., Plociniak, M., Afroz, R., and Bassell, G.J. (2005). Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav. 4, 350–359.10.1111/j.1601-183X.2005.00128.xSearch in Google Scholar PubMed

Bahr, B.A., Staubli, U., Xiao, P., Chun, D., Ji, Z.X., Esteban, E.T., and Lynch, G. (1997). Arg-Gly-Asp-Ser-selective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 17, 1320–1329.10.1523/JNEUROSCI.17-04-01320.1997Search in Google Scholar

Bellen, H.J., Tong, C., and Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11, 514–522.10.1038/nrn2839Search in Google Scholar PubMed PubMed Central

Berger, K.H., Kong, E.C., Dubnau, J., Tully, T., Moore, M.S., and Heberlein, U. (2008). Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin. Exp. Res. 32, 895–908.10.1111/j.1530-0277.2008.00659.xSearch in Google Scholar PubMed PubMed Central

Bhandari, P., Kendler, K.S., Bettinger, J.C., Davies, A.G., and Grotewiel, M. (2009). An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin. Exp. Res. 33, 1794–1805.10.1111/j.1530-0277.2009.01018.xSearch in Google Scholar PubMed PubMed Central

Bolduc, F.V., Bell, K., Rosenfelt, C., Cox, H., and Tully, T. (2010). Fragile x mental retardation 1 and filamin a interact genetically in Drosophila long-term memory. Front Neural Circuits 3, 22.10.3389/neuro.04.022.2009Search in Google Scholar PubMed PubMed Central

Bourne, J.N. and Harris, K.M. (2008). Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67.10.1146/annurev.neuro.31.060407.125646Search in Google Scholar PubMed PubMed Central

Brand, A.H. and Perrimon, N. (1993). Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.10.1242/dev.118.2.401Search in Google Scholar

Brunton, V.G., MacPherson, I.R., and Frame, M.C. (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim. Biophys. Acta 1692, 121–144.10.1016/j.bbamcr.2004.04.010Search in Google Scholar

Bushey, D. and Cirelli, C. (2011). From genetics to structure to function: exploring sleep in Drosophila. Int. Rev. Neurobiol. 99, 213–244.10.1016/B978-0-12-387003-2.00009-4Search in Google Scholar

Bushey, D., Tononi, G., and Cirelli, C. (2009). The Drosophila fragile X mental retardation gene regulates sleep need. J. Neurosci. 29, 1948–1961.10.1523/JNEUROSCI.4830-08.2009Search in Google Scholar

Bushey, D., Tononi, G., and Cirelli, C. (2011). Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332, 1576–1581.10.1126/science.1202839Search in Google Scholar

Castets, M., Schaeffer, C., Bechara, E., Schenck, A., Khandjian, E.W., Luche, S., Moine, H., Rabilloud, T., Mandel, J.-L., and Bardoni, B. (2005). FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum. Mol. Genet. 14, 835–844.10.1093/hmg/ddi077Search in Google Scholar

Chan, C.-C., Scoggin, S., Wang, D., Cherry, S., Dembo, T., Greenberg, B., Jin, E.J., Kuey, C., Lopez, A., Mehta, S.Q., et al. (2011). Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Curr. Biol. 21, 1704–1715.10.1016/j.cub.2011.08.058Search in Google Scholar

Chang, L., Kreko, T., Davison, H., Cusmano, T., Wu, Y., Rothenfluh, A., and Eaton, B.A. (2013). Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin. Mol. Biol. Cell. 24, 1749–1764.10.1091/mbc.e12-09-0697Search in Google Scholar

Cheng, Y., Endo, K., Wu, K., Rodan, A.R., Heberlein, U., and Davis, R.L. (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell 105, 757–768.10.1016/S0092-8674(01)00386-5Search in Google Scholar

Chien, S., Reiter, L.T., Bier, E., and Gribskov, M. (2002). Homophila: human disease gene cognates in Drosophila. Nucleic. Acids Res. 30, 149–151.10.1093/nar/30.1.149Search in Google Scholar PubMed PubMed Central

Cingolani, L.A. and Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356.10.1038/nrn2373Search in Google Scholar

Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404.10.1073/pnas.94.10.5401Search in Google Scholar

Corl, A.B., Berger, K.H., Ophir-Shohat, G., Gesch, J., Simms, J.A., Bartlett, S.E., and Heberlein, U. (2009). Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell 137, 949–960.10.1016/j.cell.2009.03.020Search in Google Scholar

Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y., and Labarca, P. (2000). Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953.10.1016/S0896-6273(00)00165-3Search in Google Scholar

Devineni, A.V. and Heberlein, U. (2009). Preferential ethanol consumption in Drosophila models features of addiction. Curr. Biol. 19, 2126–2132.10.1016/j.cub.2009.10.070Search in Google Scholar

Dietz, D.M., Sun, H., Lobo, M.K., Cahill, M.E., Chadwick, B., Gao, V., Koo, J.W., Mazei-Robison, M.S., Dias, C., Maze, I., et al. (2012). Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat. Neurosci. 15, 891–896.10.1038/nn.3094Search in Google Scholar

Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156.10.1038/nature05954Search in Google Scholar

Dillon, C. and Goda, Y. (2005). The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25–55.10.1146/annurev.neuro.28.061604.135757Search in Google Scholar

Dityatev, A., Bukalo, O., and Schachner, M. (2008). Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol. 4, 197–209.10.1017/S1740925X09990111Search in Google Scholar

Dockendorff, T.C., Su, H.S., McBride, S.M.J., Yang, Z., Choi, C.H., Siwicki, K.K., Sehgal, A., and Jongens, T.A. (2002). Drosophila lacking dfmr1 activity show defects in Circadian output and fail to maintain courtship interest. Neuron 34, 973–984.10.1016/S0896-6273(02)00724-9Search in Google Scholar

Eddison, M., Guarnieri, D.J., Cheng, L., Liu, C.H., Moffat, K.G., Davis, G., and Heberlein, U. (2011). arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 70, 979–990.10.1016/j.neuron.2011.03.030Search in Google Scholar PubMed

Fedulov, V., Rex, C.S., Simmons, D.A., Palmer, L., Gall, C.M., and Lynch, G. (2007). Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J. Neurosci. 27, 8031–8039.10.1523/JNEUROSCI.2003-07.2007Search in Google Scholar PubMed PubMed Central

Galy, A., Schenck, A., Sahin, H.B., Qurashi, A., Sahel, J.A., Diebold, C., and Giangrande, A. (2011). CYFIP dependent actin remodeling controls specific aspects of Drosophila eye morphogenesis. Dev. Biol. 359, 37–46.10.1016/j.ydbio.2011.08.009Search in Google Scholar PubMed

Gilestro, G.F., Tononi, G., and Cirelli, C. (2009). Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324, 109–112.10.1126/science.1166673Search in Google Scholar PubMed PubMed Central

Godenschwege, T.A., Reisch, D., Diegelmann, S., Eberle, K., Funk, N., Heisenberg, M., Hoppe, V., Hoppe, J., Klagges, B.R.E., Martin, J.-R., et al. (2004). Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur. J. Neurosci. 20, 611–622.10.1111/j.1460-9568.2004.03527.xSearch in Google Scholar PubMed

Grashoff, C., Thievessen, I., Lorenz, K., Ussar, S., and Fassler, R. (2004). Integrin-linked kinase: integrin’s mysterious partner. Curr. Opin. Cell. Biol. 16, 565–571.10.1016/j.ceb.2004.07.004Search in Google Scholar PubMed

Grotewiel, M.S., Beck, C.D., Wu, K.H., Zhu, X.R., and Davis, R.L. (1998). Integrin-mediated short-term memory in Drosophila. Nature 391, 455–460.10.1038/35079Search in Google Scholar PubMed

Guasch, R.M., Tomas, M., Minambres, R., Valles, S., Renau-Piqueras, J., and Guerri, C. (2003). RhoA and lysophosphatidic acid are involved in the actin cytoskeleton reorganization of astrocytes exposed to ethanol. J. Neurosci. Res. 72, 487–502.10.1002/jnr.10594Search in Google Scholar PubMed

Haditsch, U., Leone, D.P., Farinelli, M., Chrostek-Grashoff, A., Brakebusch, C., Mansuy, I.M., McConnell, S.K., and Palmer, T.D. (2009). A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol. Cell. Neurosci. 41, 409–419.10.1016/j.mcn.2009.04.005Search in Google Scholar PubMed PubMed Central

Halpain, S. (2000). Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146.Search in Google Scholar

Heasman, S.J. and Ridley, A.J. (2008). Mammalian RhoGTPases: new insights into their function from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701.10.1038/nrm2476Search in Google Scholar PubMed

Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., and Pack, A.I. (2000). Rest in Drosophila is a sleep-like state. Neuron 25, 129–138.10.1016/S0896-6273(00)80877-6Search in Google Scholar

Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., Yamada, Y., Chiba, H., and Hirohashi, S. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and invasion. J. Cell. Biol. 143, 277–277.10.1083/jcb.140.6.1383Search in Google Scholar PubMed PubMed Central

Hotulainen, P. and Hoogenraad, C.C. (2010). Actin in dendritic spines: connecting dynamics to function. J. Cell. Biol. 189, 619–629.10.1083/jcb.201003008Search in Google Scholar PubMed PubMed Central

Huang, W., Zhu, P.J., Zhang, S., Zhou, H., Stoica, L., Galiano, M., Krnjevic, K., Roman, G., and Costa-Mattioli, M. (2013). mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat. Neurosci. 16, 441–448.10.1038/nn.3351Search in Google Scholar PubMed PubMed Central

Huber, R., Ghilardi, M.F., Massimini, M., and Tononi, G. (2004). Local sleep and learning. Nature 430, 78–81.10.1038/nature02663Search in Google Scholar PubMed

Hyman, S.E. (2005). Addiction: a disease of learning and memory. Am. J. Psychiatry 162, 1414–1422.10.1176/appi.ajp.162.8.1414Search in Google Scholar PubMed

Impey, S., Davare, M., Lesiak, A., Fortin, D., Ando, H., Varlamova, O., Obrietan, K., Soderling, T.R., Goodman, R.H., and Wayman, G.A. (2010). An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol. Cell. Neurosci. 43, 146–156.10.1016/j.mcn.2009.10.005Search in Google Scholar PubMed PubMed Central

Irie, F. and Yamaguchi, Y. (2002). EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118.10.1038/nn964Search in Google Scholar PubMed

Ja, W.W., Carvalho, G.B., Mak, E.M., de la Rosa, N.N., Fang, A.Y., Liong, J.C., Brummel, T., and Benzer, S. (2007). Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 104, 8253–8256.10.1073/pnas.0702726104Search in Google Scholar PubMed PubMed Central

Jensen, V., Walaas, S.I., Hilfiker, S., Ruiz, A., and Hvalby, O. (2007). A delayed response enhancement during hippocampal presynaptic plasticity in mice. J. Physiol. 583, 129–143.10.1113/jphysiol.2007.131300Search in Google Scholar PubMed PubMed Central

Kadrmas, J.L., Smith, M.A., Clark, K.A., Pronovost, S.M., Muster, N., Yates, J.R., and Beckerle, M.C. (2004). The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1. J. Cell. Biol. 167, 1019–1024.10.1083/jcb.200408090Search in Google Scholar

Korobova, F. and Svitkina, T. (2010). Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165–176.10.1091/mbc.e09-07-0596Search in Google Scholar

Kramár, E.A., Lin, B., Rex, C.S., Gall, C.M., and Lynch, G. (2006). Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA 103, 5579–5584.10.1073/pnas.0601354103Search in Google Scholar

Kuromi, H. and Kidokoro, Y. (1998). Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925.10.1016/S0896-6273(00)80473-0Search in Google Scholar

Lamprecht, R. and LeDoux, J. (2004). Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54.10.1038/nrn1301Search in Google Scholar PubMed

Lamprecht, R., Farb, C.R., Rodrigues, S.M., and LeDoux, J.E. (2006). Fear conditioning drives profilin into amygdala dendritic spines. Nat. Neurosci. 9, 481–483.10.1038/nn1672Search in Google Scholar PubMed

Legate, K.R., Montanez, E., Kudlacek, O., and Fussler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell. Biol. 7, 20–31.10.1038/nrm1789Search in Google Scholar PubMed

Leiss, F., Koper, E., Hein, I., Fouquet, W., Lindner, J., Sigrist, S., and Tavosanis, G. (2009). Characterization of dendritic spines in the Drosophila central nervous system. Dev. Neurobiol. 69, 221–234.10.1002/dneu.20699Search in Google Scholar PubMed

Leyssen, M. and Hassan, B.A. (2007). A fruitfly’s guide to keeping the brain wired. EMBO Rep. 8, 46–50.10.1038/sj.embor.7400869Search in Google Scholar PubMed PubMed Central

Loo, D.T., Kanner, S.B., and Aruffo, A. (1998). Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J. Biol. Chem. 273, 23304–23312.10.1074/jbc.273.36.23304Search in Google Scholar PubMed

Malinow, R., Schulman, H., and Tsien, R.W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.10.1126/science.2549638Search in Google Scholar

Matus, M., Ackermann, M., Pehling, P., Byers, H.R., and Fujiwara, K. (1982). High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7590–7594.10.1073/pnas.79.23.7590Search in Google Scholar

McBride, S.M., Choi, C.H., Wang, Y., Liebelt, D., Braunstein, E., Ferreiro, D., Sehgal, A., Siwicki, K.K., Dockendorff, T.C., Nguyen, H.T., et al. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753–764.10.1016/j.neuron.2005.01.038Search in Google Scholar

McClure, K.D., French, R.L., and Heberlein, U. (2011). A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway. Dis. Model Mech. 4, 335–346.10.1242/dmm.006411Search in Google Scholar

McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K., and Davis, R.L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768.10.1126/science.1089035Search in Google Scholar

Michaelsen, K., Murk, K., Zagrebelsky, M., Dreznjak, A., Jockusch, B.M., Rothkegel, M., and Korte, M. (2010). Fine-tuning of neuronal architecture requires two profilin isoforms. Proc. Natl. Acad. Sci. 107, 15780–15785.10.1073/pnas.1004406107Search in Google Scholar

Michels, B., Chen, Y.-C., Saumweber, T., Mishra, D., Tanimoto, H., Schmid, B., Engmann, O., and Gerber, B. (2011). Cellular site and molecular mode of synapsin action in associative learning. Learn. Mem. 18, 332–344.10.1101/lm.2101411Search in Google Scholar

Morales, J., Hiesinger, P.R., Schroeder, A.J., Kume, K., Verstreken, P., Jackson, F.R., Nelson, D.L., and Hassan, B.A. (2002). Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34, 961–972.10.1016/S0896-6273(02)00731-6Search in Google Scholar

Mortillo, S., Elste, A., Ge, Y., Patil, S.B., Hsiao, K., Huntley, G.W., Davis, R.L., and Benson, D.L. (2012). Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic beta1-integrin. J. Comp. Neurol. 520, 2041–2052.10.1002/cne.23027Search in Google Scholar PubMed PubMed Central

Muller, D., Joly, M., and Lynch, G. (1988). Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697.10.1126/science.2904701Search in Google Scholar PubMed

Murakoshi, H., Wang, H., and Yasuda, R. (2011). Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472, 100–104.10.1038/nature09823Search in Google Scholar PubMed PubMed Central

Nestler, E.J. (2002). Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647.10.1006/nlme.2002.4084Search in Google Scholar PubMed

Ng, J., Nardine, T., Harms, M., Tzu, J., Goldstein, A., Sun, Y., Dietzl, G., Dickson, B.J., and Luo, L. (2002). Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447.10.1038/416442aSearch in Google Scholar PubMed

Nunes, P., Haines, N., Kuppuswamy, V., Fleet, D.J., and Stewart, B.A. (2006). Synaptic vesicle mobility and presynaptic F-actin are disrupted in a N-ethylmaleimide-sensitive factor allele of Drosophila. Mol. Biol. Cell 17, 4709–4719.10.1091/mbc.e06-03-0253Search in Google Scholar PubMed PubMed Central

Offenhauser, N., Castelletti, D., Mapelli, L., Soppo, B.E., Regondi, M.C., Rossi, P., D’Angelo, E., Frassoni, C., Amadeo, A., Tocchetti, A., et al. (2006). Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell 127, 213–226.10.1016/j.cell.2006.09.011Search in Google Scholar PubMed

Pandey, U.B. and Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436.10.1124/pr.110.003293Search in Google Scholar PubMed PubMed Central

Pavalko, F.M. and Burridge, K. (1991). Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin. J. Cell. Biol. 114, 481–491.10.1083/jcb.114.3.481Search in Google Scholar PubMed PubMed Central

Peru y Colón de Portugal, R.L., Acevedo, S.F., Rodan, A.R., Chang, L.Y., Eaton, B.A., and Rothenfluh, A. (2012). Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J. Neurosci. 32, 17706–17713.10.1523/JNEUROSCI.1944-12.2012Search in Google Scholar PubMed PubMed Central

Petrucci, T.C. and Morrow, J.S. (1987). Synapsin I: an actin-bundling protein under phosphorylation control. J. Cell. Biol. 105, 1355–1363.10.1083/jcb.105.3.1355Search in Google Scholar PubMed PubMed Central

Pielage, J., Bulat, V., Zuchero, J.B., Fetter, R.D., and Davis, G.W. (2011). Hts/Adducin controls synaptic elaboration and elimination. Neuron 69, 1114–1131.10.1016/j.neuron.2011.02.007Search in Google Scholar PubMed PubMed Central

Popp, R.L. and Dertien, J.S. (2008). Actin depolymerization contributes to ethanol inhibition of NMDA receptors in primary cultured cerebellar granule cells. Alcohol 42, 525–539.10.1016/j.alcohol.2008.06.006Search in Google Scholar

Quinn, W.G., Harris, W.A., and Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71, 708–712.10.1073/pnas.71.3.708Search in Google Scholar

Rabenstein, R.L., Addy, N.A., Caldarone, B.J., Asaka, Y., Gruenbaum, L.M., Peters, L.L., Gilligan, D.M., Fitzsimonds, R.M., and Picciotto, M.R. (2005). Impaired synaptic plasticity and learning in mice lacking beta-adducin, an actin-regulating protein. J. Neurosci. 25, 2138–2145.10.1523/JNEUROSCI.3530-04.2005Search in Google Scholar

Reeve, S.P., Bassetto, L., Genova, G.K., Kleyner, Y., Leyssen, M., Jackson, F.R., and Hassan, B.A. (2005). The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr. Biol. 15, 1156–1163.10.1016/j.cub.2005.05.050Search in Google Scholar

Rex, C.S., Chen, L.Y., Sharma, A., Liu, J., Babayan, A.H., Gall, C.M., and Lynch, G. (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 186, 85–97.10.1083/jcb.200901084Search in Google Scholar

Rodan, A.R. and Rothenfluh, A. (2010). The genetics of behavioral alcohol responses in Drosophila. Int. Rev. Neurobiol. 91, 25–51.10.1016/S0074-7742(10)91002-7Search in Google Scholar

Rohrbough, J., Grotewiel, M.S., Davis, R.L., and Broadie, K. (2000). Integrin-mediated regulation of synaptic morphology, transmission, and plasticity. J. Neurosci. 20, 6868–6878.10.1523/JNEUROSCI.20-18-06868.2000Search in Google Scholar

Rosahl, T.W., Geppert, M., Spillane, D., Herz, J., Hammer, R.E., Malenka, R.C., and Sudhof, T.C. (1993). Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670.10.1016/0092-8674(93)90487-BSearch in Google Scholar

Rothenfluh, A., and Cowan, C.W. (2013). Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin? Curr. Opin. Neurobiol. 23, 507–512.10.1016/j.conb.2013.01.027Search in Google Scholar PubMed PubMed Central

Rothenfluh, A., Threlkeld, R.J., Bainton, R.J., Tsai, L.T., Lasek, A.W., and Heberlein, U. (2006). Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 127, 199–211.10.1016/j.cell.2006.09.010Search in Google Scholar PubMed

Rubin, G.M. and Lewis, E.B. (2000). A brief history of Drosophila’s contributions to genome research. Science 287, 2216–2218.10.1126/science.287.5461.2216Search in Google Scholar

Rubin, G.M. and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353.10.1126/science.6289436Search in Google Scholar

Saneyoshi, T. and Hayashi, Y. (2012). The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton 69, 545–554.10.1002/cm.21037Search in Google Scholar

Schenck, A., Bardoni, B., Langmann, C., Harden, N., Mandel, J.-L., and Giangrande, A. (2003). CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38, 887–898.10.1016/S0896-6273(03)00354-4Search in Google Scholar

Schubert, V. and Dotti, C.G. (2007). Transmitting on actin: synaptic control of dendritic architecture. J. Cell. Sci. 120, 205–212.10.1242/jcs.03337Search in Google Scholar PubMed

Scott, E.K., Reuter, J.E., and Luo, L. (2003). Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J. Neurosci. 23, 3118–3123.10.1523/JNEUROSCI.23-08-03118.2003Search in Google Scholar

Sekino, Y., Kojima, N., and Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104.10.1016/j.neuint.2007.04.029Search in Google Scholar PubMed

Selva, J. and Egea, G. (2011). Ethanol increases p190RhoGAP activity, leading to actin cytoskeleton rearrangements. J. Neurochem. 119, 1306–1316.10.1111/j.1471-4159.2011.07522.xSearch in Google Scholar PubMed

Sharma, C.P., Ezzell, R.M., and Arnaout, M.A. (1995). Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J. Immunol. 154, 3461–3470.10.4049/jimmunol.154.7.3461Search in Google Scholar

Shi, Y. and Ethell, I.M. (2006). Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J. Neurosci. 26, 1813–1822.10.1523/JNEUROSCI.4091-05.2006Search in Google Scholar PubMed PubMed Central

Shuai, Y., Lu, B., Hu, Y., Wang, L., Sun, K., and Zhong, Y. (2010). Forgetting is regulated through Rac activity in Drosophila. Cell 140, 579–589.10.1016/j.cell.2009.12.044Search in Google Scholar PubMed

Siechen, S., Yang, S., Chiba, A., and Saif, T. (2009). Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl. Acad. Sci. USA 106, 12611–12616.10.1073/pnas.0901867106Search in Google Scholar

Stevens, R.J. and Littleton, J.T. (2011). Synaptic growth: dancing with adducin. Curr. Biol. 21, R402–R405.10.1016/j.cub.2011.04.020Search in Google Scholar

Strausfeld, N.J. and Hirth, F. (2013). Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340, 157–161.10.1126/science.1231828Search in Google Scholar

Tada, T. and Sheng, M. (2006). Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101.10.1016/j.conb.2005.12.001Search in Google Scholar

Tashiro, A., Minden, A., and Yuste, R. (2000). Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10, 927–938.10.1093/cercor/10.10.927Search in Google Scholar

Thalhammer, A. and Cingolani, L.A. (in press). Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology 2013 Mar 28. pii: S0028-3908(13)00111-1. doi: 10.1016/j.neuropharm.2013.03.015.10.1016/j.neuropharm.2013.03.015Search in Google Scholar

Tomas, M., Lazaro-Dieguez, F., Duran, J.M., Marin, P., Renau-Piqueras, J., and Egea, G. (2003). Protective effects of lysophosphatidic acid (LPA) on chronic ethanol-induced injuries to the cytoskeleton and on glucose uptake in rat astrocytes. J. Neurochem. 87, 220–229.10.1046/j.1471-4159.2003.01993.xSearch in Google Scholar

Tully, T. and Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277.10.1007/BF01350033Search in Google Scholar

Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47.10.1016/0092-8674(94)90398-0Search in Google Scholar

Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J., and Takeichi, M. (1996). The catenin cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell. Biol. 135, 767–779.10.1083/jcb.135.3.767Search in Google Scholar PubMed PubMed Central

Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.10.1016/0092-8674(91)90397-HSearch in Google Scholar

Vosshall, L.B. (2007). Into the mind of a fly. Nature 450, 193–197.10.1038/nature06335Search in Google Scholar PubMed

Received: 2013-5-18
Accepted: 2013-8-21
Published Online: 2013-09-28
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 19.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0017/pdf
Scroll to top button