Abstract
Volatile organic compounds (VOCs) are an important class of environmental pollutants, and there is much interest in China to eliminate such pollutants. Noble metal catalysts have long been a family of catalysts with high efficiency and good low-temperature catalytic activity. As a representative of the noble metals, Pt has been widely used. This paper reviews the research trend of Pt-based catalysts for the catalytic oxidation of VOCs, and it compares several important components of Pt-based catalysts. The size of Pt particles, supported carriers, and reaction mechanism are reviewed. Toluene in VOCs is the main research subject. The activity, stability, water resistance, and selectivity of a series of Pt-based catalysts are summarized.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Scientific Research Fund of Heilongjiang Education Department (No. 1451ZD002); the Heilongjiang Province Education Department young creative talents training program (No. UNPYSCT-2020087); Scientific Research Projects of Mudanjiang Normal University (No.GP2019002); Science and technology innovation project of Mudanjiang Normal University (kjcx2021-025mdjnu), Science and technology innovation project of Mudanjiang Normal University (kjcx2021-113mdjnu); Scientific Research Fund of Heilongjiang Education Department (No. 1354MSYQN031); Scientific Research Projects of Mudanjiang Normal University (No.QN2020002)
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs. J. Hazard Mater. 2011, 186, 1445–1454; https://doi.org/10.1016/j.jhazmat.2010.12.034.Search in Google Scholar PubMed
Anitha, V. C.; Goswami, A.; Sopha, H.; Nandan, D.; Gawande, M. B.; Cepe, K.; Ng, S.; Zboril, R.; Macak, J. M. Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Appl. Mater. Today 2018, 10, 86–92; https://doi.org/10.1016/j.apmt.2017.12.006.Search in Google Scholar
An, K.; Somorjai, G. A. Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 2015, 46, 233–248; https://doi.org/10.1007/s10562-014-1399-x.Search in Google Scholar
Abdou, J. M.; Seidel, P.; Sterrer, M. Bonding and thermal stability of cysteine on single-crystalline iron oxide surfaces and Pt(111). J. Chem. Phys. 2020, 152, 064701; https://doi.org/10.1063/1.5143416.Search in Google Scholar PubMed
Boudart, M. Catalysis by supported metals. Adv. Catal. 1969, 20, 153–166.10.1016/S0360-0564(08)60271-0Search in Google Scholar
Bera, R. K.; Park, H.; Ko, S. H.; Ryoo, R. Highly dispersed Pt nanoclusters supported on zeolite-templated carbon for the oxygen reduction reaction. RSC Adv. 2020, 10, 32290–32295; https://doi.org/10.1039/d0ra05654e.Search in Google Scholar PubMed PubMed Central
Burgos, N.; Paulis, M.; Antxustegi, M. M.; Montes, M. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths. Appl. Catal. B Environ. 2002, 38, 251–258; https://doi.org/10.1016/s0926-3373(01)00294-6.Search in Google Scholar
Chen, B.; Wang, B.; Sun, Y.; Wang, X.; Fu, M.; Wu, J.; Chen, L.; Tan, Y.; Ye, D. Plasma-assisted surface interactions of Pt/CeO2 catalyst for enhanced toluene catalytic oxidation. Catalysts 2018, 9, 2; https://doi.org/10.3390/catal9010002.Search in Google Scholar
Chen, C.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F. S. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem. Commun. 2015, 51, 5936–5938; https://doi.org/10.1039/c4cc09383f.Search in Google Scholar PubMed
Chen, C.; Zhu, J.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F. S. Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst. Appl. Catal. B Environ. 2013, 140-141, 199–205; https://doi.org/10.1016/j.apcatb.2013.03.050.Search in Google Scholar
Chen, Y.; Wan, Q.; Cao, L.; Gao, Z.; Lin, J.; Li, L.; Pan, X.; Lin, S.; Wang, X. D.; Zhang, T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidationFacet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. J. Catal. 2022, 415, 174–185; https://doi.org/10.1016/j.jcat.2022.10.002.Search in Google Scholar
Chang, M.; Liu, X.; Ning, P.; Zhang, Q.; Xia, F.; Wang, H.; Wei, G.; Wen, J.; Liu, M.; Hu, J.; Tang, T. Removal of toluene over bi-metallic Pt-Pd-SBA-15 catalysts: kinetic and mechanistic study. Microporous Mesoporous Mater. 2020, 302, 110111; https://doi.org/10.1016/j.micromeso.2020.110111.Search in Google Scholar
Dai, C.; Zhou, Y.; Peng, H.; Huang, S.; Qin, P.; Zhang, J.; Yang, Y.; Luo, L.; Zhang, X. Current progress in remediation of chlorinated volatile organic compounds: a review. J. Ind. Eng. Chem. 2018, 62, 106–119; https://doi.org/10.1016/j.jiec.2017.12.049.Search in Google Scholar
Esfahani, R.; Easton, E. B. Exceptionally durable Pt/TOMS catalysts for fuel cells. Appl. Catal. B Environ. 2020, 268, 118743; https://doi.org/10.1016/j.apcatb.2020.118743.Search in Google Scholar
Elimian, E. A.; Zhang, M.; Chen, J.; Jia, H.; Sun, Y.; He, J. Construction of Pt-mTiO2/USY multifunctional catalyst enriched with oxygen vacancies for the enhanced light-driven photothermocatalytic degradation of toluene. Appl. Catal. B Environ. 2022, 307, 121203.10.1016/j.apcatb.2022.121203Search in Google Scholar
Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.10.1002/adma.201705112Search in Google Scholar PubMed
Fan, J. J.; Fan, Y. J.; Wang, R. X.; Xiang, S.; Tang, H. G.; Sun, S. G. A novel strategy for sulfur-doped carbon nanotube as a high-efficient Pt catalyst support toward methanol oxidation reaction. J. Mater. Chem. A. 2017, 5, 19467–19475; https://doi.org/10.1039/c7ta05102f.Search in Google Scholar
Fan, J.; Sun, Y.; Fu, M.; Li, J.; Ye, D. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO2 catalysts for enhancing the toluene oxidation. J. Hazard Mater. 2022, 424, 127505; https://doi.org/10.1016/j.jhazmat.2021.127505.Search in Google Scholar PubMed
Filipa, R.; João, M. S.; Elisabete, S.; Fátima, M. V.; Fernando, A. C. O. Catalytic combustion of toluene on Pt zeolite coated cordierite foams. Catal. Today 2011, 176, 93–96; https://doi.org/10.1016/j.cattod.2011.02.007.Search in Google Scholar
Fu, X.; Liu, Y.; Deng, J.; Jing, L.; Zhang, X.; Zhang, K.; Han, Z.; Jiang, X.; Dai, H. Intermetallic compound PtMny-derived Pt-MnOx supported on mesoporous CeO2: Highly efficient catalysts for the combustion of toluene. Appl. Catal. A-Gen. 2020, 595, 117509; https://doi.org/10.1016/j.apcata.2020.117509.Search in Google Scholar
Gelles, T.; Krishnamurthy, A.; Adebayo, B.; Rownaghi, A.; Rezaei, F. Abatement of gaseous volatile organic compounds: a materials perspective. Catal. Today 2019, 350, 3–18; https://doi.org/10.1016/j.cattod.2019.06.017.Search in Google Scholar
He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568; https://doi.org/10.1021/acs.chemrev.8b00408.Search in Google Scholar PubMed
Huang, H.; Xu, Y.; Feng, Q.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: a review. Catal. Sci. Technol. 2015, 5, 2649–2669; https://doi.org/10.1039/c4cy01733a.Search in Google Scholar
Hao, X.; Dai, L.; Deng, J.; Liu, Y.; Jing, L.; Wang, J.; Pei, W.; Zhang, X.; Hou, Z.; Dai, H. Nanotubular OMS-2 supported single-atom platinum catalysts highly active for benzene oxidation. J. Phys. Chem. C 2021, 125, 17696–17708; https://doi.org/10.1021/acs.jpcc.1c04579.Search in Google Scholar
He, C.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. A comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: mutual effects and kinetics. Water, Air, Soil Pollut. 2010, 209, 365–376, https://doi.org/10.1007/s11270-009-0205-7.Search in Google Scholar
Joung, H. J.; Kim, J. H.; Oh, J. S.; You, D. W.; Park, H. O.; Jung, K. W. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl. Surf. Sci. 2014, 290, 267–273; https://doi.org/10.1016/j.apsusc.2013.11.066.Search in Google Scholar
Jakeyoung, L.; Eun, J. J.; Dong, G.; Szanyi, J.; Kwak, J. H. Morphology and size of Pt on Al2O3: the role of specific metal-support interactions between Pt and Al2O3. Chin. J. Catal. 2020, 385, 204–212; https://doi.org/10.1016/j.jcat.2020.03.019.Search in Google Scholar
Jiang, Z.; Jing, M.; Feng, X.; Xiong, J.; He, C.; Douthwaite, M.; Zheng, L.; Song, W.; Liu, J.; Qu, Z. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application. Appl. Catal. B Environ. 2020, 278, 119304; https://doi.org/10.1016/j.apcatb.2020.119304.Search in Google Scholar
Klett, C.; Duten, X.; Tieng, S.; Touchard, S.; Jestin, P.; Hassouni, K.; Vega-González, A. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process. J. Hazard Mater. 2014, 279, 356–364; https://doi.org/10.1016/j.jhazmat.2014.07.014.Search in Google Scholar PubMed
Kim, S. C.; Shim, W. G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B Environ. 2010, 98, 180–185; https://doi.org/10.1016/j.apcatb.2010.05.027.Search in Google Scholar
Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Catalytic oxidation of volatile organic compounds (VOCs) A review. Atmos. Environ. 2016, 140, 117–134; https://doi.org/10.1016/j.atmosenv.2016.05.031.Search in Google Scholar
Ke, J.; Wei, Z.; Jiang, Y.; Si, R.; Wang, Y.; Li, S.; Jin, C.; Liu, H.; Song, W. G.; Yan, C. H.; Zhang, Y. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 2015, 5, 5164–5173; https://doi.org/10.1021/acscatal.5b00832.Search in Google Scholar
Kondratowicz, T.; Drozdek, M.; Michalik, M.; Gac, W.; Gajewska, M.; Kuśtrowski, P. Catalytic activity of Pt species variously dispersed on hollow ZrO2 spheres in combustion of volatile organic compounds. Appl. Surf. Sci. 2020, 513, 145788; https://doi.org/10.1016/j.apsusc.2020.145788.Search in Google Scholar
Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; He, K.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; Bo, Y.; Su, H.; Cheng, Y. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017: drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019a, 19, 8897–8913; https://doi.org/10.5194/acp-19-8897-2019.Search in Google Scholar
Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 2010, 100, 403–412; https://doi.org/10.1016/j.apcatb.2010.08.023.Search in Google Scholar
Liu, Y.; Zhang, Y.; Zhai, C.; Li, X.; Mao, L. Nitrogen-doped porous carbons supported Pt nanoparticles for methanol oxidation in alkaline medium. ACS. Mater. Lett. 2016, 166, 16–18; https://doi.org/10.1016/j.matlet.2015.12.035.Search in Google Scholar
Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079; https://doi.org/10.1021/acs.chemrev.7b00776.Search in Google Scholar PubMed PubMed Central
Li, R.; Zhu, Y.; Zhang, Z.; Zhang, C.; Fu, G.; Yi, X.; Huang, Q.; Yang, F.; Liang, W.; Zheng, A.; Jiang, J. Remarkable performance of selective catalytic reduction of NOx by ammonia over copper-exchanged SSZ-52 catalysts. Appl. Catal. B Environ. 2021a, 283, 119641; https://doi.org/10.1016/j.apcatb.2020.119641.Search in Google Scholar
Li, Z.; Niu, X.; Lin, Z.; Wang, N.; Shen, H.; Liu, W.; Sun, K.; Fu, Y. Q.; Wang, Z. Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloys Compd. 2016, 682, 647–653; https://doi.org/10.1016/j.jallcom.2016.04.311.Search in Google Scholar
Li, Q.; Zhou, X.; Zhao, W.; Peng, C.; Wu, H.; Chen, H. Pt/Fe co-loaded mesoporous zeolite beta for CO oxidation with high catalytic activity and water resistance. RSC Adv. 2019b, 9, 28089–28094; https://doi.org/10.1039/c9ra04599f.Search in Google Scholar PubMed PubMed Central
Li, L.; Wei, M.; Chen, F.; Ji, W. Pt-Embedded-Co3O4 hollow structure as a highly efficient catalyst for toluene combustion. Catal. Sci. Technol. 2021b, 11, 5491–5497; https://doi.org/10.1039/d1cy00653c.Search in Google Scholar
Michalak, W. D.; Krier, J. M.; Komvopoulos, K.; Somorjai, G. A. Structure sensitivity in Pt nanoparticle catalysts for hydrogenation of 1,3-butadiene: in situ study of reaction intermediates using SFG vibrational spectroscopy. J. Phys. Chem. C 2013, 117, 1809–1817; https://doi.org/10.1021/jp311772p.Search in Google Scholar
Mo, S.; Li, J.; Liao, R.; Peng, P.; Li, J.; Wu, J.; Fu, M.; Liao, L.; Shen, T.; Xie, Q.; Ye, D. Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: synergistic effect of surface decorated and intrinsic O-vacancies. Chem. Eng. J. 2021, 418, 129399; https://doi.org/10.1016/j.cej.2021.129399.Search in Google Scholar
Matsuo, K.; Nunotani, N.; Imanaka, N. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Funct. Mater. Lett. 2019, 12, 1950074, https://doi.org/10.1142/s1793604719500747.Search in Google Scholar
Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838; https://doi.org/10.1038/s41467-020-16693-9.Search in Google Scholar PubMed PubMed Central
Nesselberger, M.; Roefzaad, M.; Hamou, R. F.; Biedermann, P. U.; Schweinberger, F. F.; Kunz, S.; Schloegl, K.; Wiberg, G. K. H.; Ashton, S.; Heiz, U.; Mayrhofer, K. J. J.; Arenz, M. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 2013, 12, 919–924; https://doi.org/10.1038/nmat3712.Search in Google Scholar PubMed
Nunotani, N.; Saeki, S.; Matsuo, K.; Imanaka, N. Novel catalysts based on lanthanum oxyfluoride for toluene combustion. Mater. Lett. 2020, 258, 126802; https://doi.org/10.1016/j.matlet.2019.126802.Search in Google Scholar
Ponticorvo, E.; Iuliano, M.; Funicello, N.; Pasquale, S. D.; Sarno, M. Magnetic resonance imaging during the templated synthesis of mesoporous TiO2 supporting Pt nanoparticles for MOR. Inorg. Chem. Commun. 2021, 131, 108790; https://doi.org/10.1016/j.inoche.2021.108790.Search in Google Scholar
Park, J.; Lee, S.; Kim, H.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042; https://doi.org/10.1002/anie.201908122.Search in Google Scholar PubMed
Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B Environ. 2018, 220, 462–470; https://doi.org/10.1016/j.apcatb.2017.07.048.Search in Google Scholar
Pushkarev, V. V.; An, K.; Alayoglu, S.; Beaumont, S. K.; Somorjai, G. A. Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: elucidation of the Pt particle size effect on reaction kinetics. Chin. J. Catal. 2012, 292, 64–72; https://doi.org/10.1016/j.jcat.2012.04.022.Search in Google Scholar
Rui, Z.; Chen, L.; Chen, H.; Ji, H. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Ind. Eng. Chem. Res. 2014, 53, 15879–15888; https://doi.org/10.1021/ie5029107.Search in Google Scholar
Rui, Z.; Tang, M.; Ji, W.; Ding, J.; Ji, H. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation. Catal. Today 2017, 297, 159–166; https://doi.org/10.1016/j.cattod.2017.04.055.Search in Google Scholar
Sui, C.; Zeng, S.; Ma, X.; Zhang, Y.; Zhang, J.; Xie, X. Research progress of catalytic oxidation of volatile organic compounds over Mn-based catalysts-a review. Rev. Inorg. Chem. 2023, 43, 1–12; https://doi.org/10.1515/revic-2021-0042.Search in Google Scholar
Song, S.; Wu, Y.; Ge, S.; Wang, L.; Wang, Y.; Guo, Y.; Zhan, W.; Guo, Y. A facile way to improve Pt atom efficiency for CO oxidation at low temperature: modification by transition metal oxides. ACS Catal. 2019, 9, 6177–6187; https://doi.org/10.1021/acscatal.9b01679.Search in Google Scholar
Sedjame, H. J.; Fontaine, C.; Lafaye, G.; Barbier, J. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation. Appl. Catal. B Environ. 2014, 144, 233–242; https://doi.org/10.1016/j.apcatb.2013.07.022.Search in Google Scholar
Shi, Y.; Li, Z.; Wang, J.; Zhou, R. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation-ScienceDirect. Appl. Catal. B Environ. 2021, 286, 119936; https://doi.org/10.1016/j.apcatb.2021.119936.Search in Google Scholar
Salaev, M. A.; Salaeva, A. A.; Kharlamova, T. S.; Mamontov, G. V. Pt-CeO2-based composites in environmental catalysis: a review. Appl. Catal. B Environ. 2021, 29, 120286; https://doi.org/10.1016/j.apcatb.2021.120286.Search in Google Scholar
Singhania, N.; Anumol, E. A.; Ravishankar, N.; Madras, G. Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation. Dalton Trans. 2013, 42, 15343–15354; https://doi.org/10.1039/c3dt51364e.Search in Google Scholar PubMed
Tian, M.; Guo, X.; Dong, R.; Guo, Z.; Shi, J.; Yu, Y.; Cheng, M.; Albilali, R.; He, C. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Appl. Catal. B Environ. 2019, 259, 118018; https://doi.org/10.1016/j.apcatb.2019.118018.Search in Google Scholar
Wang, H.; Wang, Y.; Zhu, Z.; Sapi, A.; An, K.; Kennedy, G.; Michalak, W. D.; Somorjai, G. A. Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase. Nano Lett. 2013a, 13, 2976–2979; https://doi.org/10.1021/nl401568x.Search in Google Scholar PubMed
Wang, H.; Krier, J. M.; Zhu, Z.; Melaet, G.; Wang, Y.; Kennedy, G.; Alayoglu, S.; An, K.; Somorjai, G. A. Promotion of hydrogenation of organic molecules by incorporating iron into platinum nanoparticle catalysts: displacement of inactive reaction intermediates. J. Am. Chem. Soc. 2013b, 3, 2371–2375; https://doi.org/10.1021/cs400579j.Search in Google Scholar
Wang, Q.; Lu, Q.; Yao, L.; Sun, K.; Wei, M.; Guo, E. Preparation and characterization of ultrathin Pt/CeO2/Bi2WO6 nanobelts with enhanced photoelectrochemical properties. Dyes Pigments 2018, 149, 612–619; https://doi.org/10.1016/j.dyepig.2017.11.028.Search in Google Scholar
Wang, X.; Lian, M.; Yang, X.; Lu, P.; Zhou, J.; Gao, J.; Liu, C.; Liu, W.; Miao, L. Enhanced activity for catalytic combustion of ethylene by the Pt nanoparticles confined in TiO2 nanotube with surface oxygen vacancy. Ceram. Int. 2022, 48, 3933–3940; https://doi.org/10.1016/j.ceramint.2021.10.180.Search in Google Scholar
Wang, Z.; Yang, H.; Liu, R.; Xie, S.; Liu, Y.; Dai, H.; Huang, H.; Deng, J. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard Mater. 2020, 392, 122258; https://doi.org/10.1016/j.jhazmat.2020.122258.Search in Google Scholar PubMed
Xiao, M.; Yu, X.; Guo, Y.; Ge, M. Boosting toluene combustion by tuning electronic metal–support interactions in in situ grown Pt@Co3O4 CatalystsBoosting toluene combustion by tuning electronic metal-support interactions in in situ grown Pt@Co3O4 catalysts. Environ. Sci. Technol. 2022, 56, 1376–1385; https://doi.org/10.1021/acs.est.1c07016.Search in Google Scholar PubMed
Yoshida, J.; Koda, S.; Nishida, S.; Yoshida, T.; Miyajima, K.; Kumagai, S. Association between occupational exposure levels of antineoplastic drugs and work environment in five hospitals in Japan. J. Oncol. Pharm. Pract. 2011, 17, 29–38; https://doi.org/10.1177/1078155210380485.Search in Google Scholar PubMed
Yan, Z.; Gong, S.; An, L.; Yue, L.; Xu, Z. Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature. React. Kinet. Mech. Catal. 2018, 124, 293–304; https://doi.org/10.1007/s11144-018-1348-6.Search in Google Scholar
Ye, Q.; Xu, W.; Chen, S.; Wang, Z.; Duan, X.; Liu, H.; Zhang, H.; Sun, L.; Yang, W.; Zhang, C.; Zhou, J. Initial nucleation process in the synthesis of Platinum Nanoparticle from chloroplatinic acid. Nano Today 2021, 37, 101093; https://doi.org/10.1016/j.nantod.2021.101093.Search in Google Scholar
Yu, K.; Deng, J.; Shen, Y.; Wang, A.; Shi, L.; Zhang, D. Effificient catalytic combustion of toluene at low temperature by tailoring surfificial Pt0 and interfacial Pt-AlOHx species. iScience 2021, 24, 102689; https://doi.org/10.1016/j.isci.2021.102689.Search in Google Scholar PubMed PubMed Central
Yang, Y.; Song, J.; Sui, H.; He, L.; Li, X. Understanding the behaviors of toluene in asphaltene. J. Mol. Liq. 2022a, 348, 118016; https://doi.org/10.1016/j.molliq.2021.118016.Search in Google Scholar
Yang, L.; Liu, Q.; Han, R.; Fu, K.; Su, Y.; Zheng, Y.; Wu, X. Q.; Song, C.; Ji, N.; Lu, X.; Ma, D. Confinement and synergy effect of bimetallic Pt-Mn nanoparticles encapsulated in ZSM-5 zeolite with superior performance for acetone catalytic oxidation. Appl. Catal. B Environ. 2022b, 309, 121224; https://doi.org/10.1016/j.apcatb.2022.121224.Search in Google Scholar
Zhang, H.; He, L.; Zhang, X.; Xia, Y.; Qi, J.; Jin, Q. Lattice oxygen and surface states dual modulation of manganese oxide with remarkably enhanced catalytic activity for toluene oxidation. Inorg. Chem. Commun. 2021a, 130, 108680; https://doi.org/10.1016/j.inoche.2021.108680.Search in Google Scholar
Zhu, M.; Pan, J.; Wu, Z.; Gao, X. Y.; Zhao, W.; Xia, X. H.; Xu, J. J.; Chen, H. Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt janus nanoparticle. Angew. Chem., Int. Ed. 2018, 57, 4010–4014; https://doi.org/10.1002/ange.201800706.Search in Google Scholar
Zhang, Z.; Li, R.; Wang, M.; Li, Y.; Tong, Y.; Yang, P.; Zhu, Y. Two steps synthesis of CeTiOx oxides nanotube catalyst: enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx. Appl. Catal. B Environ. 2021b, 282, 119542; https://doi.org/10.1016/j.apcatb.2020.119542.Search in Google Scholar
Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L.; Yan, C. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998–4999; https://doi.org/10.1021/ja101110m.Search in Google Scholar PubMed
Zheng, J.; Wang, Z.; Chen, Z.; Zuo, S. Mechanism of CeO2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion. J. Rare Earths 2021, 39, 790–796; https://doi.org/10.1016/j.jre.2020.08.009.Search in Google Scholar
Zhang, L.; Li, H.; Xiong, H. Monolayer core-shell catalysts breaking the selectivity-activity seesaw in chemoselective hydrogenation. Chin. Sci. 2022, 65, 1–2; https://doi.org/10.1007/s11426-021-1144-3.Search in Google Scholar
Zhu, X.; He, X.; Guo, L.; Shi, Y.; Zhao, N.; Qiao, C.; Dai, L.; Tian, Y. Hydrophobic modification of ZSM-5-encapsulated uniform Pt nanoparticles for catalytic oxidation of volatile organic compounds. ACS Appl. Nano Mater. 2022, 5, 3374–3385; https://doi.org/10.1021/acsanm.1c03975.Search in Google Scholar
Zhang, Q.; Mo, S.; Li, J.; Sun, Y.; Zhang, M.; Chen, P.; Fu, M.; Wu, J.; Chen, L.; Ye, D. In-situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts. Catal. Sci. Technol. 2019, 9, 4538–4551; https://doi.org/10.1039/c9cy00751b.Search in Google Scholar
Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal. Today 2016, 264, 270–278; https://doi.org/10.1016/j.cattod.2015.10.040.Search in Google Scholar
Zhao, S.; Wen, Y.; Liu, X.; Pen, X.; Lü, F.; Gao, F.; Xie, X.; Du, C.; Yi, H.; Kang, D.; Tang, X. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551; https://doi.org/10.1007/s12274-020-2765-1.Search in Google Scholar
Zou, S.; Zhang, M.; Mo, S.; Cheng, H.; Fu, M.; Chen, P.; Chen, L.; Shi, W.; Ye, D. Catalytic performance of toluene combustion over Pt nanoparticles supported on pore-modified macro-meso-microporous zeolite foam. Nanomaterials 2020, 10, 30; https://doi.org/10.3390/nano10010030.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/revic-2022-0036).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands
Articles in the same Issue
- Frontmatter
- A review on the chemistry of novel platinum chelates based on azo-azomethine ligands
- Iron metabolism: pathways and proteins in homeostasis
- Detection of different chemical moieties in aqueous media by luminescent Europium as sensor
- Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review
- Trivalent europium – a scarce case in intermetallics
- A review of the photochromic behavior of metal complexes embedded in conjugated (–N=N–C=N–) and non-conjugated azo-imine-based ligands