Home Molecular structures of M(II) chelates with compartmental (N,N)-, (N,O)- and (N,S)-donor ligands and articulated metal chelate cycles
Article
Licensed
Unlicensed Requires Authentication

Molecular structures of M(II) chelates with compartmental (N,N)-, (N,O)- and (N,S)-donor ligands and articulated metal chelate cycles

  • Oleg V. Mikhailov

    Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without co-authors), and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (RFBR, 14 projects, 1996–2016), the International Scientific Soros Education Program (ISSEP, 2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).

    EMAIL logo
Published/Copyright: August 13, 2018

Abstract

Molecular structures of various d-element M(II) ion chelates with compartmental (N,N)-, (N,O)-, and (N,S)-donor atomic ligands forming as a result of complexing with M(II) three or four articulated metal chelate cycles have been systematized and discussed in detail. It has been shown that, on the whole, such metalmacrocyclic compounds, as a rule, have molecular structures with non-coplanar chelate nodes and non-coplanar macrocycles. The review covers the period 2000–2017.

About the author

Oleg V. Mikhailov

Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without co-authors), and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (RFBR, 14 projects, 1996–2016), the International Scientific Soros Education Program (ISSEP, 2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).

Acknowledgement

The present review was carried out with financial support in the framework of draft no. 4.5784.2017/8.9 to the competitive part of the state task of the Russian Federation on the 2017–2019 years.

  1. Funding: Ministry of Education and Science of the Russian Federation, Funder Id: 10.13039/501100003443.

References

Aquilanti, G.; Giorgetti, M.; Minicucci, M.; Papini, G. A study on the coordinative versatility of new N,S-donor macrocyclic ligands: XAFS, and Cu2+ complexation thermodynamics in solution. Dalton Trans.2011, 40, 2764–2777.10.1039/c0dt01401jSearch in Google Scholar PubMed

Beynek, N.; Tan, N.; Beynek, H. Template synthesis and spectral characterization of new lead(II)-Schiff base macrocyclic complexes incorporating phenanthroline and/or bipyridine units. Asian J. Chem.2015, 27, 4141–4144.10.14233/ajchem.2015.19135Search in Google Scholar

Borisova, N. E.; Reshetova, M. D.; Ustynyuk, Y. A. Metal-free methods in the synthesis of macrocyclic Schiff bases. Chem. Revs.2007, 107, 46–79.10.1021/cr0683616Search in Google Scholar PubMed

Busch, D. H. Reactions of coordinated ligands and homogeneous catalysis. Adv. Chem. Ser.1962, 37, 1–18.10.1021/ba-1963-0037.ch001Search in Google Scholar

Busch, D. H. Distinctive coordination chemistry and biological significance of complexes with macrocyclic ligands. Acc. Chem. Res.1978, 11, 392–400.10.1021/ar50130a005Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Quantum-chemical calculation of steric structure of the complexes formed at template synthesis in three-component systems of Co(II) [Ni(II), Cu(II)] ion-dithiooxamide-acetone. Russ. J. Gen. Chem.2008, 78, 1849–1861.10.1134/S1070363208100046Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. DFT Calculation of space structures of MII complexes with (N,N,N,N)-coordinating macroheterocyclic ligand-1,8-dioxa-3,6,10,13-tetraazacyclotetradecanetetrathione-4,5,11,12. Macroheterocycles2009a, 2, 271–274.10.6060/mhc2009.3-4.271Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal (II) ion-dithiooxamide-formaldehyde. Russ. J. Inorg. Chem.2009b, 54, 1952–1956.10.1134/S0036023609120183Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. On the possibility of template synthesis in the ternary system of vanadium(IV)-dithiooxamide-formaldehyde. Russ. J. Gen. Chem.2009c, 79, 1122–1128.10.1134/S1070363209060152Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. DFT B3LYP quantum-chemical calculation of molecular structures of (6.6.6)macrotricyclic MII complexes with (N,N,N,N)-coordinating ligand formed in the MII-hydrazinomethanethiohydrazide-propanone triple systems. Macroheterocycles2010a, 3, 171–175.10.6060/mhc2010.2-3.171Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Structure of the template complex formed in the Co(III)-dithiooxamide-acetone ternary system during complex formation in the KCoFe(CN)6-gelatin immobilized matrices. Russ. J. Inorg. Chem.2010b, 55, 1243–1247.10.1134/S0036023610080152Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. The relative stability of macrotricyclic metal complexes in M(II)-thiocarbohydrazide-acetone (M=Mn, Fe, Co, Ni, Cu, Zn) ternary systems according to the data of quantum-chemical calculations. Russ. J. Phys. Chem. A2011a, 85, 152–155.10.1134/S0036024411010055Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Calculation of geometric parameters of macrocyclic metal chelates formed by template synthesis in tertiary systems M(II) ion-ethanedithioamide-formaldehyde-ammonia. Russ. J. Inorg. Chem.2011b, 56, 223–231.10.1134/S0036023611020057Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. calculation of geometric parameters and energies of macrocyclic metal chelates in the ternary M(II) ion-thiocarbamoylmethanamide-formaldehyde systems. Russ. J. Inorg. Chem.2011c, 56, 1935–1942.10.1134/S0036023611120308Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Stability of isomerous chelates in M(II)–thiocarbamoylmethanamide-ethandial systems according to the DFT B3LYP method (M=Mn, Fe, Co, Ni, Cu, Zn). Russ. J. Phys. Chem. A2011d, 85, 1475–1477.10.1134/S0036024411080048Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Geometric parameters and energies of molecular structures of macrocyclic metal chelates in the ternary 3d M(II) ion-ethanedithioamide-ethanedial systems according to quantum-chemical DFT B3LYP calculations. Russ. J. Inorg. Chem.2012, 57, 205–210.10.1134/S0036023612020052Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Molecular structure and thermodynamic parameters of (5656)macrotetracyclic chelates in the 3d-element(II) ion-hydrazinomethanethiohydrazide-2,3-butanedione ternary system according to density functional quantum-chemical calculations. Russ. J. Inorg. Chem.2013a, 58, 174–179.10.1134/S0036023613020186Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Structure of (5656) macrotetracyclic chelates in the ternary systems M(II)-ethanedithioamide-acetone (M=Mn, Fe, Co, Ni, Cu, Zn) according to DFT calculations. Russ. J. Inorg. Chem.2013b, 58, 1073–1078.10.1134/S0036023613090052Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Comparative stability of isomeric (565)macrotricyclic chelates of 3d-elements formed in the systems M(II)-thiosemicarbazide-formaldehyde according to DFT B3LYP data. Russ. J. Gen. Chem.2013c, 83, 1123–1130.10.1134/S1070363213060200Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Specifics of the molecular structures of “template” (5456)macrotetracyclic chelates of 3d M(II) ions with 5,7,9-triimino-1-oxa-3,6,8,11-tetraazacyclododecane-4,10-dithione according to DFT calculations. Russ. J. Inorg. Chem.2013d, 58, 1203–1209.10.1134/S0036023613100033Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Molecular structures of “template” (5555) macrotetracyclic chelates of 3d M(II) ions with 1,4,7,10-tetraaza-1,3,8-dodecatriene-5,6,11,12-tetrathione according to DFT quantum-chemical calculations. Russ. J. Inorg. Chem.2013e, 58, 1315–1320.10.1134/S0036023613110041Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Molecular structure of the macrocyclic copper(II) chelate with 6,7, 13,14-tetramethyl-3,10-dithio-1,2,4,5,8,9,11,12-octaazatetradecatetra-ene-1,5,7,11 according to quantum-chemical DFT calculation. Russ. J. Gen. Chem.2013f, 83, 1937–1940.10.1134/S1070363213100228Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Quantum-chemical calculation of molecular structures of (5656) macrotetracyclic 3d-metal complexes “self-assembled” in quaternary systems M(II) ion-ethanedithioamide-formaldehyde-ammonia by the density functional theory method. Russ. J. Inorg. Chem.2014a, 59, 218–223.10.1134/S0036023614030024Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Structural peculiarities of macrocyclic chelates, products of self-assembly in the M(II) ion-2-amino-2-thioheptanoic acid-guanidine-formaldehyde system, as shown by quantum-chemical simulation. Russ. J. Gen. Chem.2014b, 84, 315–319.10.1134/S1070363214020297Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Molecular structures of (5454) macrotetracyclic chelates of 3d M(II) ions with 4,5,9,10-tetramethyl-1,3,6,8-tetraaza-5,8-cyclodecadiene-2,7-diimine according to DFT quantum-chemical calculations. Russ. J. Inorg. Chem.2014c, 59, 349–354.10.1134/S0036023614040044Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. Mutual stability and molecular structures of asymmetric (555) macrotricyclic 3d-metal chelates formed by self-assembly in M(II) ion-ethanedithioamide-hydrazinomethanethioamide-2-oxopropanal quaternary systems according to density functional theory calculations. Russ. J. Inorg. Chem.2014d, 59, 489–495.10.1134/S0036023614050052Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V. (5656)Macrotetracyclic chelates of doubly charged 3d-element ions with 1,4,8,11-tetraazacyclotetradecane-2,3,9,10-tetrathione and their molecular structures according to density functional theory data. Russ. J. Inorg. Chem.2014e, 59, 1276–1282.10.1134/S0036023614110138Search in Google Scholar

Chachkov, D. V.; Mikhailov, O. V.; Astaf’ev, M. N. Ab initio quantum chemical calculation of the structures of coordination compounds arising at template synthesis in ion M(II)-hydrozinomethanethiohydrazide-acetone (M=Co, Ni, Cu) systems. J. Struct. Chem.2009, 50, 613–617.10.1007/s10947-009-0096-xSearch in Google Scholar

Chachkov, D. V.; Mikhailov, O. V.; Shamsutdinov, T. F. Specifics of molecular structures of (565)macrotricyclic 3d-Metal chelates in the ternary systems M(II)-hydrazinecarbothioamide-2,4-pentanedione according to DFT calculations. Russ. J. Inorg. Chem.2013, 58, 548–553.10.1134/S0036023613050045Search in Google Scholar

Chandra, S.; Gupta, L. K.; Agrawal, S. Modern spectroscopic and biological approach in the characterization of a novel 14-membered [N4] macrocyclic ligand and its transition metal complexes. Trans. Met. Chem.2007, 32, 240–245.10.1007/s11243-006-0155-5Search in Google Scholar

Costisor, O.; Linert, W. Metal Mediated Template Synthesis of Ligands; World Scientific Publishing: Singapore, 2004.10.1142/5515Search in Google Scholar

Cronin, L. Macrocyclic coordination chemistry. Ann. Rep. Prog. Chem., Sect. A2005, 101, 319–347.10.1039/b410475gSearch in Google Scholar

Curtis, N. F. J. Transition-metal complexes with aliphatic Schiff bases. Part I. Nickel(II) complexes with N-isopropylidene-ethylenediamine schiff bases. Chem. Soc.1960, 11, 4409–4413.10.1039/jr9600004409Search in Google Scholar

Curtis, N. F. Macrocyclic coordination compounds formed by condensation of metal-amine complexes with aliphatic carbonyl compounds. Coord. Chem. Revs.1968, 3, 3–47.10.1016/S0010-8545(00)80104-6Search in Google Scholar

Fabbrizzi, L.; Licchelli, M.; Mosca, L.; Poggi, A. Template synthesis of azacyclam metal complexes using primary amides as locking fragments. Coord. Chem. Revs.2010, 254, 1628–1636.10.1016/j.ccr.2009.12.002Search in Google Scholar

Firdaus, F.; Fatma, K.; Azam, M.; Khan, S. N.; Khan, A. U.; Shakir, M. Template synthesis and physicochemical studies of 14-membered hexaazmacrocyclic complexes with Co(II), Ni(II), Cu(II) and Zn(II): a comparative spectroscopic approach on DNA binding with Cu(II) and Ni(II) complexes. Trans. Met. Chem.2008, 33, 467–473.10.1007/s11243-008-9066-ySearch in Google Scholar

Fitzpatrick, D. W.; Ulrich, H. J., Eds. Macrocyclic Chemistry: New Research Developments; Nova Publishers: Hauppauge, NY, 2011; p 517.Search in Google Scholar

Galanin, N. E.; Shaposhnikov, G. P.; Koifman, O. I. Methods for synthesis of meso-substituted tetrabenzoporphirins. Russ. Chem. Rev.2013, 82, 412–428.10.1070/RC2013v082n05ABEH004317Search in Google Scholar

Garnovskii, A. D.; Kharisov, B. I., Ed. Synthetic Coordination and Organometallic Chemistry; Marsel-Dekker: New York-Basel, 2003.10.1201/9780203911525Search in Google Scholar

Garnovskii, A. D.; Vasil’chenko, V. S.; Garnovskii, D. A. Contemporary Topics of the Synthesis of Metal Complexes. The Main Ligands and Techniques; LaPO: Rostov, 2000; p 355.Search in Google Scholar

Gerbeleu, N. V.; Arion, V. B. Template Synthesis of Macrocyclic Compounds; Shtiintsa: Chisinau, 1990; p 373.Search in Google Scholar

Gerbeleu, N. V.; Arion, V. B.; Burgess, J. Template Synthesis of Macrocyclic Compounds; Wiley: Weinheim, 1999; p 554.10.1002/9783527613809Search in Google Scholar

Girichev, G. V.; Giricheva, N. I.; Kuzmina, N. P.; Levina, Yu. S.; Rogachev, A. Yu. Molecular structure of NiO2N2C16H14 from gas-phase electron diffraction and quantum chemical data. J. Struct. Chem.2005, 46, 813–823.10.1007/s10947-006-0205-zSearch in Google Scholar

Girichev, G. V.; Giricheva, N. I.; Kuz’mina, N. P.; Medvedeva, Yu. S.; Rogachev, A. Yu. Molecular structure of nickel(II) and copper(II) N,N′-ethylene-bis(acetylacetoneiminates) MO2N2C12H18 according to gas-phase electron diffraction data and quantum-chemical calculations. J. Struct. Chem.2008, 49, 837–849.10.1007/s10947-008-0146-9Search in Google Scholar

Giricheva, N. I.; Girichev, G. V.; Kuz’mina, N. P.; Medvedeva, Yu. S.; Rogachev, A. Yu. Structure of the Cu(Salen) molecule CuO2N2C16H14 according to gas-phase electron diffraction data and quantum chemical calculations. J. Struct. Chem.2009, 50, 52–59.10.1007/s10947-009-0007-1Search in Google Scholar

Girichev, G. V.; Giricheva, N. I.; Pelevina, E. D.; Kuzmina, N. P.; Kotova, O. V. Structure of a zinc(II) N,N′-ethylene-bis(acetylacetoniminate) molecule, ZnO2N2C12H18, according to gas electron diffraction data and quantum chemical calculations. J. Struct. Chem.2010a, 51, 23–31.10.1007/s10947-010-0004-4Search in Google Scholar

Girichev, G. V.; Giricheva, N. I.; Tverdova, N. V.; Simakov, A. O.; Kuzmina, N. P.; Kotova, O. V. Geometric and electronic structure of an N,N′-ethylene-bis(salicylaldiminato)zinc(II) molecule, ZnO2N2C16H14. J. Struct. Chem.2010b, 51, 223–230.10.1007/s10947-010-0035-xSearch in Google Scholar

Girichev, G. V.; Giricheva, N. I.; Tverdova, N. V.; Pelevina, E. D.; Kuzmina, N. P.; Kotova, O. V. Molecular structure of N, N′-o-phenylene-bis(salicylideneaminato) zinc(II), Zn(saloph), according to gas-phase electron diffraction and quantum-chemical calculations. J. Mol. Struct.2010c, 978, 178–186.10.1016/j.molstruc.2010.02.023Search in Google Scholar

Gloe, C., Ed. Macrocyclic Chemistry: Current Trends and Future Perspectives; Spcycleer: Amsterdam, 2005.10.1007/1-4020-3687-6Search in Google Scholar

Gurumoorthy, P.; Ravichandran, J.; Karthikeyan, N.; Palani, P.; Kalilur Rahiman, A. Template synthesis of polyaza macrocyclic copper(II) and nickel(II) complexes: spectral characterization and antimicrobial studies. Bull. Korean Chem. Soc.2012, 33, 2279–2286.10.5012/bkcs.2012.33.7.2279Search in Google Scholar

Hoss, R.; Fogtle, F. Templatsynthesen. Angew. Chem.1994, 106, 389–398.10.1002/ange.19941060404Search in Google Scholar

Ilhan, S.; Temel, H.; Ziyadanogullari, R.; Sekerci, M. Synthesis and spectral characterization of macrocyclic Schiff base by reaction of 2,6-diaminopyridine and 1,4-bis(2-carboxyaldehydephenoxy)butane and its CuII, NiII, PbII, CoIII and LaIII complexes. Trans. Met. Chem.2007a, 32, 584–590.10.1007/s11243-007-0217-3Search in Google Scholar

Ilhan, S.; Temel, H.; Kilic, A.; Tas, E. Synthesis and spectral characterization of macrocyclic NiII complexes derived from various diamines, NiII perchlorate and 1,4-bis(2-carboxyaldehydephenoxy)butane. Trans. Met. Chem.2007b, 32, 1012–1017.10.1007/s11243-007-0260-0Search in Google Scholar

Jones, C. J.; McCleverly, J. A. Complexes of transition metals with Schiff bases and the factors influencing their redox properties. Part I. Nickel and copper complexes of some diketone bisthiosemicarbazones. J. Chem. Soc.1970, 17, 2819–2820.10.1039/j19700002829Search in Google Scholar

Kasuda, K.; Tsutsui, M. Some new developments in the chemistry of metallophthalocyanines. Coord. Chem. Revs.1980, 32, 67–95.10.1016/S0010-8545(00)80370-7Search in Google Scholar

Keypour, H.; Goudarziafshar, H.; Brisdon, A. K.; Pritchard, R. G.; Rezaeivala, M. New macrocyclic Schiff-base complexes incorporating a phenanthroline unit. Part 2: template synthesis of some manganese(II) complexes and crystal structure studies. Inorg. Chim. Acta2008, 361, 1415–1420.10.1016/j.ica.2007.09.018Search in Google Scholar

Khan, T. A.; Tabassum, S.; Azim, Y.; Shakir, M. Synthesis and physico-chemical studies on 18-membered octaazamacrocyclic complexes of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. Synth. React. Inorg. Met. Org. Chem.2004, 34, 1305–1318.10.1081/SIM-200026200Search in Google Scholar

Khandar, A. A.; Hosseini-Yazdi, S. A.; Khatamian, M.; McArdle, P.; Zarei, S. A. Synthesis, characterization and structure of nickel(II) complexes of a 16-membered mixed-donor macrocyclic Schiff base ligand, potentially hexadentate, bearing two pendant alcohol functions. Polyhedron2007, 26, 33–38.10.1016/j.poly.2006.07.022Search in Google Scholar

Khanmohammad, H.; Amani, S.; Lang, H.; Rueffer, T. Synthesis and characterization of Mg(II), Mn(II), Zn(II) and Cd(II) complexes with a new heptaaza Schiff base pendant-armed macrocycle: X-ray crystal structure, NMR and computational study. Inorg. Chim. Acta2007, 360, 579–587.10.1016/j.ica.2006.07.082Search in Google Scholar

Kotova, O. V.; Eliseeva, S. V.; Averjushkin, A. S.; Lepnev, L. S.; Vaschenko, A. A.; Rogachev, A. Yu.; Vitukhnovskii, A. G.; Kuzmina, N. P. Zinc(II) complexes with Schiff bases derived from ethylenediamine and salicylaldehyde: the synthesis and photoluminescent properties. Russ. Chem. Bull.2008, 57, 1880–1889.10.1007/s11172-008-0254-xSearch in Google Scholar

Kotova, O.; Lyssenko, K.; Rogachev, A.; Eliseeva, S.; Fedyanin, I.; Lepnev, L.; Pandey, L.; Burlov, A.; Garnovskii, A.; Vitukhnovsky, A.; Van der Auweraer, M.; Kuzmina, N. Low temperature X-ray diffraction analysis, electronic density distribution and photophysical properties of bidentate N,O-donor salicylaldehyde Schiff bases and zinc complexes in solid state. J. Photochem. Photobiol. A: Chem.2011, 218, 117–129.10.1016/j.jphotochem.2010.12.011Search in Google Scholar

Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; Wiley: Weinheim, 1995.10.1002/3527607439Search in Google Scholar

Mamardashvili, G. M.; Mamardashvili, N. Zh.; Koifman, O. I. Self-assembling systems based on porphirins. Russ. Chem. Revs.2008, 77, 59–75.10.1070/RC2008v077n01ABEH003743Search in Google Scholar

Mikhailov, O. V. Substitution reactions and template synthesis in the metal hexacyanoferrate(II) gelatin-immobilized matrix systems. Russ. J. Coord. Chem.2000, 26, 702–713.10.1002/chin.200111255Search in Google Scholar

Mikhailov, O. V. Reactions of nucleophilic, electrophilic substitution and template synthesis in the metalhexacyanoferrate(II) gelatin-immobilized matrix. Revs. Inorg. Chem.2003, 23, 31–74.10.1515/REVIC.2003.23.1.37Search in Google Scholar

Mikhailov, O. V. Gelatin-Immobilized Matal Complexes; Scientific World: Moscow, 2004; p 236.Search in Google Scholar

Mikhailov, O. V. Gelatin-immobilized metal complexes: synthesis and employment. J. Coord. Chem.2008, 61, 1333–1384.10.1080/00958970701579282Search in Google Scholar

Mikhailov, O. V. Self-assembly of molecules of metal macrocyclic compounds in nanoreactors on the basis of biopolymer-immobilized matrix systems. Nanotechnol. Russ.2010, 5, 18–34.10.1134/S1995078010010027Search in Google Scholar

Mikhailov, O. V. Sol-gel technology and template synthesis in thin gelatin films. J. Sol-Gel Sci. Technol.2014a, 72, 314–327.10.1007/s10971-014-3468-4Search in Google Scholar

Mikhailov, O. V. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. Nano Rev.2014b, 5, 14767–14785.10.3402/nano.v5.21485Search in Google Scholar PubMed PubMed Central

Mikhailov, O. V. Polycyclic 3d-metalchelates formed owing to inner-sphere transmutations in the gelatin matrix: synthesis and structures. Revs. Inorg. Chem.2017, 37, 71–94.10.1515/revic-2017-0003Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Quantum-chemical calculation of the molecular structures of 3d metal chelates with ligands self-assembled in the M(II)-hydrazinomethanethiohydrazide-acetone systems. Russ. J. Inorg. Chem.2012a, 57, 1100–1106.10.1134/S0036023612080116Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Geometric parameters of molecular structures of macrotricyclic chelates in MII ion-hydrazinomethanethioamide-butane-2,3-dione ternary systems (M=Co, Ni, Cu) according to the DFT B3LYP quantum chemical calculation. Russ. Chem. Bull.2012b, 61, 1531–1535.10.1007/s11172-012-0200-9Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of (5456)metalmacrocyclic chelates with 7-imino-1-oxa-3,6,8,11-tetraazacyclododecanetetrathione-4,5,9,10 formed at template synthesis according to DFT OPBE/TZVP method data. Inorg. Chim. Acta2013, 408, 246–250.10.1016/j.ica.2013.09.003Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Self-assembly of supramolecular complex of Zn(II) and 2,7-dithio-3,6-diazaoctadien-3,5-dithioamide-1,8 in an immobilized Zn2[Fe(CN)6]-gelatin matrix. Eur. Chem. Bull.2014a, 3, 367–371.Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. On the molecular structures of (545)macrotricyclic chelates in the M(II) ion-2,3-butanedione-amino-methanamidine ternary systems. Russ. J. Inorg. Chem.2014b, 59, 101–106.10.1134/S0036023614020144Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Quantum chemical calculation of the molecular structures of (666)macrotricyclic chelates of 3d elements in the M(II)-propanedithioamide-formaldehyde systems by the density functional theory method. Russ. J. Inorg. Chem.2014c, 59, 1283–1289.10.1134/S003602361411014XSearch in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures and stability of isomeric asymmetric (565) macrotricyclic chelates of 3d metals in the M(II)-dithiooxamide-thiosemicarbazide-formaldehyde systems according to DFT calculations. Russ. J. Inorg. Chem.2014d, 59, 1472–1479.10.1134/S0036023614120171Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Quantum-chemical simulation of structure of isomeric asymmetric (555)macrotricyclic chelates of 3d elements arising via self-assembly in Quaternary systems metal(II)-ethanedithioamide-hydrazinomethanethioamide-ethanedial. Russ. J. Gen. Chem.2014e, 84, 1962–1969.10.1134/S1070363214100181Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of asymmetric (555)macrotricyclic chelates formed in 3d metal ion-ethanedithioamide-hydrazinomethanethioamide-2,3-butanedione quaternary systems. Russ. J. Inorg. Chem.2015a, 60, 187–193.10.1134/S0036023615020102Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of asymmetric (565)macrotricyclic chelates formed in 3d metal ion-ethanedithioamide-hydrazinomethanethioamide-propanone quaternary systems. Russ. J. Inorg. Chem.2015b, 60, 889–895.10.1134/S0036023615070116Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Quantum-chemical modeling of template synthesis in the ternary system metal(II) ion-thiosemicarbazide-diacetyl. Russ. J. Inorg. Chem.2015c, 60, 964–969.10.1134/S0036023615080124Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of (5656)macrotetracyclic 3d metal chelates formed in the M(II) ion-ethanedithioamide-formaldehyde systems according to the density functional theory method. Russ. J. Inorg. Chem.2015d, 60, 1117–1122.10.1134/S0036023615090065Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. On the possibility of template synthesis through “cross-linkage” of chelate rings with trans-arranged donor atoms in M(II)-ethandithioamide-formaldehyde systems. Russ. J. Inorg. Chem.2015e, 60, 1253–1257.10.1134/S0036023615100149Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of (5656) macrotetracyclic chelates formed in the M(II) ion-ethanedithioamide-2-thiapropanediol-1,3 systems according to density functional theory calculations. Russ. J. Inorg. Chem.2015f, 60, 1354–1359.10.1134/S003602361511011XSearch in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Possibility of template synthesis with junction of metallacycles containing trans-located nitrogen atoms in the 3d metal(II) ion-dithiooxamide-acetone systems as predicted by DFT simulation data. Russ. J. Gen. Chem.2015g, 85, 628–633.10.1134/S1070363215030172Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. DFT OPBE/TZVP calculation of molecular structures of macrocyclic chelates of M(II) double charged 3d-element ions with macroheterocyclic ligands – 1,5,8,11-tetraazacyclotetradecanetetrathione-2,3,9,10 and its dioxa- and dithia analogs. Macroheterocycles2016a, 9, 268–276.10.6060/mhc160211mSearch in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Quantum-chemical modeling of the molecular structures of (555)macrotricyclic chelates in M(II) ion-thiooxamide-glyoxal ternary systems (M=Mn, Fe, Co, Ni, Cu, Zn). Russ. J. Inorg. Chem.2016b, 61, 208–216.10.1134/S0036023616020145Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of (5656) macrotetracyclic chelates in M(II) ion-ethanedithioamide-methanimine-hydrogen cyanide quaternary systems by DFT calculations. Russ. J. Inorg. Chem.2016c, 61, 616–622.10.1134/S0036023616050144Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Models of molecular structures of macrocyclic metal chelates in the ternary 4d M(II) ion-ethane-dithioamide-ethanedial systems according to quantum-chemical DFT calculations. Russ. J. Inorg. Chem.2016d, 61, 1104–1110.10.1134/S0036023616090151Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. DFT analysis of molecular structure of 14-membered tetraaza-, dioxotetraaza-, and hexaazamacroheterocyclic ligands and their metal complexes. Russ. J. Gen. Chem.2016e, 86, 1102–1107.10.1134/S1070363216050200Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Modelling of molecular structures of metalmacroheterocyclic compounds of 3d-elements with derivative of 1,6-dithia-8,9,14,15-tetraazacyclohexadecatetraene-7,9,13,15 and halogenide ions using DFT method. Macroheterocycles2017a, 10, 380–385.10.6060/mhc170300mSearch in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of macrotricyclic 4d M(II) chelates with the (NNNN)-donor ligand 2,7-dithio-3,6-diazaoctadiene-3,5-dithioamide-1,8 according to quantum-chemical density functional theory calculations. Russ. J. Inorg. Chem.2017b, 62, 450–456.10.1134/S0036023617040118Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Modeling of molecular structures of (464)macrotricyclic chelates in ternary systems M(II) ion-mercaptomethanethioamide-formaldehyde. Russ. J. Inorg. Chem.2017c, 62, 948–954.10.1134/S0036023617070130Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. DFT quantum-chemical calculations of molecular structures for template heteroligand (5757)macrocyclic M(II) chelates of 3d elements with a 16-membered macrocyclic ligand and Br ions. Russ. J. Inorg. Chem.2017d, 62, 1191–1196.10.1134/S0036023617090108Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of (575)macro-tricyclic 3d-metal chelates in M(II)-N-methylthiocarbohydrazide-hexanedione-2,5 according to density functional theory calculations. Russ. J. Inorg. Chem.2017e, 62, 1366–1370.10.1134/S0036023617100138Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V. Molecular structures of (454) Macrotricyclic chelates in the M(II) ion-thiosulfate anion-ethylenediamine systems according to quantum-chemical DFT calculations. Russ. J. Inorg. Chem.2017f, 62, 1614–1618.10.1134/S0036023617120154Search in Google Scholar

Mikhailov, O. V.; Kazymova, M. A.; Shumilova, T. A.; Solovieva, S. E. Template synthesis in M(II)-thiocarbohydrazide-diacetyl triple system (M=Ni, Cu) in a metal(II)hexacyanoferrate(II) gelatin-immobilized matrix. Trans. Met. Chem.2004, 29, 732–736.10.1007/s11243-004-2506-4Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V.; Shamsutdinov, T. F. Molecular structures of (555) macrotricyclic chelates appearing in 3d-element(II) ion-hydrazinomethanethioamide-ethanedial systems according to density functional theory calculations. Russ. J. Inorg. Chem.2012, 57, 1570–1575.10.1134/S0036023612120145Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V.; Grigorieva, O. N. Molecular structures of metalmacrocyclic chelates of 3d-elements formed at template synthesis in the ion M(II)-thiooxamide-guanidine-formaldehyde quaternary systems. Centr. Eur. J. Chem.2013a, 11, 1822–1829.10.2478/s11532-013-0306-4Search in Google Scholar

Mikhailov, O. V.; Chachkov, D. V.; Grigorieva, O. N. Structures of metalmacrocyclic compounds arising from “self- assembly” in ion 3d-element-dithiooxamide-2-hydroxysubstituted acetaldehyde ternary systems. Inorg. Chim. Acta2013b, 408, 199–204.10.1016/j.ica.2013.05.005Search in Google Scholar

Nath, M.; Saini, P. K.; Eng, G.; Song, X. Template synthesis and structural characterization of new diorganotin(IV) tetraazamacrocyclic complexes: precursors to produce pure phase nanosized SnO2. J. Coord. Chem.2009, 62, 3629–3641.10.1080/00958970903134274Search in Google Scholar

Niasari, M. S.; Davar, F. In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14-membered hexaaza macrocyclic ligand “3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane”. Inorg. Chem. Commun.2006, 9, 175–179.10.1016/j.inoche.2005.10.028Search in Google Scholar

Niasari, M. S.; Bazarganipour, M.; Ganjali, M. R.; Norouzi, P. Bis(macrocyclic) dinickel(II) complexes containing phenylene bridges between 13-membered triaza dioxa macrocyclic ligands: in-situ one pot template synthesis, characterization and catalytic oxidation of cyclohexene. Trans. Met. Chem.2007, 32, 9–15.10.1007/s11243-006-0109-ySearch in Google Scholar

Papini, G.; Alidori, S.; Lewis, J. S.; Reichert, D. E. Synthesis and characterization of the copper(II) complexes of new N2S2-donor macrocyclic ligands: synthesis and in vivo evaluation of the 64Cu complexes. Dalton Trans.2009, 38, 177–184.10.1039/B808831DSearch in Google Scholar PubMed PubMed Central

Paulsen, H.; Duelund, L.; Winkler, H.; Toftlund, H.; Trautwein, A. X. Free energy of spin-crossover complexes calculated with density functional methods. Inorg. Chem.2001, 40, 2201–2203.10.1021/ic000954qSearch in Google Scholar PubMed

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1997, 78, 1396–1396.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

Radecka-Paryzek, W.; Patroniak, V.; Lisowski, J. Metal complexes of polyaza and polyoxaaza Schiff base macrocycles. Coord. Chem. Revs.2005, 249, 2156–2175.10.1016/j.ccr.2005.02.021Search in Google Scholar

Rafat, F.; Siddiqui, K. S. Synthesis and physicochemical properties of Schiff base macrocyclic ligands and their transition metal chelates. J. Korean Chem. Soc.2011, 55, 912–918.10.5012/jkcs.2011.55.6.912Search in Google Scholar

Rogachev, A. Yu.; Nemukhin, A. V.; Garnovskii, A. A.; Kuz’mina, N. P. Theoretical modeling of the structures and properties of copper(II) and nickel(II) complexes with Schiff bases. Russ. J. Inorg. Chem.2005, 50, 1036–1043.Search in Google Scholar

Singh, D. P.; Kumar, R. Synthesis, spectroscopic studies, and antibacterial activities of 14-membered tetraazamacrocyclic complexes of divalent transition metal ions. J. Coord. Chem.2010, 63, 4007–4016.10.1080/00958972.2010.521552Search in Google Scholar

Singh, D. P.; Sharma, K. Template synthesis and characterization of macrocyclic complexes of trivalent metal ions derived from oxalyldihydrazide and isatin. Asian J. Chem.2014, 26, 376–378.10.14233/ajchem.2014.15408Search in Google Scholar

Singh, D. P.; Kumar, R.; Malik, V.; Tyagi, P. Synthesis and characterization of complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with macrocycle 3,4,11,12-tetraoxo-1,2,5,6,9,10,13,14-octaazacyclohexadeca-6,8,14,16-tetraene and their biological screening. Trans. Met. Chem.2007, 32, 1051–1055.10.1007/s11243-007-0279-2Search in Google Scholar

Swart, M. Metal-ligand bonding in metallocenes: differentiation between spin state, electrostatic and covalent bonding. Inorg. Chim. Acta2007, 360, 179–189.10.1016/j.ica.2006.07.073Search in Google Scholar

Swart, M.; Ehlers, A. W.; Lammertsma, K. Performance of the OPBE exchange-correlation functional. Mol. Phys.2004a, 102, 2467–2474.10.1080/0026897042000275017Search in Google Scholar

Swart, M.; Groenhof, A. R.; Ehlers, A. W.; Lammertsma, K. Validation of Exchange-correlation functionals for spin states of iron complexes. J. Phys. Chem. A.2004b, 108, 5479–5483.10.1021/jp049043iSearch in Google Scholar

Thomas, A. L. Phthalocyanines. Research and Applications; CRC Press: Boca Raton, FL, 1990.Search in Google Scholar

Tokarev, K.; Kiskin, M.; Sidorov, A.; Aleksandrov, G.; Bogomyakov, A.; Novotortsev, V.; Eremenko, I. Chemical assembly of an antiferromagnetic macrocyclic molecule containing two inner CoII centers from polymeric cobalt pivalate. Polyhedron2009, 28, 2010–2016.10.1016/j.poly.2008.12.002Search in Google Scholar

Tverdova, N. V.; Pelevina, E. D.; Giricheva, N. I.; Girichev, G. V.; Kuzmina, N. P.; Kotova, O. V. Molecular structure of N,N′-o-phenylenebis(salicyl-ideneaminato)copper(II) studied by gas-phase electron diffraction and quantum-chemical calculations. Struct. Chem.2011, 22, 441–448.10.1007/s11224-011-9738-7Search in Google Scholar

Tverdova, N. V.; Pelevina, E. D.; Giricheva, N. I.; Girichev, G. V.; Kuzmina, N. P.; Kotova, O. V. Molecular structures of 3d metal complexes with various Schiff bases studied by gas-phase electron diffraction and quantum-chemical calculations. J. Mol. Struct.2012, 1012, 151–161.10.1016/j.molstruc.2011.06.037Search in Google Scholar

Vigato, P. A.; Tamburini, S. The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord. Chem. Rev.2004, 248, 1717–2128.10.1016/j.cct.2003.09.003Search in Google Scholar

Vigato, P. A.; Tamburini, S. Advances in acyclic compartmental ligands and related complexes. Coord. Chem. Revs.2008, 252, 1871–1995.10.1016/j.ccr.2007.10.030Search in Google Scholar

Walker, T. L.; Malasi, W.; Bhide, S.; Parker, T.; Zhang, D.; Freedman, A.; Modarelli, J. M.; Engle, J. T.; Ziegler, C. J.; Custer, P.; Youngs, W. J.; Taschner, M. J. Synthesis and characterization of 1,8-dithia-4,11-diazacyclotetradecane. Tetrahedron Lett.2012, 53, 6548–6551.10.1016/j.tetlet.2012.09.088Search in Google Scholar

Received: 2018-03-10
Accepted: 2018-07-05
Published Online: 2018-08-13
Published in Print: 2018-12-19

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2018-0005/html
Scroll to top button