Home Electrophilic substitution in the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems
Article
Licensed
Unlicensed Requires Authentication

Electrophilic substitution in the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems

  • Oleg V. Mikhailov

    Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without co-authors), and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (RFBR, 14 projects, 1996–2016), the International Scientific Soros Education Program (ISSEP, 2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).

    EMAIL logo
Published/Copyright: July 28, 2018

Abstract

Data of electrophilic substitution processes proceeding into the d-metal hexacyanoferrate(II) gelatin-immobilized matrix systems when they are in contact with aqueous solutions of chlorides of d-elements have been systematized and generalized. The bibliography includes 94 references.

About the author

Oleg V. Mikhailov

Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without co-authors), and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (RFBR, 14 projects, 1996–2016), the International Scientific Soros Education Program (ISSEP, 2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).

Acknowledgments

The present review was carried out with financial support in the framework of Ministry of Education and Science of Russian Federation draft No. 4.5784.2017/8.9 to the competitive part of the state task of the Russian Federation in the years 2017–2019.

References

Bányai, L.; Tordai, H.; Patthy, L. Structure and domain-domain interactions of the gelatin-binding site of human 72-kilodalton type IV collagenase (gelatinase a, matrix metalloproteinase 2). J. Biol. Chem.1996, 271, 12003–12008.10.1074/jbc.271.20.12003Search in Google Scholar PubMed

Bartoll, J. The early use of Prussian blue in paintings. 9th International Conference on NDT of Art, Jerusalem, Israel, 2008, May 25–30.Search in Google Scholar

Barton, G. B.; Hepworth, J. I.; McClenahan, E. D.; Moore, R. L.; Van Tuyl, H. H. Chemical processing wastes. Recovering fission products. Ind. Eng. Chem.1958, 50, 212–216.10.1021/ie50578a039Search in Google Scholar

Bhattacharjee, A.; Bansal, M. Collagen structure: the Madras triple helix and the current scenario. Life2005, 57, 161–172.10.1080/15216540500090710Search in Google Scholar

Bigi, A.; Panzavolta, S.; Rubini, K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials2004, 25, 5675–5680.10.1016/j.biomaterials.2004.01.033Search in Google Scholar PubMed

Boedker, H.; Doty, P. A study of gelatin molecules, aggregates and gels. J. Phys. Chem. 1954, 58, 968–983.10.1021/j150521a010Search in Google Scholar

Burnst, R. E.; Steadwell, M. J. Volume reduction of radioactive waste by carrier precipitation. Chem. Eng. Prog. 1957, 53, 93–95.Search in Google Scholar

Caldararu, H.; Timmins, G. S.; Gilbert, B. C. The structure of gelatin-water/oil microemulsion sols and gels. An EPR spin-probe and spin-labelling study. Phys. Chem. Chem. Phys.1999, 1, 5689–5695.10.1039/a906186jSearch in Google Scholar

Chen, J. M.; Kung, C. E.; Feairheller, S. E.; Brown, E. M. An energetic evaluation of a “Smith” collagen microfibril model. J. Protein Chem.1991, 10, 535–552.10.1007/BF01025482Search in Google Scholar PubMed

Cowan, P. M.; McGavin, S.; North, A. C. The polypeptide chain configuration of collagen. Nature1955, 176, 1062–1064.10.1038/1761062a0Search in Google Scholar PubMed

Cox, R. J., Ed. Photographic Gelatin; Academic Press: London, 1972; Vol. 1.Search in Google Scholar

Cox, R. J., Ed. Photographic Gelatin; Academic Press: London, 1976; Vol. 2.Search in Google Scholar

Draget, K. I.; Hattrem, M. N., Eds. Physical Properties of Gelatin Based Solid Emulsions; NTMU: Trondheim, 2013.Search in Google Scholar

Dunbar, K. R.; Heintz, R. A. Chemistry of transition metal cyanide compounds: modern perspectives. Prog. Inorg. Chem. 1997, 45, 283–391.10.1002/9780470166468.ch4Search in Google Scholar

Ferry, J. D. Advances in Protein Chemistry; Academic Press: New York, 1948; Vol. 4; p 650.10.1016/S0065-3233(08)60004-2Search in Google Scholar

Franzke, C. W.; Bruckner, P.; Bruckner-Tuderman, L. Collagenous trans-membrane proteins: recent insights into biology and pathology. J. Biol. Chem. 2005, 280, 4005–4008.10.1074/jbc.R400034200Search in Google Scholar

Fridman, R.; Fuerst, T. R.; Bird, R. E.; Hoyhtya, M.; Oelkuct, M.; Kraus, S.; Komarck, D.; Liotta, L. A.; Berman, M. L.; Stetler-Stevenson, J. Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J. Biol. Chem.1992, 267, 15398–15405.10.1016/S0021-9258(19)49547-1Search in Google Scholar PubMed

Gehrmann, M. L.; Douglas, J. T.; Banyai, L.; Tordai, H.; Patthy, L.; Llinas, M. Modular autonomy, ligand specificity, and functional cooperativity of the three in-tandem fibronectin type II repeats from human matrix metalloproteinase 2. J. Biol. Chem.2004, 279, 46921–46929.10.1074/jbc.M408859200Search in Google Scholar PubMed

Glushko, V. P., Ed. Thermal Constants of Substances: References Book; VINITI: Moscow, 1972a; Issue 6; p 369.Search in Google Scholar

Glushko, V. P., Ed. Thermal Constants of Substances: References Book; VINITI: Moscow, 1972b; Issue 7; p 343.Search in Google Scholar

Groome, R. J.; Clegg, F. G. Photographic Gelatin; Focal Press: London, 1965; p 35.Search in Google Scholar

Haas, P. A. A review of information on ferrocyanide solids for removal of cesium from solutions. Sep. Sci. Technol.1993, 28, 2479–2506.10.1080/01496399308017493Search in Google Scholar

Hariula, R.; Lehto, J.; Tusa, E. H.; Paavola, A. Industrial scale removal of cesium with hexacyanoferrate exchanger-process development. Nucl. Technol.1994, 107, 272–278.10.13182/NT94-A35007Search in Google Scholar

Haug, I. J.; Draget, K. I. Gelatin. In Handbook of Hydrocolloids; Phillips, G. O., Ed.; Woodhead Publishing Ltd: Williams, PA, Cambridge, 2009; pp 142–163.10.1533/9781845695873.142Search in Google Scholar

Herren, F.; Fischer, P.; Ludi, A.; Haelg, W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·xH2O. Location of water molecules and long-range magnetic order. Inorg. Chem. 1980, 19, 956–959.10.1021/ic50206a032Search in Google Scholar

Hulmes, D. J. S.; Miller, A.; Parry, D. A. D.; Piez, K. A.; Woodhead-Galloway, J. Analysis of the primary structure of collagen for the origins of molecular packing. J. Mol. Biol.1973, 79, 137–148.10.1016/0022-2836(73)90275-1Search in Google Scholar PubMed

Izatt, R. M.; Watt, G. D.; Bartholomew, C. H.; Christensen, J. J. Calorimetric study of Prussian blue and Turnbull’s blue formation. Inorg. Chem. 1970, 9, 2019–2021.10.1021/ic50091a012Search in Google Scholar

James, T. H. The Theory of the Photographic Process; Macmillan: New York, 1977.Search in Google Scholar

Kourim, V.; Rais, I.; Steiskal, J. Exchange properties of complex cyanides-II. Ion exchange of alkali metals on zinc ferrocyanide. J. Inorg. Nucl. Chem. 1964, 26, 1761–1763.10.1016/0022-1902(64)80109-3Search in Google Scholar

Lane, J. M.; Weiss, C. Review of articular cartilage collagen research. Arthritis Rheum.1975, 18, 553–562.10.1002/art.1780180605Search in Google Scholar PubMed

Lin, W.; Yan, L.; Mu, C.; Li, W.; Zhang, M.; Zhu, O. Effect of pH on gelatin self-association investigated by laser light scattering and atomic force microscopy. Polymer Int.2002, 51, 233–238.10.1002/pi.829Search in Google Scholar

Lundgren, C. A.; Murray, R. W. Observations on the composition of Prussian blue films and their electrochemistry. Inorg. Chem. 1988, 27, 933–939.10.1021/ic00278a036Search in Google Scholar

Massadeh, S.; Alaamery, M.; Al-Qatanani, S.; Alarifi, S.; Shahad Bawazeer, S.; Alyafee, Y. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment. Nano Rev.2016, 7. Article 31996. DOI: http://dx.doi.org/10.3402/nano.v7.31996.10.3402/nano.v7.31996Search in Google Scholar

Mikhailov, O. V. MHF-GIM-complexing: novel synthetic and applied horizons. Rev. Inorg. Chem.1997, 17, 287–332.10.1515/REVIC.1997.17.4.287Search in Google Scholar

Mikhailov, O. V. Synthesis of gelatin-immobilized hexacyanoferrates of p-, d- and f-metals. Russ. J. Gen. Chem. 1998, 68, 827–829.Search in Google Scholar

Mikhailov, O. V. Reactions of nucleophilic, electrophilic substitution and template synthesis in the metalhexacyanoferrate(II) gelatin-immobilized matrix. Revs. Inorg. Chem.2003, 23, 31–74.Search in Google Scholar

Mikhailov, O. V. Self-assembly of molecules of metal macrocyclic compounds in nanoreactors on the basis of biopolymer-immobilized matrix systems. Nanotechnol. Russ.2010a, 5, 18–34.10.1134/S1995078010010027Search in Google Scholar

Mikhailov, O. V. Soft template synthesis of Fe(II,III), Co(II,III), Ni(II) and Cu(II) metalmacrocyclic compounds into gelatin-immobilized matrix implants. Rev. Inorg. Chem.2010b, 30, 199–273.10.1515/REVIC.2010.30.4.199Search in Google Scholar

Mikhailov, O. V. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. Nano Rev.2014a, 5, 14767–14785.10.3402/nano.v5.21485Search in Google Scholar PubMed PubMed Central

Mikhailov, O. V. Sol–gel technology and template synthesis in thin gelatin films. J. Sol-Gel Sci. Techn.2014b, 72, 314–327.10.1007/s10971-014-3468-4Search in Google Scholar

Mikhailov, O. V. Polycyclic 3d-metalchelates formed owing to inner-sphere transmutations in the gelatin matrix: synthesis and structures. Rev. Inorg. Chem.2017, 37, 71–94.10.1515/revic-2017-0003Search in Google Scholar

Mikhailov, O. V. Progress in the synthesis of Ag nanoparticles having manifold geometric forms. Rev. Inorg. Chem.2018, 38, 21–42.10.1515/revic-2017-0016Search in Google Scholar

Mikhailov, O. V.; Budnikov, G. K. 3d-Element coordination compounds with bidentate sulfur-containing ligands as possible carriers of non-silver photographic images. Bull. Chem. Soc. Japan1989, 62, 4016–4020.10.1246/bcsj.62.4016Search in Google Scholar

Mikhailov, O. V.; Naumkina, N. I. Novel modification of elemental silver formed into Ag4[Fe(CN)6]-gelatin-immobilized matrix implants. Cent. Eur. J. Chem.2010, 8, 448–452.10.2478/s11532-009-0148-2Search in Google Scholar

Mikhailov, O. V.; Polovnyak, V. K. Photography without silver: non-silver photographic images obtained from metalorganic complexes having strong absorption. J. Imaging Sci.1991a, 35, 258–262.Search in Google Scholar

Mikhailov, O. V.; Polovnyak, V. K. Photographic images obtained from Ni(II) complexes with dithiooxamide and N,N′-diphenyldithiooxamide. J. Soc. Photog. Sci. Tech. Japan1991b, 54, 25–33.Search in Google Scholar

Mikhailov, O. V.; Rozhentsov, R. A. Immobilization of silver(I) hexacyano-ferrate(II) in thin gelatin layer. Russ. J. Gen. Chem. 2001, 71, 809–810.10.1023/A:1012338208873Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B. Sorption of d-element ions by nickel(II) hexaferrocyanide immobilized in gelatin. Russ. J. Phys. Chem. A2003, 77, 1491–1493.Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B. Chemisorption of Fe(III) Ions by gelatin-immobilized hexacyanoferrates(II) of the M2[Fe(CN)6] type. Russ. J. Phys. Chem. A2004a, 78, 269–271.Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B. Chemisorption of M(II) ions (M=Mn, Co, Ni, Cu, Zn) on gelatin-immobilized Cd2[Fe(CN)6] complex. Russ. J. Phys. Chem. A2004b, 78, 1818–1821.Search in Google Scholar

Mikhailov, O. V.; Gafarov, M. R.; Yusupov, R. A. Lead(II) sulfide. Synthesis in lead(II) tetraoxophosphate(V) gelatin-immobilized matrix implantates and sorption activity toward silver(I) ions. Russ. J. Gen. Chem.2003a, 73, 1183–1187.10.1023/B:RUGC.0000007637.06559.7bSearch in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Kolgina, V. A. Gelatin-immobilized hexacyanoferrates(II) of 3d-elements as sorbents of zinc(II) ions. Khim. Tekhnol.2003b, 4, 2–5.Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Kolgina, V. A. Chemisorption of M(II) ions (M=Co, Ni, Zn, and Cd) by gelatin-immobilized copper(II) hexacyanoferrate(II). Russ. J. Phys. Chem. A2003c, 77, 822–824.Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Kolgina, V. A.; Yusupov, R. A. Sorption of Cd(II) ions by gelatin-immobilized 3d-element hexacyanoferrates(II). Khim. Tekhnol.2003d, 4, 2–5.Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Naumkina, N. I. Complexation in binary Cd2[Fe(CN)6]–M(II) systems (M=Mn, Co, Ni, Cu, Zn) in gelatin-immobilized cadmium(II) hexacyanoferrates(II). Russ. J. Coord. Chem.2003e, 29, 327–334.10.1023/A:1023623817806Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Naumkina, N. I.; Kolgina, V. A. Electrophilic substitution Mn(II)→M(II) (M=Co, Ni, Cu, Zn, Cd) in gelatin-immobilized Mn2[Fe(CN)6]. Russ. J. Coord. Chem.2003f, 29, 630–635.10.1023/A:1025607626819Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Naumkina, N. I.; Lygina, T. Z. Electrophilic substitution Co(II)-M(II) (M=Mn, Ni, Cu, Zn, Cd) in Co2[Fe(CN)6] gelatin-immobilized matrices. Russ. J. Coord. Chem.2003g, 29, 115–122.10.1023/A:1022390118517Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Lygina, T. Z. The chemisorption of M(II) Ions (M=Mn, Ni, Cu, Zn, and Cd) by gelatin-immobilized cobalt(II) hexacyanoferrate(II). Russ. J. Phys. Chem.2004a, 78, 1463–1466.Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Naumkina, N. I.; Lygina, T. Z. Ion-exchange processes M(II)→ Fe(III) and Fe(III)→ M(II) in metal hexacyanoferrate(II) gelatin-immobilized matrices (M=Mn, Co, Ni, Cu, Zn, Cd). Russ. J. Coord. Chem.2004b, 30, 639–647.10.1023/B:RUCO.0000040724.53882.90Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Naumkina, N. I.; Lygina, T. Z. Electrophilic copper(II)→ metal(II) substitution in gelatin-immobilized copper(II) hexacyanoferrate(II) matrix implants. Russ. J. Gen. Chem.2004c, 74, 7–12.10.1023/B:RUGC.0000025165.97632.63Search in Google Scholar

Mikhailov, O. V.; Tatarintseva, T. B.; Naumkina, N. I.; Lygina, T. Z. Complexation of Zn2[Fe(CN)6] with M2+ (M=Mn, Co, Ni, Cu, Cd) in Zn2[Fe(CN)6] gelatin-immobilized matrices. Russ. J. Coord. Chem.2005, 31, 101–107.10.1007/s11173-005-0005-6Search in Google Scholar

Mikhailov, O. V.; Naumkina, N. I.; Kondakov, A. V.; Lygina, T. Z. On a new phase of elemental silver, appearing on its “reprecipitation” in Ag–gelatin-immobilized matrix systems. Russ. J. Gen. Chem.2008, 78, 1650–1654.10.1134/S1070363208090028Search in Google Scholar

Minary-Jolandan, M.; Yu, M. F. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. Biomacromolecules2009, 10, 2565–2570.10.1021/bm900519vSearch in Google Scholar PubMed

Ohkoshi, S.; Yorozu, S.; Sat, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Photoinduced magnetic pole inversion in a ferro-ferrimagnet: (FeII0.40MnII0.60)1.5CrIII(CN)6. Appl. Phys. Lett.1997, 30, 1040–1042.10.1063/1.118475Search in Google Scholar

Ohkoshi, S.; Fujishima, A.; Hashimoto, K. Transparent and colored magnetic thin films: (FeIIxCrII1-x)1.5[CrIII(CN)6]. J. Am. Chem. Soc. 1998, 120, 5349–5350.10.1021/ja980732fSearch in Google Scholar

Okuyama, K.; Wu, G.; Jiravanichanun, N.; Hongo, C.; Noguchi, K. Helical twists of collagen model peptides. Biopolymers2006a, 84, 421–432.10.1002/bip.20499Search in Google Scholar PubMed

Okuyama, K.; Xu, X.; Iguchi, M.; Noguchi, K. Revision of collagen molecular structure. Biopolymers2006b, 84, 181–191.10.1002/bip.20381Search in Google Scholar PubMed

Orgel, J. P. R. O.; Irving, T. C.; Miller, A.; Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Nat. Acad. Sci. USA2006, 103, 9001–9005.10.1073/pnas.0502718103Search in Google Scholar PubMed PubMed Central

Ovcharenko, V. I.; Sagdeev, R. Z. Molecular ferromagnets. Russ. Chem. Rev. 1999, 68, 345–363.10.1070/RC1999v068n05ABEH000513Search in Google Scholar

Ozeki, T.; Matsumoto, K.; Hikime, S. Photoacoustic spectra of Prussian blue and photochemical reaction of ferric ferricyanide. Analyt. Chem. 1984, 56, 2819–2822.10.1021/ac00278a041Search in Google Scholar

Perumal, S.; Antipova, O.; Orgel, J. P. R. O. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Nat. Acad. Sci. USA2008, 105, 2824–2829.10.1073/pnas.0710588105Search in Google Scholar

Phillips, G. O.; Williams, P. A., Eds. Handbook of Hydrocolloids; Woodhead Publishing: London, 2000; p 450.Search in Google Scholar

Pickford, A. R.; Potts, J. R.; Bright, J. R.; Han, I.; Campbell, I. D. Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Structure1997, 5, 359–370.10.1016/S0969-2126(97)00193-7Search in Google Scholar PubMed

Pomogailo, A. D. Polymer-Immobilized Metallocomplex Catalysts; Nauka: Moscow, 1988; p 303.Search in Google Scholar

Pomogailo, A. D. Catalysis by Polymer-Immobilized Metal Complexes; Gordon & Breach Science Publishing: Amsterdam, 1998; p 322.Search in Google Scholar

Pomogailo, A. D.; Savost’yanov, V. S. Metal-Containing Monomers and Related Polymers; Khimiya: Moscow, 1988; p 384.Search in Google Scholar

Pomogailo, A. D.; Uflyand, I. E. Polymer-containing metallochelate units. Adv. Polym. Sci. 1990, 97, 61–105.10.1007/3-540-52834-2_3Search in Google Scholar

Pomogailo, A. D.; Uflyand, I. E. Macromolecular Metal Chelates; Khimiya: Moscow, 1991; p 304.Search in Google Scholar

Ramachadran, G. N. Treatise on Collagen; Academic Press: New York, 1967; Vol. I, p 103.Search in Google Scholar

Rich, A.; Crick, F. H. C. The structure of collagen. Nature1955, 176, 915–916.10.1038/176915a0Search in Google Scholar PubMed

Schrieber, R.; Gareis, H. Gelatine Handbook: Theory and Industrial Practice; Wiley-VCH Verlag: Weinheim, 2007.10.1002/9783527610969Search in Google Scholar

Tananaev, I. V.; Seifer, G. B.; Kharitonov, Y. Y.; Kuznetsov, V. G.; Korolkov, A. P. The Chemistry of Ferrocyanides; Nauka: Moscow, 1971; p 320.Search in Google Scholar

Tatarintseva, T. B.; Mikhailov, O. V. d-Metalhexacyanoferrate(II) gelatin-immobilized implants as sorbents of Co(II). Khim. Tekhnol.2004a, 5, 2–5.Search in Google Scholar

Tatarintseva, T. B.; Mikhailov, O. V. Chemisorption of Cu(II) ions with gelatin-immobilized hexacyanoferrates(II) of 3d-elements. Khim. Tekhnol.2004b, 5, 6–9.Search in Google Scholar

Tatarintseva, T. B.; Mikhailov, O. V. Chemisorption of d-element ions by gelatin-immobilized Zn2[Fe(CN)6]. Russ. J. Phys. Chem. A2004c, 78, 67–69.Search in Google Scholar

Tatarintseva, T. B.; Mikhailov, O. V. Chemisorption of d-element ions on gelatin-immobilized Mn2[Fe(CN)6]. Russ. J. Phys. Chem. A2004d, 78, 955–958.Search in Google Scholar

Tatarintseva, T. B.; Mikhailov, O. V.; Naumkina, N. I.; Yusupov, R. A. Electrophilic substitution Ni(II)→M(II) in Ni2[Fe(CN)6] gelatin-immobilized matrix materials. Russ. J. Gen. Chem.2003, 73, 847–854.10.1023/A:1026328129296Search in Google Scholar

Tordai, H.; Patthy, L. The gelatin-binding site of the second type-II domain of gelatinase A/MMP-2. Eur. J. Biochem.1999, 259, 513–518.10.1046/j.1432-1327.1999.00070.xSearch in Google Scholar PubMed

Trexler, M.; Briknarova, K.; Gehrmann, M.; Llinas, M.; Patthy, L. Peptide ligands for the fibronectin type II modules of matrix metalloproteinase 2 (MMP-2). J. Biol. Chem.2003, 278, 12241–12246.10.1074/jbc.M210116200Search in Google Scholar PubMed

Twardowski, T.; Fertala, A. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr. Pharm. Design2007, 13, 3608–3621.10.2174/138161207782794176Search in Google Scholar

Veis, A.; Drake, M. P. The introduction of intramolecular covalent cross-linkages into ichthyocol tropocollagen with monofunctional aldehydes. J. Biol. Chem.1963, 238, 2003–2011.10.1016/S0021-9258(18)67933-5Search in Google Scholar

Veis, A.; Anesey, J.; Cohen, J. The long range reorganization of gelatin to the collagen structure. Arch. Biochem. Biophys.1961, 94, 20–31.10.1016/0003-9861(61)90005-4Search in Google Scholar

Wird, A. G.; Courts, A., Eds. The Science and Technology of Gelatin; Academic Press: New York, 1977.Search in Google Scholar

Received: 2018-01-14
Accepted: 2018-06-20
Published Online: 2018-07-28
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2018-0001/html
Scroll to top button