Home Progress in the synthesis of Ag nanoparticles having manifold geometric forms
Article
Licensed
Unlicensed Requires Authentication

Progress in the synthesis of Ag nanoparticles having manifold geometric forms

  • Oleg V. Mikhailov

    Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without coauthors) and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (14 projects, 1996–2016), the International Scientific Soros Education Program (2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).

    EMAIL logo
Published/Copyright: April 23, 2018

Abstract

The data on the specific synthesis of elemental silver nanoparticles having the forms of various geometric bodies (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by various chemical, physicochemical, and biological methods, have been systematized and generalized. This review covers mainly publications published in the current 21st century.

About the author

Oleg V. Mikhailov

Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without coauthors) and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (14 projects, 1996–2016), the International Scientific Soros Education Program (2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).

Acknowledgment

The present study was carried out with financial support in the framework of draft no. 4.5784.2017/8.9 to the competitive part of the state task of the Ministry of Education and Science of Russian Federation in the years 2017–2019.

References

Abid, J. P.; Wark, A. W.; Brevet, P. F.; Girault, H. H. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun.2002, 7, 792–793.10.1039/b200272hSearch in Google Scholar

Agasti, S. S.; Chompoosor, A.; You, C.-C.; Ghosh, P.; Kim, C. K.; Rotello, V. M. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc.2009, 131, 5728–5729.10.1021/ja900591tSearch in Google Scholar PubMed

Aguilare, M. A. M.; Martin, E. S. M.; Arroyo, L. O.; Portillo, G. C.; Espindola, E. S. J. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. Nanopart. Res.2011, 13, 2525–2532.10.1007/s11051-010-0145-6Search in Google Scholar

Ahamed, M.; Alsalhi M. S.; Siddiqui, M. K.; Alsalhi, S. Silver nanoparticle applications and human health. Clin. Chim. Acta2010, 411, 1841–1848.10.1016/j.cca.2010.08.016Search in Google Scholar PubMed

Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater.2008, 18, 2005–2016.10.1002/adfm.200800233Search in Google Scholar

Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Islam Khan, M.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf.B2003, 28, 313–318.10.1016/S0927-7765(02)00174-1Search in Google Scholar

Al-Obaidi, A. H. R.; Rigbi, S. J.; McGarvey, J. J.; Wamsley, D. G.; Smith, K. W.; Hellemans, I.; Snauwaert, J. Microstructural and spectroscopies studies of metal liquid-like films of silver and gold. J. Phys. Chem.1994, 98, 11163–11168.10.1021/j100094a026Search in Google Scholar

Al-Thabaiti, S. A.; Malik, M. A.; Al-Youbi, A. A. O.; Khan, Z.; Hussain, J. I. Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int. J. Electrochem. Sci.2013, 8, 204–218.Search in Google Scholar

Ameen, K. B.; Rajasekar, K.; Rajasekharan, T. Silver nanoparticles in mesoporous aerogel exhibiting selective catalytic oxidation of benzene in CO2 free air. Catal. Lett.2007, 119, 289–295.10.1007/s10562-007-9233-3Search in Google Scholar

Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology2008, 19, 255102.10.1088/0957-4484/19/25/255102Search in Google Scholar PubMed

Ashkarran, A. A. A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr. Appl. Phys.2010, 10, 1442–1447.10.1016/j.cap.2010.05.010Search in Google Scholar

AshRani, P. V.; Low Kah Mun, G.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano2008, 3, 279–290.10.1021/nn800596wSearch in Google Scholar PubMed

Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J. Fluorescence2005a, 15, 643–654.10.1007/s10895-005-2970-zSearch in Google Scholar PubMed PubMed Central

Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B2005b, 109, 3157–3162.10.1021/jp045186tSearch in Google Scholar PubMed PubMed Central

Aslan, K.; Holley, P.; Geddes, C. D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J. Mater. Chem.2006, 16, 2846–2852.10.1039/b604650aSearch in Google Scholar

Bastys, V.; Pastoriza-Santos, I.; Rodríguez-González, B.; Vaisnoras, R.; Liz-Marza’n, L. M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater.2006, 16, 766–773.10.1002/adfm.200500667Search in Google Scholar

Bhatt, J. S. A. Heralding a new future – nanotechnology. Curr. Sci.2003, 85, 147–154.Search in Google Scholar

Bohr, M. T. Nanotechnology goals and challenges for electronic applications. Nanotechnol. IEEE Trans.2002, 1, 56–62.10.1109/TNANO.2002.1005426Search in Google Scholar

Cai, X.; Zhai, A. Preparation of microsized silver crystals with different morphologies by a wet-chemical method. Rare Metals2010, 29, 407.10.1007/s12598-010-0139-7Search in Google Scholar

Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications; World Scientific Publishing Co. Pte. Ltd., Imperial College Press: London, 2004.10.1142/p305Search in Google Scholar

Chang, S.; Chen, K.; Hua, Q.; Ma, Y.; Huang, W. Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C2011a, 115, 7979–7986.10.1021/jp2010088Search in Google Scholar

Chang, Y.; Lu, Y.; Chou, K. Diameter control of silver nanowires by chloride ions and its application as transparent conductive coating. Chem. Lett.2011b, 40, 1352–1353.10.1246/cl.2011.1352Search in Google Scholar

Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology2010, 21, 025607.10.1088/0957-4484/21/2/025607Search in Google Scholar PubMed

Chen, H. M.; Liu, R. S. Architecture of metallic nanostructures: synthesis strategy and specific aplications. J. Phys. Chem. C2011, 115, 3513–3527.10.1021/jp108403rSearch in Google Scholar

Chimentao, R.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem. Commun.2004, 4, 846–847.10.1039/B400762JSearch in Google Scholar

Chowdhury, M. H.; Aslan, K.; Malyn, S. N.; Lakowicz, J. R.; Geddes, C. D. Metal-enhanced chemiluminescence. J. Fluorescence2006, 16, 295–299.10.1007/s10895-006-0082-zSearch in Google Scholar PubMed PubMed Central

Cong, F.; Wei, H.; Tian, X.; Xu, H. A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering. Front. Phys.2012, 7, 521–526.10.1007/s11467-012-0255-ySearch in Google Scholar

Creighton, J. A.; Blatchford, G. G.; Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2.1979, 75, 790–798.10.1039/f29797500790Search in Google Scholar

D’Agostino, S.; Sala, F. D. Silver nanourchins in plasmonics: theoretical investigation on the optical properties of the branches. J. Phys. Chem. C2011, 115, 11934–11940.10.1021/jp202229ySearch in Google Scholar

Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; Berardis, B. D.; Guittard, F.; Rossi, F. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf. A2012, 395, 145–151.10.1016/j.colsurfa.2011.12.020Search in Google Scholar

Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C2009, 113, 6573–6576.10.1021/jp900775bSearch in Google Scholar

Dong, X.; Ji, X.; Jing, J.; Li, M.; Li, J.; Yang, W. Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C2010, 114, 2070–2074.10.1021/jp909964kSearch in Google Scholar

El-Kheshen, A. A.; El-Rab, S. F. G. Effect of reducing and protecting agents on size of silver nanoparticles and their antibacterial activity. Pharm. Chem.2012, 4, 53–65.Search in Google Scholar

Ershov, B. G.; Henglein, A. Reduction of Ag+ on polyacrilate chains in aqueous solutions. J. Phys. Chem. B1998, 102, 10663–10666.10.1021/jp981906iSearch in Google Scholar

Fayaz, A. M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P. T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine2010, 6, 103–109.10.1016/j.nano.2009.04.006Search in Google Scholar PubMed

Fodale, V.; Pierobon, M.; Liotta, L.; Petricoin, E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J.2011, 17, 89–95.10.1097/PPO.0b013e318212dd3dSearch in Google Scholar PubMed PubMed Central

Fu, H.; Yang, X.; Jiang, X.; Yu, A. Bimetallic Ag-Au nanowires: synthesis, growth mechanism, and catalytic properties. Langmuir2013, 29, 7134–7142.10.1021/la400753qSearch in Google Scholar PubMed

Ghorbani, H. R.; Safekordi, A. A.; Attar, H.; Rezayat Sorkhabadi, S. M. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Quart.2011, 25, 317–326.Search in Google Scholar

Ghosh, S. K.; Kundu, S.; Mandal, M.; Nath, S.; Pal, T. Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res.2003, 5, 577–583.10.1023/B:NANO.0000006100.25744.faSearch in Google Scholar

Giri, N.; Natarajan, R. K.; Gunasekaran, S.; Shreemathi, S. NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles. Arch. Appl. Sci. Res.2011, 3, 624–630.Search in Google Scholar

Gu, X.; Nie, C.; Lai, Y.; Lin, C. Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater. Chem. Phys.2006, 96, 217–222.10.1016/j.matchemphys.2005.07.006Search in Google Scholar

Gurunathan, S.; Kalishwaralal, K. V.; Aidyanathan, R.; Deepak, V.; Pandian, S.; Muniyandi, J. Purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf.B2009, 74, 328–335.10.1016/j.colsurfb.2009.07.048Search in Google Scholar PubMed

He, B.; Tan, J.; Liew, K.; Liu, H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. Chem.2004, 221, 121–126.10.1016/j.molcata.2004.06.025Search in Google Scholar

Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Revs.1989, 89, 1861–1873.10.1021/cr00098a010Search in Google Scholar

Hill, W. R.; Pillsbury, D. M. Argyria: The Pharmacology of Silver; Md. Williams & Wilkins Co.: Baltimore, 1939; pp. 128–132.Search in Google Scholar

Hirai, T.; Yoshioka, Y.; Ichihashi, K.; Mori, T.; Nishijima, N.; Handa, T.; Takahashi, H.; Tsunoda, S.; Higashisaka, K.; Tsutsumi, Y. Silver nanoparticles induce silver nanoparticle-specific allergic responses (HYP6P.274). J. Immunology2014, 192, Issue 1 Supplement, 118.19.10.4049/jimmunol.192.Supp.118.19Search in Google Scholar

Hong, R.; Han, G.; Fernández, J. M.; Kim, B.; Forbes, N. S.; Rotello, V. M. Glutathione mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc.2006, 128, 1078–1079.10.1021/ja056726iSearch in Google Scholar PubMed

Hsieh, C. T.; Tzou, D. Y.; Pan, C.; Chen, W. Y. Microwaveassisted deposition, scalable coating, and wetting behavior of silver nanowire layers. Surf. Coat. Technol.2012, 207, 11–18.10.1016/j.surfcoat.2012.02.026Search in Google Scholar

Hu, J. Q.; Chen, Q.; Xie, Z. X.; Han, G. B.; Wang, R. H.; Ren, B.; Zhang, Y.; Yang, Z. L.; Tian, Z. Q. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv. Funct. Mater.2004, 14, 183–189.10.1002/adfm.200304421Search in Google Scholar

Hu, Z. S.; Hung, F. Y.; Chang, S. J.; Hsieh, W. K.; Chen, K. J. Align Ag nanorods via oxidation reduction growth using RF sputtering. J. Nanomater.2012, 2012, 345086, 6 pages.10.1155/2012/345086Search in Google Scholar

Huang, L.; Zhai, M. L.; Long, D. W.; Peng, J.; Xu, L.; Wu, G. Z.; Li, J. Q.; Wei, G. S. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res.2008, 10, 1193–1202.10.1007/s11051-007-9353-0Search in Google Scholar

Hussain, S.; Pal, A. K. Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique. Mater. Lett.2008, 62, 1874–1877.10.1016/j.matlet.2007.10.021Search in Google Scholar

Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed.2005, 44, 2154–2157.10.1002/anie.200462208Search in Google Scholar

Ino, S. Epitaxial growth of metals on rock-salt faces cleaved in vacuum. II. orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Japan, 1966, 21, 346–362.10.1143/JPSJ.21.346Search in Google Scholar

Ino, S.; Ogava, D. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J. Phys. Soc. Japan1967, 22, 1365–1374.10.1143/JPSJ.22.1365Search in Google Scholar

James, T. H. The Theory of Photographic Process; Macmillan Publishing Co.: New York, 1977.Search in Google Scholar

James, E. M. Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy1999, 78, 125–139.10.1016/S0304-3991(99)00018-2Search in Google Scholar

Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun.2001, 7, 617–618.10.1039/b100521iSearch in Google Scholar

Jiang, P.; Li, S.; Xie, S.; Gao, Y.; Song, L. Machinable long PVP- stabilized silver nanowires. Chem. Eur. J.2004, 10, 4817–4821.10.1002/chem.200400318Search in Google Scholar

Jiang, X. C.; Chen, W. M.; Chen, C. Y.; Xiong, S. X.; Yu, A. B. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett.2011, 6, 32.10.1007/s11671-010-9780-1Search in Google Scholar PubMed

Jiang, Z.-J.; Liu, C.-Y.; Sun, L.-W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B2005, 109, 1730–1735.10.1021/jp046032gSearch in Google Scholar PubMed

Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science2001, 294(5548), 1901–1903.10.1126/science.1066541Search in Google Scholar PubMed

Kairemo, K.; Erba, P.; Bergström, K.; Pauwels, E. K. J. Nanoparticles in cancer. Curr. Radiopharmaceuticals2010, 1, 30–36.10.2174/1874471010801010030Search in Google Scholar

Kapoor, S. Surface modification of silver particles. Langmuir1998, 14, 1021–1025.10.1021/la9705827Search in Google Scholar

Kelly, J. M.; Keegan, G.; Brennan-Fournet, M. E. Triangular silver nanoparticles: their preparation functionalisation and properties. Acta Phys. Pol. A2012, 122, 337–348.10.12693/APhysPolA.122.337Search in Google Scholar

Kim, F.; Song, J. H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc.2002, 124, 14316–14317.10.1021/ja028110oSearch in Google Scholar PubMed

Kittler, S.; Greulich, C.; Diendorf, J.; Köller, M.; Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater.2010, 22, 4548–4554.10.1021/cm100023pSearch in Google Scholar

Klasen, H. J. A historical review of the use of silver in the treatment of burns. Burns2000, 26, 117–130.10.1016/S0305-4179(99)00108-4Search in Google Scholar PubMed

Korte, K. E.; Skrabalak, S. E.; Xia, Y. Rapid synthesis of silver nanowires through a CuCl or CuCl2 mediated polyol process. J. Mater. Chem.2008, 18, 437–441.10.1039/B714072JSearch in Google Scholar

Kou, J.; Varma, R. S. Speedy fabrication of diameter-controlled Ag nanowires using glycerol under microwave irradiation conditions. Chem. Commun.2013, 49, 692–694.10.1039/C2CC37696BSearch in Google Scholar PubMed

Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett.2012, 76, 18–20.10.1016/j.matlet.2012.02.025Search in Google Scholar

Krutyakov, Y. A.; Kudrinskiy, A. A.; Olenin, A. Y.; Lisichkin, G. V. Synthesis and properties of silver nanoparticles: advances and prospects. Russ. Chem. Revs.2008, 77, 233–257.10.1070/RC2008v077n03ABEH003751Search in Google Scholar

Laban, G.; Nies, L. F.; Turco, R. F.; Bickham, J. W.; Sepulveda, M. S. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology2009, 19, 185–195.10.1007/s10646-009-0404-4Search in Google Scholar PubMed

Lakowicz, J. R.; Maliwal, B. P.; Malicka, J.; Gryczynski, Z.; Gryczynski, I. Effects of silver island films on the luminescent intensity and decay times of lanthanide chelates. J. Fluorescence2002, 12, 431–437.10.1023/A:1021318127519Search in Google Scholar

Ledwith, D. M.; Whelan, A. M.; Kelly, J. M. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mater. Chem.2007, 17, 2459–2464.10.1039/b702141kSearch in Google Scholar

Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem.1982, 86, 3391–3395.10.1021/j100214a025Search in Google Scholar

Lee, I-Y. S.; Suzuki, H.; Ito, K.; Yasuda, Y. Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. J. Phys. Chem. B2004, 108, 19368–19372.10.1021/jp0471554Search in Google Scholar

Li, Y.; Li, Z.; Gao, Y.; Gong, A.; Zhang, Y.; Hosmane, N. S.; Zheyu Shen, Z.; Wu, A. “Red-to-blue” colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale2014, 6, 10631–10637.10.1039/C4NR03309DSearch in Google Scholar PubMed

Liang, H.; Wang, W.; Huang, Y.; Zhang, S.; Wei, H.; Xu, H. Controlled synthesis of uniform silver nanospheres. J. Phys. Chem. C2010, 114, 7427–7431.10.1021/jp9105713Search in Google Scholar

Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis. J. Am. Chem. Soc.1990, 112, 4657–4664.10.1021/ja00168a005Search in Google Scholar

Liu, M.; Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B2005, 109, 22192–22200.10.1021/jp054808nSearch in Google Scholar

Liu, S.; Yue, J.; Gedanken, A. Synthesis of long silver nanowires from AgBr nanocrystals. Adv. Mater.2001, 13, 656–658.10.1002/1521-4095(200105)13:9<656::AID-ADMA656>3.0.CO;2-OSearch in Google Scholar

Liu, Q.; Yin, G.; Han, M.; Liu, H.; Zhu, J.; Liang, Y.; Xu, Z. Large-scale synthesis of single crystal silver nanowires by a sodium diphenylamine sulfonate reduction process. J. Nanosci. Nanotechnol.2006, 6, 231–234.10.1166/jnn.2006.17936Search in Google Scholar PubMed

Lue, J. T. A review characterization and physical property studies of metallic nanoparticles. Phys. Chem. Solids2001, 62, 1599–1612.10.1016/S0022-3697(01)00099-3Search in Google Scholar

Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir2001, 17, 6000–6004.10.1021/la010389jSearch in Google Scholar

Marks, L. D. Experimental studies of small particle structures. Rep. Progr. Phys.1994, 57, 603–609.10.1088/0034-4885/57/6/002Search in Google Scholar

Martin, C. R. Nanomaterials: a membrane-based synthetic approach. Science1994, 266(5193), 1961–1966.10.1126/science.266.5193.1961Search in Google Scholar PubMed

Mees, K.; James, T. H. The Theory of Photographic Process; Collier Macmillan Ltd.: London, 1973.Search in Google Scholar

Meng, X. K.; Tang, S. C.; Vongehr, S. A review on diverse silver nanostructures. J. Mater. Sci. Technol.2010, 26, 487–522.10.1016/S1005-0302(10)60078-3Search in Google Scholar

Métraux, G. S.; Mirkin, C. A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater.2005, 17, 412–415.10.1002/adma.200401086Search in Google Scholar

Mikhailov, O. V. Enzyme-assisted matrix isolation of novel dithiooxamide complexes of nickel(II). Indian J. Chem.1991, 30A, 252–254.Search in Google Scholar

Mikhailov, O. V. Self-assembly of molecules of metal macrocyclic compounds in nanoreactors on the basis of biopolymer-immobilized matrix systems. Nanotechnol. Russ.2010, 5, 18–34.10.1134/S1995078010010027Search in Google Scholar

Mikhailov, O. V. Synthesis of 3D-element metalmacrocyclic chelates into polypeptide biopolymer medium and their molecular structures. Inorg. Chim. Acta2013, 394, 664–684.10.1016/j.ica.2012.07.037Search in Google Scholar

Mikhailov, O. V. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. Nano Reviews2014a, 5, 14767–14785.10.3402/nano.v5.21485Search in Google Scholar PubMed PubMed Central

Mikhailov, O. V. Sol-gel technology and template synthesis in thin gelatin films. J. Sol Gel Sci. Technol.2014b, 72, 314–327.10.1007/s10971-014-3468-4Search in Google Scholar

Mikhailov, O. V. Electron microscopy of elemental silver produced by its reprecipitation in glass-like biopolymer film. Glass Phys. Chem.2017, 43, 471–474.10.1134/S1087659617050121Search in Google Scholar

Mikhailov, O. V.; Naumkina, N. I. Novel modification of elemental silver formed into Ag4(Fe(CN)6)-gelatin-immobilized matrix implants. Central Eur. J. Chem.2010, 8, 448–452.10.2478/s11532-009-0148-2Search in Google Scholar

Mikhailov, O. V.; Kondakov, A. V.; Krikunenko, R. I. Image intensification in silver halide photographic materials for detection of high-energy radiation by reprecipitation of elemental silver. High Energy Chemistry2005, 39, 324–329.10.1007/s10733-005-0064-8Search in Google Scholar

Mikhailov, O. V.; Naumkuna, N. I.; Kondakov, A. V.; Lygina, T. Z. On a new phase of elemental silver, appearing on its “reprecipitation” in Ag-gelatin-immobilized matrix systems. Russ. J. Gen. Chem.2008, 78, 1650–1654.10.1134/S1070363208090028Search in Google Scholar

Mikhailov, O. V.; Naumkina, N. I.; Lygina, T. Z. Novel phase of elemental silver nano-particles formed at combination of complexing and redox-processes into gelatin matrix. J. Character. Develop. Novel Mater.2013, 5, 167–181.Search in Google Scholar

Mikhailov, O. V.; Kazymova, M. A.; Chachkov, D. V. Self-assembly and quantum chemical design of macrotricyclic and macrotetracyclic 3D-element metal chelates formed in the gelatin-immobilized matrix. Russ. Chem. Bull. Int. Edition2015, 64, 1757–1771.10.1007/s11172-015-1070-8Search in Google Scholar

Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett.2008, 8, 2526–2529.10.1021/nl8016253Search in Google Scholar PubMed

Millstone, J. E.; Hurst, S. J.; Métraux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small2009, 5, 646–664.10.1002/smll.200801480Search in Google Scholar PubMed

Moghimi-Rad, J.; Dallali Isfahani, T.; Hadi, I.; Ghalamdaran, S.; Sabbaghzadeh, J.; Sharif, M. Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation. Appl. Nanosci.2011, 1, 27–35.10.1007/s13204-011-0004-5Search in Google Scholar

Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater.2002, 14, 80–82.10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#Search in Google Scholar

Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem.2006, 45, 7544–7554.10.1021/ic0519382Search in Google Scholar PubMed

Nghia, N.; Truong, N. N. K.; Thong, N. M.; Hung, N. P. Synthesis of nanowire-shaped silver by polyol process of sodium chloride. Int. J. Mater. Chem.2012, 2, 75–78.10.5923/j.ijmc.20120202.06Search in Google Scholar

Orendoff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys.2006, 8, 165–170.10.1039/B512573ASearch in Google Scholar PubMed

Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol.2007, 73, 1712–1720.10.1128/AEM.02218-06Search in Google Scholar PubMed

Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: a boom to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine2012, 8, 147–166.10.1016/j.nano.2011.05.016Search in Google Scholar

Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev.2005, 249, 1870–1901.10.1016/j.ccr.2005.01.030Search in Google Scholar

Poinern, G. E. J.; Chapman, P.; Shah, M.; Fawcett, D. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull.2013, 2, 1–7.Search in Google Scholar

Pourjavadi, A.; Soleyman, R. Novel silver nano-wedges for killing microorganisms. Mater. Res. Bull.2011, 46, 1860–1865.10.1016/j.materresbull.2011.07.040Search in Google Scholar

Pugazhenthiran, N.; Anandan, S.; Kathiravan, G.; Udaya Prakash, N. K.; Crawford, S.; Ashokkumar, M. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res.2009, 11, 1811–1815.10.1007/s11051-009-9621-2Search in Google Scholar

Pyatenko, A.; Yamaguchi, M.; Suzuki, M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem. C2007, 111, 7910–7917.10.1021/jp071080xSearch in Google Scholar

Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf.A2010, 372, 172–176.10.1016/j.colsurfa.2010.10.013Search in Google Scholar

Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv.2009, 27, 76–83.10.1016/j.biotechadv.2008.09.002Search in Google Scholar PubMed

Rivero, P. J.; Goicoechea, J.; Urrutia, A.; Arregui, F. J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett.2013, 8, 101.10.1186/1556-276X-8-101Search in Google Scholar PubMed

Rycenga, M.; McLellan, J. M.; Xia, Y. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater.2008, 20, 2416–2420.10.1002/adma.200800360Search in Google Scholar

Saade, J.; de Araújo, C. B. Synthesis of silver nanoprisms: a photochemical approach using light emission diodes. Mater. Chem. Phys.2014, 148, 1184–1193.10.1016/j.matchemphys.2014.09.045Search in Google Scholar

Sagar, G.; Ashok, B. Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur. J. Exp. Biol.2010, 2, 1654–1658.Search in Google Scholar

Sanjeeb, K. S.; Vinod, L. Nanotech approaches to drug delivery and imaging. Drug Discov. Today2003, 8, 1112–1120.10.1016/S1359-6446(03)02903-9Search in Google Scholar PubMed

Satoh, N.; Hasegawa, H.; Tsuji, K.; Kimura, K. Photo-induced coagulation of Ag nanocolloides. J. Phys. Chem.1994, 98, 2143–2147.10.1021/j100059a029Search in Google Scholar

Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc.2004, 126, 8648–8649.10.1021/ja047846dSearch in Google Scholar PubMed

Sergeev, B. M.; Kiryukhin, M. V.; Prusov, A. N. Effect of light on the disperse composition of silver hydrosols stabilized by partially decarboxylated polyacrylate. Mendeleev Commun.2001, 11, 68–69.10.1070/MC2001v011n02ABEH001407Search in Google Scholar

Sergeev, B. M.; Lopatina, L. I.; Prusov, A. N.; Sergeev, G. B. Borohydride reduction of AgNO3 in polyacrylate aqueous solutions: two-stage synthesis of “blue silver”. Coll. J.2005, 67, 213–216.10.1007/s10595-005-0083-7Search in Google Scholar

Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. Q.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine.2007, 3, 168–171.10.1016/j.nano.2007.02.001Search in Google Scholar PubMed

Shameli, K.; Bin Ahmad, M.; Jaffar Al-Mulla, E. A.; Ibrahim, N. A.; Shabanzadeh, P.; Rustaiyan, A.; Abdollahi, Y.; Bagheri, S.; Abdolmohammadi, S.; Usman, M. S.; Zidan, M. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules2012, 17, 8506–8517.10.3390/molecules17078506Search in Google Scholar PubMed PubMed Central

Shervani, Z.; Ikushima, Y.; Sato, M.; Kawanami, H.; Hakuta, Y.; Yokoyama, T.; Nagase, T.; Kuneida, H.; Aramaki, K. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci.2008, 286, 403–410.10.1007/s00396-007-1784-8Search in Google Scholar

Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett.2006. 432, 491–496.10.1016/j.cplett.2006.10.095Search in Google Scholar PubMed PubMed Central

Sintubin, L.; De Windt, W.; Dick, J.; Mast, J.; van der Ha, D.; Verstraete, W.; Boon, N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol.2009, 84, 741–749.10.1007/s00253-009-2032-6Search in Google Scholar PubMed

Skillman, D. G.; Berry, C. R. Effect of particle shape on the spectral absorption of colloid silver in gelatin. J. Chem. Phys.1968, 48, 3297–3304.10.1063/1.1669607Search in Google Scholar

Skrabalak, S.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc.2007, 2, 2182–2190.10.1038/nprot.2007.326Search in Google Scholar PubMed

Sun, Y.; Xia, Y. N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater.2002a, 14, 833–837.10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-KSearch in Google Scholar

Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science2002b, 298(5601), 2176–2179.10.1126/science.1077229Search in Google Scholar

Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett.2002a, 2, 165–168.10.1021/nl010093ySearch in Google Scholar

Sun, Y.; Yin, Y.; Mayers, B.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater.2002b, 14, 4736–4745.10.1021/cm020587bSearch in Google Scholar

Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett.2003a, 3, 955–960.10.1021/nl034312mSearch in Google Scholar

Sun, Y.; Mayers, B.; Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett.2003b, 3, 675–679.10.1021/nl034140tSearch in Google Scholar

Sun, B.; Jiang, X.; Dai, S.; Du, Z. Single-crystal silver nanowires: preparation and surface-enhanced Raman scattering (SERS) property. Mater. Lett.2009, 63, 2570–2573.10.1016/j.matlet.2009.09.006Search in Google Scholar

Suresh, A. K.; Wang, W.; Pelletier, D. A.; Moon, J. W.; Gu, B.; Mortensen, N. P.; Allison, D. P.; Joy, D. C.; Phelps, T. J.; Doktycz, M. J. Silver nanocrystallites: facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol.2010, 44, 5210–5215.10.1021/es903684rSearch in Google Scholar

Sviridov, V. V.; Kondrat’ev, V. A. Photographic processes with silverless physical development. Uspekhi Nauchn. Fotogr.1978, 19, 43–64.Search in Google Scholar

Taguchi, A.; Fujii, S.; Ichimura, T.; Verma, P.; Inouye, Y.; Kawata, S. Oxygen-assisted shape control in polyol synthesis of silver nanocrystals. Chem. Phys. Lett.2008, 462, 92–95.10.1016/j.cplett.2008.07.077Search in Google Scholar

Tang, B.; An, J.; Zheng, X.; Xu, S.; Li, D.; Zhou, J.; Zhao, B.; Xu, W. Silver nanodisks with tunable size by heat aging. J. Phys. Chem. C.2008, 112, 18361–18367.10.1021/jp806486fSearch in Google Scholar

Tang, S. C.; Meng, X. K.; Lu, H. B.; Zhu, S. P. PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Mater. Chem. Phys.2009, 116, 464–468.10.1016/j.matchemphys.2009.04.004Search in Google Scholar

Taniguchi, N. On the basic concept of nanotechnology. In Proceedings of the International Conference on Precision Engineering (ICPE), Tokyo, 1974; pp. 18–23.Search in Google Scholar

Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed.2006, 45, 4597–4601.10.1002/anie.200601277Search in Google Scholar PubMed

Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological synthesis of metallic nanoparticles. Nanomed. NBM2010, 6, 257–262.10.1016/j.nano.2009.07.002Search in Google Scholar PubMed

Thiago, V.-B.; Rona, M.-G.; Katarzyna, W.; Adelina, R.-W.;, Jonathan, R. B.; Helmut, E.; Frank, K. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano2014, 8, 2161–2175.10.1021/nn4050744Search in Google Scholar PubMed

Tsuji, M.; Matsumoto, K.; Jiang, P.; Matsuo, R.; Hikino, S.; Tang, X. L.; Nor Kamarudin, K. S. The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route. Bull. Chem. Soc. Jpn.2008, 81, 393–400.10.1246/bcsj.81.393Search in Google Scholar

Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir2012, 28, 8845–8861.10.1021/la3001027Search in Google Scholar PubMed

Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett.2004, 4, 1733–1739.10.1021/nl048912cSearch in Google Scholar

Wiley, B.; Sun, Y.; Chen, J.; Cang, H.; Li, Z. Y.; Li, X.; Xia, Y. Silver and gold nanostructures with well-controlled shapes. MRS Bull.2005a, 30, 356–361.10.1557/mrs2005.98Search in Google Scholar

Wiley, B.; Sun, Y. G.; Mayers, B.; Xia, Y. N. Shape-controlled synthesis of metal nano-structures: the case of silver. Chem.– Eur. J.2005b, 11, 454–463.10.1002/chem.200400927Search in Google Scholar PubMed

Wiley, B.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir2005c, 21, 8077–8080.10.1021/la050887iSearch in Google Scholar PubMed

Wiley, B.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B2006, 110, 15666–17675.10.1021/jp0608628Search in Google Scholar PubMed

Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z. Y.; Ginger, D.; Xia, Y. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett.2007, 7, 1032–1036.10.1021/nl070214fSearch in Google Scholar PubMed

Wu, M.; Lakowicz, J. R.; Geddes, C. D. Enhanced lanthanide luminescence using silver nanostructures: opportunities for a new class of probes with exceptional spectral characteristics. J. Fluorescence2005, 15, 53–59.10.1007/s10895-005-0213-ySearch in Google Scholar PubMed PubMed Central

Wu, X.; Redmond, P. L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc.2008, 130, 9500–9506.10.1021/ja8018669Search in Google Scholar PubMed

Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed.2009, 48, 60–103.10.1002/anie.200802248Search in Google Scholar PubMed PubMed Central

Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J.2006, 1, 888–893.10.1002/asia.200600260Search in Google Scholar PubMed

Xu, J.; Cheng, G.; Zheng, R. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Appl. Surf. Sci.2010, 256, 5006–5010.10.1016/j.apsusc.2010.03.044Search in Google Scholar

Xue, C.; Mirkin, C. A. 2007. pH-switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed.2007, 46, 2036–2038.10.1002/anie.200604637Search in Google Scholar PubMed

Yamamoto, T.; Yin, H.; Wada, Y.; Kitamura, T.; Sakata, T.; Mori, H.; Yanagida, S.; Morphology-control in microwave-assisted synthesis of silver particles in aqueous solutions. Bull. Chem. Soc. Japan2004, 77, 757–761.10.1246/bcsj.77.757Search in Google Scholar

Yan, G.; Wang, L.; Zhang, L. Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and Pt nanotubes from resultant silver nanowires and their applications in conductive adhesive. Rev. Adv. Mater.2010, 24, 10–25.Search in Google Scholar

Yeo, S.; Lee, H.; Jeong, S. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci.2003, 38, 2143–2147.10.1023/A:1023767828656Search in Google Scholar

Yonesava, T.; Onoue, S.; Kimizuka, N. Preparation of highly positively charged silver nanoballs and their stability Langmuir2000, 16, 5218–5220.10.1021/la000186fSearch in Google Scholar

Zaheer, Z.; Rafiuddin. Multi-branched flower-like silver nanoparticles: preparation and characterization. Colloids Surf. A2011, 384, 427–431.10.1016/j.colsurfa.2011.04.030Search in Google Scholar

Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q.; Zhu, Y.; Xia, Y. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc.2010, 132, 8552–8553.10.1021/ja103655fSearch in Google Scholar PubMed

Zhang, J.; Chen, P.; Sun, C.; Hu, X. Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl. Catal.2004a, A266, 49–54.10.1016/j.apcata.2004.01.025Search in Google Scholar

Zhang, D.; Qi, L.; Yang, J.; Ma, J.; Cheng, H.; Huang, L. Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem. Mater.2004b, 16, 872–876.10.1021/cm0350737Search in Google Scholar

Zhang, W.; Qiao, X.; Chen, J.; Wang, H. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J. Colloid Interface Sci.2006, 302, 370–373.10.1016/j.jcis.2006.06.035Search in Google Scholar PubMed

Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem.– Eur. J.2010, 16, 10234–10239.10.1002/chem.201000341Search in Google Scholar PubMed PubMed Central

Zheng, X.; Zhao, X.; Guo, D.; Tang, B.; Xu, S.; Zhao, B.; Xu, W.; Lombardi, J. R. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir2009, 25, 3802–3807.10.1021/la803814jSearch in Google Scholar PubMed

Zhu, J. J.; Kan, C. X.; Wan, J. G.; Han, M.; Wang, G. H. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater.2011, 2011, 982547.10.1155/2011/982547Search in Google Scholar

Received: 2017-12-24
Accepted: 2018-3-9
Published Online: 2018-4-23
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2017-0016/html
Scroll to top button