Home Structure, mechanism, and performance evaluation of natural gas hydrate kinetic inhibitors
Article
Licensed
Unlicensed Requires Authentication

Structure, mechanism, and performance evaluation of natural gas hydrate kinetic inhibitors

  • Sheida Shahnazar , Samira Bagheri EMAIL logo , Amin TermehYousefi , Javad Mehrmashhadi , Mohd Sayuti Abd Karim and Nahrizul Adib Kadri
Published/Copyright: April 17, 2018

Abstract

Ice-like crystal compounds, which are formed in low-temperature and high-pressure thermodynamic conditions and composed of a combination of water molecules and guest gas molecules, are called gas hydrates. Since its discovery and recognition as the responsible component for blockage of oil and gas transformation line, hydrate has been under extensive review by scientists. In particular, the inhibition techniques of hydrate crystals have been updated in order to reach the more economically and practically feasible methods. So far, kinetic hydrate inhibition has been considered as one of the most effective techniques over the past decade. This review is intended to classify the recent studies regarding kinetic hydrate inhibitors, their structure, mechanism, and techniques for their performance evaluation. In addition, this communication further analyzes the areas that are more in demand to be considered in future research.

References

Ajiro, H.; Takemoto, Y.; Akashi, M.; Chua, P.C.; Kelland, M.A. Study of the kinetic hydrate inhibitor performance of a series of poly(N-alkyl-N-vinylacetamide)s. Energy Fuels2010, 24, 6400–6410.10.1021/ef101107rSearch in Google Scholar

Al-Adel, S.; Dick, J.A.G.; El-Ghafari, R.; Servio, P. The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilibria2008, 267, 92–98.10.1016/j.fluid.2008.02.012Search in Google Scholar

Amir, M.N.I.; Julkapli, N.M.; Bagheri, S.; Yousefi, A.T. TiO2 hybrid photocatalytic systems: impact of adsorption and photocatalytic performance. Rev. Inorg. Chem.2015, 35, 151–178.10.1515/revic-2015-0005Search in Google Scholar

Anderson, B.J.; Tester, J.W.; Borghi, G.P.; Trout, B.L. Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. J. Am. Chem. Soc.2005, 127, 17852–17862.10.1021/ja0554965Search in Google Scholar PubMed

Anderson, R.; Mozaffar, H.; Tohidi, B. Development of a crystal growth inhibition based method for the evaluation of kinetic hydrate inhibitors. in Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, UK. 2011.Search in Google Scholar

Ansari, F.; Soofivand, F.; Salavati-Niasari, M. Utilizing maleic acid as a novel fuel for synthesis of PbFe12O19 nanoceramics via sol–gel auto-combustion route. Mater. Charact.2015, 103, 11–17.10.1016/j.matchar.2015.03.010Search in Google Scholar

Ansari, F.; Bazarganipour, M.; Salavati-Niasari, M. NiTiO3/NiFe2O4 nanocomposites: Simple sol–gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mater. Sci. Semiconductor Proc.2016a, 43, 34–40.10.1016/j.mssp.2015.11.014Search in Google Scholar

Ansari, F.; Sobhani, A.; Salavati-Niasari, M. PbTiO3/PbFe12O19 nanocomposites: green synthesis through an eco-friendly approach. Compos. Part B: Eng.2016b, 85, 170–175.10.1016/j.compositesb.2015.09.027Search in Google Scholar

Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J. Magn. Magn. Mater.2016c, 410, 27–33.10.1016/j.jmmm.2016.03.014Search in Google Scholar

Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater.2016d, 401, 362–369.10.1016/j.jmmm.2015.10.049Search in Google Scholar

Arjmandi, M.; Tohidi, B.; Danesh, A.; Todd, A.C. Is subcooling the right driving force for testing low-dosage hydrate inhibitors? Chem. Eng. Sci.2005, 60, 1313–1321.10.1016/j.ces.2004.10.005Search in Google Scholar

Arjmandi, M.; Chapoy, A.; Tohidi, B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide. J. Chem. Eng. Data2007, 52, 2153–2158.10.1021/je700144pSearch in Google Scholar

Bagherzadeh, S.A.; Moudrakovski, I.L.; Ripmeester, J.A.; Englezos, P. Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles. Energy Fuels2011, 25, 3083–3092.10.1021/ef200399aSearch in Google Scholar

Baldwin, B.A.; Stevens, J.; Howard, J.J.; Graue, A.; Kvamme, B.; Aspenes, E.; Ersland, G.; Husebø, J.; Zornes, D.R. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media. Magn. Reson. Imaging2009, 27, 720–726.10.1016/j.mri.2008.11.011Search in Google Scholar PubMed

Barker, J.; Gomez, R. Formation of hydrates during deepwater drilling operations. J. Pet. Technol.1989, 41, 297–301.10.2118/16130-PASearch in Google Scholar

Barnes, B.C.; Sum, A.K. Advances in molecular simulations of clathrate hydrates. Curr. Opin. Chem. Eng.2013, 2, 184–190.10.1016/j.coche.2012.12.002Search in Google Scholar

Bloys, B.; Lacey, C. Laboratory testing and field trial of a new kinetic hydrate inhibitor. Offshore Technology Conference, 1–4 May, Houston, Texas, 1995.10.4043/7772-MSSearch in Google Scholar

Buffett, B.; Zatsepina, O.Y. Formation of gas hydrate from dissolved gas in natural porous media. Mar. Geol.2000, 164, 69–77.10.1016/S0025-3227(99)00127-9Search in Google Scholar

Carson, D.B.; Katz, D.L. Natural gas hydrates. Trans. AIME1942, 146, 150–158.10.2118/942150-GSearch in Google Scholar

Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy2016, 162, 1633–1652.10.1016/j.apenergy.2014.12.061Search in Google Scholar

Christiansen, R.L.; Sloan, E.D. Mechanisms and kinetics of hydrate formation. Ann. NY. Acad. Sci.1994, 715, 283–305.10.1111/j.1749-6632.1994.tb38841.xSearch in Google Scholar

Chua, P.C.; Kelland, M.A. Tetra (iso-hexyl) ammonium bromide – the most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor. Energy Fuels2012a, 26, 1160–1168.10.1021/ef201849tSearch in Google Scholar

Chua, P.C.; Kelland, M.A. Poly (N-vinyl azacyclooctanone): a more powerful structure ii kinetic hydrate inhibitor than poly (N-vinyl caprolactam). Energy Fuels2012b, 26, 4481–4485.10.1021/ef300688xSearch in Google Scholar

Cohen, J.M.; Wolf, F.P.; Young, W.D. Enhanced hydrate inhibitors: powerful synergism with glycol ethers. Energy Fuels1998, 12, 216–218.10.1021/ef970166uSearch in Google Scholar

Colle, K.S.; Oelfke, R.H.; Kelland, M.A. A Method for Inhibiting Hydrate Formation. 1996, Google Patents.Search in Google Scholar

Daraboina, N.; Linga, P.; Ripmeester, J.; Walker, V.K.; Englezos, P. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments. Energy Fuels2011a, 25, 4384–4391.10.1021/ef200813vSearch in Google Scholar

Daraboina, N.; Ripmeester, J.; Walker, V.K.; Englezos, P. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 3. Structural and compositional changes. Energy Fuels2011b, 25, 4398–4404.10.1021/ef200814zSearch in Google Scholar

Daraboina, N.; Moudrakovski, I.L.; Ripmeester, J.A.; Walker, V.K.; Englezos, P. Assessing the performance of commercial and biological gas hydrate inhibitors using nuclear magnetic resonance microscopy and a stirred autoclave. Fuel2013, 105, 630–635.10.1016/j.fuel.2012.10.007Search in Google Scholar

Daraboina, N.; Pachitsas, S.; von Solms, N. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation. Fuel2015a, 139, 554–560.10.1016/j.fuel.2014.09.013Search in Google Scholar

Daraboina, N.; Pachitsas, S.; von Solms, N. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems. Fuel2015b, 148, 186–190.10.1016/j.fuel.2015.01.103Search in Google Scholar

Del Villano, L.; Kelland, M.A. An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on structure II gas hydrate. Chem. Eng. Sci.2010, 65, 5366–5372.10.1016/j.ces.2010.06.033Search in Google Scholar

Del Villano, L.; Kelland, M.A. An investigation into the laboratory method for the evaluation of the performance of kinetic hydrate inhibitors using superheated gas hydrates. Chem. Eng. Sci.2011, 66, 1973–1985.10.1016/j.ces.2011.01.057Search in Google Scholar

Del Villano, L.; Kommedal, R.; Kelland, M.A. Class of kinetic hydrate inhibitors with good biodegradability. Energy Fuels2008, 22, 3143–3149.10.1021/ef800161zSearch in Google Scholar

Du, J.; Wang, Y.; Lang, X.; Fan, S. Effects of polyvinyl alcohol on the adhesion force of tetrahydrofuran hydrate particles. Energy Fuels2011, 25, 3204–3211.10.1021/ef200131ySearch in Google Scholar

Duchateau, C.; Dicharry, C.; Peytavy, J.-L.; Hidalgo, M. Laboratory evaluation of kinetic hydrate inhibitors: a new procedure for improving the reproducibility of measurements. in The Conference e-proceeding, 6–10 July, Vancouver, British Columbia, Canada, 2008.Search in Google Scholar

Duchateau, C.; Glénat, P.; Pou, T.-E.; Hidalgo, M.; Dicharry, C. Hydrate precursor test method for the laboratory evaluation of kinetic hydrate inhibitors. Energy Fuels2009a, 24, 616–623.10.1021/ef900797eSearch in Google Scholar

Duchateau, C.; Peytavy, J.-L.; Glénat, P.; Pou, T.-E.; Hidalgo, M.; Dicharry, C. Laboratory evaluation of kinetic hydrate inhibitors: a procedure for enhancing the repeatability of test results. Energy Fuels2009b, 23, 962–966.10.1021/ef800710xSearch in Google Scholar

Duchateau, C.; Pou, T.-E.; Hidalgo, M.; Glénat, P.; Dicharry, C. Interfacial measurements for laboratory evaluation of kinetic hydrate inhibitors. Chem. Eng. Sci.2012, 71, 220–225.10.1016/j.ces.2011.12.038Search in Google Scholar

Ebeltoft, H.; Yousif, M.; Soergaard, E. Hydrate control during deep water drilling: Overview and new drilling fluids formulations. in SPE Annual Technical Conference and Exhibition, 5–8 October, Society of Petroleum Engineers, San Antonio, Texas, 1997.10.2118/38567-MSSearch in Google Scholar

Englezos, P.; Lee, J.D. Gas hydrates: a cleaner source of energy and opportunity for innovative technologies. Korean J. Chem. Eng.2005, 22, 671–681.10.1007/BF02705781Search in Google Scholar

English, N.J.; MacElroy, J.M.D. Perspectives on molecular simulation of clathrate hydrates: progress, prospects and challenges. Chem. Eng. Sci.2015, 121, 133–156.10.1016/j.ces.2014.07.047Search in Google Scholar

Eslamimanesh, A.; Mohammadi, A.H.; Richon, D.; Naidoo, P.; Ramjugernath, D. Application of gas hydrate formation in separation processes: a review of experimental studies. J. Chem. Thermodynamics2012, 46, 62–71.10.1016/j.jct.2011.10.006Search in Google Scholar

Fandiño, O.; Ruffine, L. Methane hydrate nucleation and growth from the bulk phase: further insights into their mechanisms. Fuel2014, 117, Part A, 442–449.10.1016/j.fuel.2013.10.004Search in Google Scholar

Freer, E.; Sloan, E. An engineering approach to kinetic inhibitor design using molecular dynamics simulations. Ann. NY Acad. Sci.2000, 912, 651–657.10.1111/j.1749-6632.2000.tb06820.xSearch in Google Scholar

Fu, S.B.; Cenegy, M.L.; Neff, C.S. A summary of successful field applications of a kinetic hydrate inhibitor. SPE International Symposium on Oilfield Chemistry, 13–16 February, Society of Petroleum Engineers, Houston, Texas, 2001.10.2118/65022-MSSearch in Google Scholar

Gholinezhad, J.; Chapoy, A.; Haghighi, H.; Tohidi, B. Pre-Combustion Capture of CO2 from Synthesis Gas Mixture CO2/H2 Using Hydrate Formation, in SPE EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers: Vienna, Austria, 2011.10.2118/143580-MSSearch in Google Scholar

Giavarini, C.; Hester, K. Hydrates Seen as a Problem for the Oil and Gas Industry. In Gas Hydrates. Green Energy and Technology. Springer: London, 2011; pp 97–116. Available at: https://doi.org/10.1007/978-0-85729-956-7_7.10.1007/978-0-85729-956-7_7Search in Google Scholar

Glénat, P.; Anderson, R.; Mozaffar, H.; Tohidi, B. Application of a new crystal growth inhibition based KHI evaluation method to commercial formulation assessment. in Proceedings of the 7th International Conference on Gas hydrates, Edinburgh, Scotland, UK. 2011.Search in Google Scholar

Golpour, M.; Pakizeh, M. Development of a new nanofiltration membrane for removal of kinetic hydrate inhibitor from water. Sep. Purif. Technol.2017, 183, 237–248.10.1016/j.seppur.2017.04.011Search in Google Scholar

Gordienko, R.; Ohno, H.; Singh, V.K.; Jia, Z.; Ripmeester, J.A.; Walker, V.K. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates. PLoS One2010, 5, e8953.10.1371/journal.pone.0008953Search in Google Scholar

Gudmundsson, J.S.; Parlaktuna, M.; Khokhar, A. Storage of natural gas as frozen hydrate. SPE Prod. Fac.1994, 9, 69–73.10.2118/24924-PASearch in Google Scholar

Hong, S.Y.; Lim, J.I.; Kim, J.H.; Lee, J.D. Kinetic studies on methane hydrate formation in the presence of kinetic inhibitor via in situ Raman spectroscopy. Energy Fuels2012, 26, 7045–7050.10.1021/ef301371xSearch in Google Scholar

Hu, J.; Li, S.; Wang, Y.; Lang, X.; Li, Q.; Fan, S. Kinetic hydrate inhibitor performance of new copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s with TBAB. J. Nat. Gas Chem.2012, 21, 126–131.10.1016/S1003-9953(11)60344-7Search in Google Scholar

Huo, Z.; Freer, E.; Lamar, M.; Sannigrahi, B.; Knauss, D.M.; Sloan, Jr. E.D. Hydrate plug prevention by anti-agglomeration. Chem. Eng. Sci.2001, 56, 4979–4991.10.1016/S0009-2509(01)00188-9Search in Google Scholar

Ida, H.; Ono, M.; Takasu, N.; Ebinuma, T. CO2 capture technology by using semi-clathrate hydrates, in Carbon Management Technology Conference. 2012, Carbon Management Technology Conference: Orlando, FL, USA, 2012.10.7122/151123-MSSearch in Google Scholar

Jacobson, L.C.; Hujo, W.; Molinero, V. Amorphous precursors in the nucleation of clathrate hydrates. J. Am. Chem. Soc.2010, 132, 11806–11811.10.1021/ja1051445Search in Google Scholar PubMed

Jensen, L.; Thomsen, K.; von Solms, N. Inhibition of structure I and II gas hydrates using synthetic and biological kinetic inhibitors. Energy Fuels2010, 25, 17–23.10.1021/ef100833nSearch in Google Scholar

Johnston, J.C.; Kastelowitz, N.; Molinero, V. Liquid to quasicrystal transition in bilayer water. J. Chem. Phys.2010, 133, 154516.10.1063/1.3499323Search in Google Scholar PubMed

Kamal, M.S.; Hussein, I.A.; Sultan, A.S.; Solm, N. Application of various water soluble polymers in gas hydrate inhibition. Renew. Sustain. Energy Rev2016, 60(Supplement C), 206–225.10.1016/j.rser.2016.01.092Search in Google Scholar

Kang, S.P.; Lee, J.; Seo, Y. Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure. Chem. Eng. J.2013, 218, 126–132.10.1016/j.cej.2012.11.131Search in Google Scholar

Ke, W.; Kelland, M.A. Kinetic hydrate inhibitor studies for gas hydrate systems: a review of experimental equipment and test methods. Energy Fuels2016, 30, 10015–10028.10.1021/acs.energyfuels.6b02739Search in Google Scholar

Kelland, M.A. History of the development of low dosage hydrate inhibitors. Energy Fuels2006, 20, 825–847.10.1021/ef050427xSearch in Google Scholar

Kelland, M.A.; Iversen, J.E. Kinetic hydrate inhibition at pressures up to 760 bar in deep water drilling fluids. Energy Fuels2010, 24, 3003–3013.10.1021/ef9016152Search in Google Scholar

Kelland, M.A.; Mønig, K.; Iversen, J.E.; Lekvam, K. Feasibility study for the use of kinetic hydrate inhibitors in deep-water drilling fluids. Energy Fuels2008, 22, 2405–2410.10.1021/ef800109eSearch in Google Scholar

Kelland, M.A.; Kvaestad, A.H.; Astad, E.L. Tetrahydrofuran hydrate crystal growth inhibition by trialkylamine oxides and synergism with the gas kinetic hydrate inhibitor poly(N-vinyl caprolactam). Energy Fuels2012, 26, 4454–4464.10.1021/ef300624sSearch in Google Scholar

Kelland, M.A.; Reyes, T.F.; Trovik, K.W. Tris(dialkylamino)cyclopropenium chlorides: Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam as gas hydrate kinetic inhibitor. Chem. Eng. Sci.2013, 93, 423–428.10.1016/j.ces.2013.02.033Search in Google Scholar

Kelland, M.A.; Abrahamsen, E.; Ajiro, H.; Akashi, M. Kinetic hydrate inhibition with N-alkyl-N-vinylformamide polymers: comparison of polymers to n-propyl and isopropyl groups. Energy Fuels2015a, 29, 4941–4946.10.1021/acs.energyfuels.5b01251Search in Google Scholar

Kelland, M.A.; Grinrød, A.; Dirdal, E.G. Novel benchtop wheel loop for low dosage gas hydrate inhibitor screening: comparison to rocking cells for a series of antiagglomerants. J. Chem. Eng. Data2015b, 60, 252–257.10.1021/je5005627Search in Google Scholar

Klauda, J.B.; Sandler, S.I. Global distribution of methane hydrate in ocean sediment. Energy Fuels2005, 19, 459–470.10.1021/ef049798oSearch in Google Scholar

Klomp, U.C. Method for Inhibiting the Plugging of Conduits by Gas Hydrates. 2007, Google Patents.Search in Google Scholar

Klomp, U.; Kruka, V.; Reijnhart, R. International Patent Application WO95/17579, 1995.Search in Google Scholar

Kvamme, B.; Kuznetsova, T.; Aasoldsen, K. Molecular dynamics simulations for selection of kinetic hydrate inhibitors. J. Mol. Graphics Modell.2005, 23, 524–536.10.1016/j.jmgm.2005.04.001Search in Google Scholar

Kvenvolden, K. Natural Gas Hydrate: Background and History of Discovery. In Natural Gas Hydrate. Max, M., Ed. Springer: Netherlands, 2003; pp 9–16.10.1007/978-94-011-4387-5_2Search in Google Scholar

Lederhos, J.P.; Long, J.P.; Sum, A.; Christiansen, R.L.; Sloan, Jr. E.D. Effective kinetic inhibitors for natural gas hydrates. Chem. Eng. Sci.1996, 51, 1221–1229.10.1016/0009-2509(95)00370-3Search in Google Scholar

Lee, J.D.; Englezos, P. Unusual kinetic inhibitor effects on gas hydrate formation. Chem. Eng. Sci.2006, 61, 1368–1376.10.1016/j.ces.2005.08.009Search in Google Scholar

Lee, S.Y.; Kim, H.C.; Lee, J.D. Morphology study of methane–propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap. J. Crystal Growth2014, 402, 249–259.10.1016/j.jcrysgro.2014.06.028Search in Google Scholar

Leporcher, E.M.; Fourest, J.M.; Labes-Carrier, C.; Lompre, M. Multiphase transportation: a kinetic inhibitor replaces methanol to prevent hydrates in a 12-inc. pipeline. European Petroleum Conference, 20–22 October, Society of Petroleum Engineers, The Hague, Netherlands, 1998.10.2118/50683-MSSearch in Google Scholar

Li, X.-S.; Xia, Z.-M.; Chen, Z.-Y.; Wu, H.-J. Precombustion capture of carbon dioxide and hydrogen with a one-stage hydrate/membrane process in the presence of tetra-n-butylammonium bromide (TBAB). Energy Fuels2011, 25, 1302–1309.10.1021/ef101559hSearch in Google Scholar

Li, X.-S.; Xu, C.-G.; Zhang, Y.; Ruan, X.K.; Li, G.; Wang, Y. Investigation into gas production from natural gas hydrate: a review. Appl. Energy, 2016, 172, 286–322.10.1016/j.apenergy.2016.03.101Search in Google Scholar

Li, Z.; Jiang, F.; Qin, H.; Liu, B.; Sun, C.; Chen, G. Molecular dynamics method to simulate the process of hydrate growth in the presence/absence of KHIs. Chem. Eng. Sci.2017, 164, 307–312.10.1016/j.ces.2017.02.029Search in Google Scholar

Lin, H.; Wolf, T.; Wurm, F.R.; Kelland, M.A. Poly (alkyl ethylene phosphonate)s: a new class of non-amide kinetic hydrate inhibitor polymers. Energy Fuels2017, 31, 3843–3848.10.1021/acs.energyfuels.7b00019Search in Google Scholar

Lou, X.; Ding, A.; Maeda, N.; Wang, S.; Kozielski, K.; Hartley, P.G. Synthesis of effective kinetic inhibitors for natural gas hydrates. Energy Fuels2011, 26, 1037–1043.10.1021/ef201463vSearch in Google Scholar

Luna-Ortiz, E.; Healey, M.; Anderson, R.; Sørhaug, E. Crystal growth inhibition studies for the qualification of a kinetic hydrate inhibitor under flowing and shut-in conditions. Energy Fuels2014, 28, 2902–2913.10.1021/ef402493xSearch in Google Scholar

Luo, Y.-T.; Zhu, J.-H.; Fan, S.-S.; Chen, G.-J. Study on the kinetics of hydrate formation in a bubble column. Chem. Eng. Sci.2007, 62, 1000–1009.10.1016/j.ces.2006.11.004Search in Google Scholar

Makogon, I.U.r.F.; Cieslewicz, W. Hydrates of Natural Gas. PennWell Books Tulsa: Oklahoma, 1981.Search in Google Scholar

Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y. Natural gas-hydrates – a potential energy source for the 21st Century. J. Pet. Sci. Eng.2007, 56, 14–31.10.1016/j.petrol.2005.10.009Search in Google Scholar

Mao, W.L.; Goncharov, A.F.; Struzhkin, V.V.; Guo, Q.; Hu, J.; Shu, J.; Hemley, R.J.; Somayazulu, M.; Zhao, Y. Hydrogen clusters in clathrate hydrate. Science2002, 297, 2247–2249.10.1126/science.1075394Search in Google Scholar PubMed

Masoudi, R.; Tohidi, B. Gas hydrate production technology for natural gas storage and transportation and CO2 sequestration. in SPE Middle East Oil and Gas Show and Conference, 12–15 March, Society of Petroleum Engineers, Kingdom of Bahrain, 2005.10.2118/93492-MSSearch in Google Scholar

May, E.F.; Wu, R.; Kelland, M.A.; Aman, Z.A.; Kozielski, K.A.; Hartley, P.G.; Maeda, N. Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. Chem. Eng. Sci.2014, 107, 1–12.10.1016/j.ces.2013.11.048Search in Google Scholar

McCallum, S.D.; Riestenberg, D.E.; Zatsepina, O.Y.; Phelps, T.J. Effect of pressure vessel size on the formation of gas hydrates. J. Pet. Sci. Eng.2007, 56, 54–64.10.1016/j.petrol.2005.08.004Search in Google Scholar

Mehta, A.; Walsh, J.; Lorimer, S. Hydrate challenges in deep water production and operation. Ann. NY Acad. Sci.2000, 912, 366–373.10.1111/j.1749-6632.2000.tb06791.xSearch in Google Scholar

Mehta, A.P.; Hebert, P.B.; Cadena, R.; Weatherman, J.P. Fulfilling the promise of low-dosage hydrate inhibitors: journey from academic curiosity to successful field implementation. Offshore Technology Conference, 6–9 May, Houston, Texas, 2003.10.4043/14057-MSSearch in Google Scholar

Mitchell, G.F.; Talley, L.D. Application of kinetic hydrate inhibitor in black-oil flowlines. SPE Annual Technical Conference and Exhibition, 3–6 October, Society of Petroleum Engineers, Houston, Texas, 1999.10.2118/56770-MSSearch in Google Scholar

Mokhtari, B.; Pourabdollah, K. SPME–GC determination of methanol as a hydrate inhibitor in crude oil. Talanta2011, 87, 118–125.10.1016/j.talanta.2011.09.050Search in Google Scholar PubMed

Moon, C.; Taylor, C.P.; Rodger, P.M. Clathrate nucleation and inhibition from a molecular perspective. Can. J. Phys.2003a, 81, 451–457.10.1139/p03-035Search in Google Scholar

Moon, C.; Taylor, P.C.; Rodger, P.M. Molecular dynamics study of gas hydrate formation. J. Am. Chem. Soc.2003b, 125, 4706–4707.10.1021/ja028537vSearch in Google Scholar PubMed

Moon, C.; Hawtin, R.; Rodger, P.M. Nucleation and control of clathrate hydrates: insights from simulation. Faraday Discuss.2007, 136, 367–382.10.1039/b618194pSearch in Google Scholar PubMed

Naeiji, P.; Arjomandi, A.; Varaminian, F. Amino acids as kinetic inhibitors for tetrahydrofuran hydrate formation: experimental study and kinetic modeling. J. Nat. Gas Sci. Eng.2014, 21, 64–70.10.1016/j.jngse.2014.07.029Search in Google Scholar

Nagata, T.; Tajima, H.; Yamasaki, A.; Kiyono, F.; Abe, Y. An analysis of gas separation processes of HFC-134a from gaseous mixtures with nitrogen – Comparison of two types of gas separation methods, liquefaction and hydrate-based methods, in terms of the equilibrium recovery ratio. Sep. Purif. Technol.2009, 64, 351–356.10.1016/j.seppur.2008.10.023Search in Google Scholar

Nakarit, C.; Kelland, M.A.; Liu, D.; Chen, E.Y.-X. Cationic kinetic hydrate inhibitors and the effect on performance of incorporating cationic monomers into N-vinyl lactam copolymers. Chem. Eng. Sci.2013, 102, 424–431.10.1016/j.ces.2013.06.054Search in Google Scholar

Obanijesu, E.O.; Barifcani, A.; Pareek, V.K.; Tade, M.O. Experimental study on feasibility of H2 and N2 as hydrate inhibitors in natural gas pipelines. J. Chem. Eng. Data2014, 59, 3756–3766.10.1021/je500633uSearch in Google Scholar

Ogata, K.; Hashimoto, S.; Sugahara, T.; Moritoki, M.; Sato, H.; Ohgaki, K. Storage capacity of hydrogen in tetrahydrofuran hydrate. Chem. Eng. Sci.2008, 63, 5714–5718.10.1016/j.ces.2008.08.018Search in Google Scholar

Ohno, H.; Strobel, T.A.; Dec, S.F.; Sloan, Jr., E.D.S.; Koh, C.A. Raman studies of methane−ethane hydrate metastability. J. Phys. Chem. A2009, 113, 1711–1716.10.1021/jp8010603Search in Google Scholar PubMed

O’Reilly, R.; Ieong, S.N.; Chua, P.C.; Kelland, M.A. Missing poly(N-vinyl lactam) kinetic hydrate inhibitor: high-pressure kinetic hydrate inhibition of structure II gas hydrates with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers. Energy Fuels2011a, 25, 4595–4599.10.1021/ef2009953Search in Google Scholar

O’Reilly, R.; Ieong, S.N.; Chua, P.C.; Kelland, M.A. Crystal growth inhibition of tetrahydrofuran hydrate with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers. Chem. Eng. Sci.2011b, 66, 6555–6560.10.1016/j.ces.2011.09.010Search in Google Scholar

Ouar, H.; Cha, S.B.; Wildeman, T.R.; Sloan, E.D. The formation of natural gas hydrates in water-based drilling fluids. Chem. Eng. Res. Design1992, 70(A1), 48–54.Search in Google Scholar

Park, S.-Y.; Kim, J.; Choi, I.W.; Chang, D.; Seo, Y.; Shin, J.; Kang, S.-P. Performance evaluation of kinetic hydrate inhibitors for well fluids experiencing hydrate formation. IPTC 2013: International Petroleum Technology Conference, EAGE, 2013.10.2523/IPTC-16820-MSSearch in Google Scholar

Perrin, A.; Musa, M.O.; Steed, J.W. The chemistry of low dosage clathrate hydrate inhibitors. Chem. Soc. Rev.2013, 42, 1996–2015.10.1039/c2cs35340gSearch in Google Scholar PubMed

Posteraro, D.; Ivall, J.; Maric, M.; Servio, P. New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 2. Liquid phase methane mole fraction. Chem. Eng. Sci.2015a, 126, 91–98.10.1016/j.ces.2014.12.008Search in Google Scholar

Posteraro, D.; Verrett, J.; Maric, M.; Servio, P. New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 1. Growth rate. Chem. Eng. Sci.2015b, 126, 99–105.10.1016/j.ces.2014.12.009Search in Google Scholar

Radhakrishnan, R.; Trout, B.L. A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. J. Chem. Phys.2002, 117, 1786–1796.10.1063/1.1485962Search in Google Scholar

Rajnauth, J.J. A proposed workflow for disposal of CO2 using hydrate technology, in SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers: Copenhagen, Denmark, 2012.10.2118/154445-MSSearch in Google Scholar

Rajnauth, J.J.; Barrufet, M. CO2 hydrate: a possibility for future CO2 disposal, in EUROPEC/EAGE Conference and Exhibition. Society of Petroleum Engineers: Amsterdam, The Netherlands, 2009.10.2118/121281-MSSearch in Google Scholar

Rajnauth, J.J.; Barrufet, M.; Falcone, G. Potential industry applications using gas hydrate technology, in Trinidad and Tobago Energy Resources Conference. Society of Petroleum Engineers: Port of Spain, Trinidad, 2010.10.2118/133466-MSSearch in Google Scholar

Raymond, J.A.; DeVries, A.L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci.1977, 74, 2589–2593.10.1073/pnas.74.6.2589Search in Google Scholar PubMed PubMed Central

Ree, L.H.; Kelland, M.A.; Roth, P.J.; Batchelor, R. First investigation of modified poly (2-vinyl-4, 4-dimethylazlactone) s as kinetic hydrate inhibitors. Chem. Eng. Sci.2016, 152, 248–254.10.1016/j.ces.2016.06.031Search in Google Scholar

Reyes, F.T.; Kelland, M.A. Investigation of the kinetic hydrate inhibitor performance of a series of copolymers of N-vinyl azacyclooctanone on structure ii gas hydrate. Energy Fuels2013a, 27, 1314–1320.10.1021/ef302054aSearch in Google Scholar

Reyes, F.T.; Kelland, M.A. First investigation of the kinetic hydrate inhibitor performance of polymers of alkylated N-vinyl pyrrolidones. Energy Fuels2013b, 27, 3730–3735.10.1021/ef400587gSearch in Google Scholar

Ripmeester, J.A.; Tse, J.S.; Ratcliffe, C.I.; Powell, B.M. A new clathrate hydrate structure. Nature1987, 325, 135–136.10.1038/325135a0Search in Google Scholar

Sa, J.-H.; Kwak, G.-H.; Lee, B.R.; Park, D.H.; Han, K.; Lee, K.H. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci. Rep.2013, 3, 2428.10.1038/srep02428Search in Google Scholar PubMed PubMed Central

Salamat, Y.; Moghadassi, A.; Illbeigi, M.; Ali, E.; Mohammadi, A.H. Experimental study of hydrogen sulfide hydrate formation: induction time in the presence and absence of kinetic inhibitor. J. Energy Chem.2013, 22, 114–118.10.1016/S2095-4956(13)60015-7Search in Google Scholar

Schicks, J.M.; Luzi-Helbing, M. Kinetic and thermodynamic aspects of clathrate hydrate nucleation and growth. J. Chem. Eng. Data2015, 60, 269–277.10.1021/je5005593Search in Google Scholar

Shahnazar, S.; Hasan, N. Gas hydrate formation condition: review on experimental and modeling approaches. Fluid Phase Equilibria2014, 379, 72–85.10.1016/j.fluid.2014.07.012Search in Google Scholar

Sharifi, H.; Ripmeester, J.; Walker, V.K.; Englezos, P. Kinetic inhibition of natural gas hydrates in saline solutions and heptane. Fuel2014, 117, Part A, 109–117.10.1016/j.fuel.2013.09.012Search in Google Scholar

Shiojiri, K.; Shiojiri, K.; Okano, T.; Yanagisawa, Y.; Fujii, M.; Yamasaki, A.; Tajima, H.; Kiyono, F. A New Type Separation Process of Condensable Greenhouse Gases by the Formation of Clathrate Hydrates. In Studies in Surface Science and Catalysis. Sang-Eon Park, J.-S.C. and Kyu-Wan, L. Eds. Elsevier: Amsterdam, 2004; pp 507–512.10.1016/S0167-2991(04)80303-3Search in Google Scholar

Sloan, Jr, E.D. Clathrate Hydrates of Natural Gases. Second ed. CRC Press: Boca Raton, FL, USA, 1998.Search in Google Scholar

Sloan, Jr, E.D.; Koh, C. Clathrate Hydrates of Natural Gases. CRC Press: Bioca Raton, FL, USA, 2007.10.1201/9781420008494Search in Google Scholar

Sohn, Y.H.; Seo, Y. Effect of monoethylene glycol and kinetic hydrate inhibitor on hydrate blockage formation during cold restart operation. Chem. Eng. Sci.2017, 168, 444–455.10.1016/j.ces.2017.05.010Search in Google Scholar

Sohn, Y.h.; Kim, J.; Shin, K.; Chang, D.; Seo, Y.; Aman, Z.M.; May, E.F. Hydrate plug formation risk with varying watercut and inhibitor concentrations. Chem. Eng. Sci.2015, 126, 711–718.10.1016/j.ces.2015.01.016Search in Google Scholar

Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B. Anomalous preservation of pure methane hydrate at 1 atm. J. Phys. Chem. B2001, 105, 1756–1762.10.1021/jp003061sSearch in Google Scholar

Storr, M.T.; Taylor, P.C.; Monfort, J.P.; Rodger, P.M. Kinetic inhibitor of hydrate crystallization. J. Am. Chem. Soc.2004, 126, 1569–1576.10.1021/ja035243gSearch in Google Scholar PubMed

Strobel, T.A.; Koh, C.A.; Sloan, E.D. Hydrogen storage properties of clathrate hydrate materials. Fluid Phase Equilibria2007, 261, 382–389.10.1016/j.fluid.2007.07.028Search in Google Scholar

Sum, A.K.; Burruss, R.C.; Sloan, E.D. Measurement of clathrate hydrates via Raman spectroscopy. J. Phys. Chem. B1997, 101, 7371–7377.10.1021/jp970768eSearch in Google Scholar

Sun, Z.G.; Wang, R.; Ma, R.; Guo, K.; Fan, S. Natural gas storage in hydrates with the presence of promoters. Energy Conversion Manag.2003, 44, 2733–2742.10.1016/S0196-8904(03)00048-7Search in Google Scholar

Takeya, S.; Hori, A.; Hondoh, T.; Uchida, T. Freezing-memory effect of water on nucleation of CO2 hydrate crystals. J. Phys. Chem. B2000, 104, 4164–4168.10.1021/jp993759+Search in Google Scholar

Talaghat, M.R. Experimental investigation of induction time for double gas hydrate formation in the simultaneous presence of the PVP and l-Tyrosine as kinetic inhibitors in a mini flow loop apparatus. J. Nat. Gas Sci. Eng.2014, 19, 215–220.10.1016/j.jngse.2014.05.010Search in Google Scholar

Talley, L.D.; Mitchell, G.F. Application of proprietary kinetic hydrate inhibitors in gas flowlines. Offshore Technology Conference, Houston, TX, USA, 1999.10.4043/11036-MSSearch in Google Scholar

Talley, L.D.; Colle, K.S. Recovery of Kinetic Hydrate Inhibitor. 2011, Google Patents.Search in Google Scholar

Talyzin, A. Feasibility of –THF– clathrate hydrates for hydrogen storage applications. Int. J. Hydrogen Energy2008, 33, 111–115.10.1016/j.ijhydene.2007.09.013Search in Google Scholar

Tang, L.-G.; Li, X.-S.; Feng, Z.P.; Gang, Li, G.; Fan, S.S. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs. Energy Fuels2007, 21, 227–233.10.1021/ef0601869Search in Google Scholar

Tang, J.; Zeng, D.; Wang, C.; Chen, Y.; He, L.; Cai, N. Study on the influence of SDS and THF on hydrate-based gas separation performance. Chem. Eng. Res. Design. 2013, 91, 1777–1782.10.1016/j.cherd.2013.03.013Search in Google Scholar

Tavasoli, H.; Tavasoli, H.; Feyzi, F.; Dehghani, M.R.; Alavi, F. Prediction of gas hydrate formation condition in the presence of thermodynamic inhibitors with the Elliott–Suresh–Donohue Equation of State. J. Pet. Sci. Eng.2011, 77, 93–103.10.1016/j.petrol.2011.02.002Search in Google Scholar

Thieu, V.; Bakeev, N.K.; Shih, J.S. Gas Hydrate Inhibitor. 2002, Google Patents.Search in Google Scholar

Tlili, M.; Amor, M.B.; Gabrielli, C.; Joiret, S.; Maurin, G.; Rousseau, P. Characterization of CaCO3 hydrates by micro-Raman spectroscopy. J. Raman Spectrosc.2002, 33, 10–16.10.1002/jrs.806Search in Google Scholar

Tohidi, B.; Yang, J. Particle Detection. 2005, Google Patents.Search in Google Scholar

Tomson, M.B.; Kan, A.T.; Fu, G.; Al-Thubaiti, M.; Shen, D.; Shipley, H.J. Scale formation and prevention in the presence of hydrate inhibitors. SPE J. 2006, 11, 248.10.2118/80255-PASearch in Google Scholar

Varma-Nair, M.; Costello, C.A.; Colle, K.S.; King, H.E. Thermal analysis of polymer–water interactions and their relation to gas hydrate inhibition. J. Appl. Polym. Sci.2007, 103, 2642–2653.10.1002/app.25414Search in Google Scholar

Veluswamy, H.P.; Linga, P. Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. Int. J. Hydrogen Energy2013, 38, 4587–4596.10.1016/j.ijhydene.2013.01.123Search in Google Scholar

Villano, L.D.; Kommedal, R.; Fijten, M.W.M.; Schubert, U.S.; Hoogenboom, R.; Kelland, M.A. A study of the kinetic hydrate inhibitor performance and seawater biodegradability of a series of poly (2-alkyl-2-oxazoline)s. Energy Fuels2009, 23, 3665–3673.10.1021/ef900172fSearch in Google Scholar

Vysniauskas, A.; Bishnoi, P. A kinetic study of methane hydrate formation. Chem. Eng. Sci.1983, 38, 1061–1072.10.1016/0009-2509(83)80027-XSearch in Google Scholar

Wang, J.; Lu, H.; Ripmeester, J.A. Raman spectroscopy and cage occupancy of hydrogen clathrate hydrate from first-principle calculations. J. Am. Chem. Soc.2009, 131, 14132–14133.10.1021/ja904140ySearch in Google Scholar PubMed

Xu, Y.; Yang, M.; Yang, X. Chitosan as green kinetic inhibitors for gas hydrate formation. J. Nat. Gas Chem.2010, 19, 431–435.10.1016/S1003-9953(09)60083-9Search in Google Scholar

Xu, S.; Fan, S.; Yanhong Wang, Y.; Lang, X. An investigation of kinetic hydrate inhibitors on the natural gas from the South China Sea. J. Chem. Eng. Data2015, 60, 311–318.10.1021/je500600tSearch in Google Scholar

Xue, K.; Zhao, J.; Song, Y.; Liu, W.; Lam, W.; Zhu, Y.; Liu, Y.; Cheng, C.; Liu, D. Direct observation of THF hydrate formation in porous microstructure using magnetic resonance imaging. Energies2012, 5, 898–910.10.3390/en5040898Search in Google Scholar

Yang, J.; Tohidi, B. Characterization of inhibition mechanisms of kinetic hydrate inhibitors using ultrasonic test technique. Chem. Eng. Sci.2011, 66, 278–283.10.1016/j.ces.2010.10.025Search in Google Scholar

Yang, S.H.B.; Chua, S.F.S.; Linga, P. Carbon dioxide hydrate kinetics in porous media with and without salts. Appl. Energy2016, 162, 1131–1140.10.1016/j.apenergy.2014.11.052Search in Google Scholar

Yasuda, K.; Takeya, S.; Sakashita, M.; Yamawaki, H.; Ryo Ohmura, R. Binary ethanol-Methane clathrate hydrate formation in the system CH 4-C2H5OH-H2O: confirmation of structure iI hydrate formation. J. Phys. Chem. C2009, 113, 12598–12601.10.1021/jp901685tSearch in Google Scholar

Yeh, Y.; Feeney, R.E. Antifreeze proteins: structures and mechanisms of function. Chem. Rev.1996, 96, 601–618.10.1021/cr950260cSearch in Google Scholar PubMed

Yi, L.; Liang, D.; Zhou, X.; Li, D. Molecular dynamics simulations for the growth of CH4-CO2 mixed hydrate. J. Energy Chem.2014, 23, 747–754.10.1016/S2095-4956(14)60208-4Search in Google Scholar

Yoon, J.-H.; Kawamura, T.; Yamamoto, Y.; Komai, T. Transformation of methane hydrate to carbon dioxide hydrate: in situ raman spectroscopic observations. J. Phys. Chem. A2004, 108, 5057–5059.10.1021/jp049683lSearch in Google Scholar

Yousefi, A.T.; Bagheri S.; Kadri, N.A.; Mahmood, M.R.; Ikeda, S. Controlling vaporization time as effective parameter on purified vertically aligned carbon nanotubes based on CVD method. Fuller. Nanotub. Car. N.2015a, 23, 1103–1107.10.1080/1536383X.2015.1075514Search in Google Scholar

Yousefi, A.T.; Tanaka, H.; Bagheri, S.; Kadri, N.A.; Ikeda, S.; Mahmood, M.R.; Miyake, M. Possible high efficiency platform for biosensors based on optimum physical chemistry of carbon nanotubes. Chem. Vap. Deposition2015b, 21, 263–266.10.1002/cvde.201507184Search in Google Scholar

Yousif, M.H.; Li, P.M.; Selim, M.S.; Sloan, E.D. Depressurization of natural gas hydrates in Berea sandstone cores. J. Inclusion Phenom. Mol. Recognit. Chem.1990, 8, 71–88.10.1007/BF01131289Search in Google Scholar

Zeng, H.; Wilson, L.D.; Walker, V.K.; Ripmeester, J.A. Effect of Antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation. J. Am. Chem. Soc.2006, 128, 2844–2850.10.1021/ja0548182Search in Google Scholar PubMed

Zhao, X.; Qiu, Z.; Huang, W. Characterization of kinetics of hydrate formation in the presence of kinetic hydrate inhibitors during deepwater drilling. J. Nat. Gas Sci. Eng.2015, 22, 270–278.10.1016/j.jngse.2014.12.006Search in Google Scholar

Ziao, N.; Laurence, C.; Le Questel, J.-Y. Amino nitrogen and carbonyl oxygen in competitive situations: which is the best hydrogen-bond acceptor site. CrystEngComm2002, 4, 326–335.10.1039/B202248FSearch in Google Scholar

Zylyftari, G.; Ahuja, A.; Morris, J.F. Nucleation of cyclopentane hydrate by ice studied by morphology and rheology. Chem. Eng. Sci.2014, 116, 497–507.10.1016/j.ces.2014.05.019Search in Google Scholar

Received: 2017-11-14
Accepted: 2018-2-26
Published Online: 2018-4-17
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2017-0013/html
Scroll to top button