Abstract
Antimonial drugs have been used for a century in the therapy of the parasitic disease leishmaniasis. Even though pentavalent antimonials are still first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of pentavalent antimonials, their metabolism and mechanism of action, are still being investigated. Previous studies suggest that pentavalent antimony acts as a prodrug which is converted to the active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data indicate that thiols and ribose-containing biomolecules may mediate the pharmacological action of these drugs. Trypanothione reductase and zinc-finger proteins were identified as possible molecular targets. This review summarizes the progress achieved to date on the chemistry of antimonial drugs in biological systems.
This work was supported by grants from the Brazilian agencies, FAPEMIG, CAPES, CNPq and MCTI.
References
Adaui, V.; Castillo, D.; Zimic, M.; Gutierrez, A.; Decuypere, S.; Vanaerschot, M.; De Doncker, S.; Schnorbusch, K.; Maes, I.; Van der Auwera, G.; Maes, L.; Llanos-Cuentas, A.; Arevalo, J.; Dujardin, J. C. Comparative gene expression analysis throughout the life cycle of Leishmania braziliensis: diversity of expression profiles among clinical isolates. PLoS Negl. Trop. Dis.2011, 5, e1021.Search in Google Scholar
Allan, J. W. Persian Metal Technology 700-1300 A.D., Ithaca Press: London, U.K., 1979.Search in Google Scholar
Atayde, V.D.; Tschudi, C.; Ullu, E. The emerging world of small silencing RNAs in protozoan. Parasites. Trends Parasitol. 2011, 27, 321–327.Search in Google Scholar
Baes, C. F.; Mesmer, R. E. The Hydrolysis of Cations. Ed. John Wiley & Sons: New York, 1976.Search in Google Scholar
Bailar, J. C.; Emeleus, H. J.; Nyholm, R.; Trotman-Dickenson, A. F. Comprehensive Inorganic Chemistry. Ed. Pergamon Press: New York, 1973.Search in Google Scholar
Baiocco, P.; Colotti, G.; Franceschini, S.; Ilari, A. Molecular basis of antimony treatment in leishmaniasis. J. Med. Chem.2009, 52, 2603–2612.Search in Google Scholar
Basu, J. M.; Mookerjee, A.; Sen, P.; Bhaumik, S.; Sen, P.; Banerjee, S.; Naskar, K.; Choudhuri, S. K.; Saha, B.; Raha, S.; Roy, S. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob. Agents Chemother. 2006, 50, 1788–1797.Search in Google Scholar
Basu, J. M.; Mookerjee, A.; Banerjee, R.; Saha, M.; Singh, S.; Naskar, K.; Tripathy, G.; Sinha, P.; Pandey, K.; Sundar, S.; Bimal, S.; Das, P. K.; Choudhuri, S. K.; Roy, S. Inhibition of ABC transporters abolishes antimony resistance in Leishmania infection. Antimicrob. Agents Chemother.2008, 52, 1080–1093.Search in Google Scholar
Berman, J. D. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect. Dis.1997, 24, 684–703.Search in Google Scholar
Berman, J. D.; Grogl, M. Leishmania mexicana: chemistry and biochemistry of sodium stibogluconate (Pentostam). Exp. Parasitol.1988, 67, 96–103.Search in Google Scholar
Berman, J. D.; Waddell, D.; Hanson, B. D. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob. Agents Chemother. 1985, 27, 916–920.Search in Google Scholar
Berman, J. D.; Gallalee, J. V.; Best, J. M. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid beta-oxidation in Leishmania mexicana amastigotes. Biochem. Pharmacol. 1987, 36, 197–201.Search in Google Scholar
Bhandari, D.; Guha, K.; Bhaduri, N.; Saha, P. Ubiquitination of mRNA cycling sequence binding protein from Leishmania donovani (LdCSBP) modulates the RNA endonuclease activity of its Smr domain. FEBS Lett. 2011, 585, 809–813.Search in Google Scholar
Biyani, N.; Singh, A. K.; Mandal, S.; Chawla, B.; Madhubala, R. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol. Biochem. Parasitol.2011, 179, 91–99.Search in Google Scholar
Brochu, C.; Wang, J.; Roy, G.; Messier, N.; Wang, X. Y.; Saravia, N. G.; Ouellette, M. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother. 2003, 47, 3073–3079.Search in Google Scholar
Burguera, J. L.; Burguera, M.; Petit de Pena, Y.; Lugo, A.; Anez, N. Selective determination of antimony(III) and antimony(V) in serum and urine and of total antimony in skin biopsies of patients with cutaneous leishmaniasis treated with meglumine antimoniate. Trace Elem. Med.1993, 10, 66–70.Search in Google Scholar
Callahan, H. L.; Beverley, S. M. Heavy metal resistance: a new role for P- glycoproteins in Leishmania. J. Biol. Chem.1991, 266, 18427–18430.Search in Google Scholar
Chai, Y.; Yan, S.; Wong, I. L. K.; Chow, L. M. C.; Sun, H. Complexation of antimony [Sb(V)] with guanosine 5′-monophosphate and guanosine 5’-diphospho-D-mannose: formation of both mono and bis-adducts. J. Inorg. Biochem.2005, 99, 2257–2263.Search in Google Scholar
Chakraborty, A. K.; Majumder, H. K. Mode of action of pentavalent antimonials: specific inhibition of type I DNA topoisomerase of Leishmania donovani. Biochem. Biophys. Res. Commun.1988, 152, 605–611.Search in Google Scholar
Clayton, C.; Shapira, M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol. Biochem. Parasitol. 2007, 156, 93–101.Search in Google Scholar
Coelho, A. C.; Beverley, S. M.; Cotrim, P. C. Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol. Biochem. Parasitol. 2003, 130, 83–90.Search in Google Scholar
Cole, A. C. E. Kala-azar in east Africa. Trans. R. Soc. Trop. Med. Hyg.1944, 37, 409–435.Search in Google Scholar
Cook, C. Leonard Rogers KCSI FRCP FRS (1868–1962) and the founding of the Calcutta School of Tropical Medicine. Notes Rec. R. Soc. 2006, 60, 171–181.Search in Google Scholar
Cunningham, M. L.; Fairlamb, A. H. Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Eur. J. Biochem. 1995, 230, 460–468.Search in Google Scholar
Demicheli, C. Synthesis of pentavalent antimony derivatives used in the treatment of protozoonoses. 1999. BR patent 9907575-0.Search in Google Scholar
Demicheli, C.; Frézard, F. New process for preparing derivaties of antimony. 2001. Brazil Patent Pending PI 0106305-7.Search in Google Scholar
Demicheli, C.; Frézard, F.; Lecouvey, M.; Garnier-Suillerot, A. Antimony(V) complex formation with adenine nucleosides in aqueous solution. Biochim. Biophys. Acta.2002, 1570, 192–198.Search in Google Scholar
Demicheli, C.; Ochoa, R.; Lula, I. S.; Gozzo, F. C.; Eberlin, M.; Frézard, F. Pentavalent organoantimonial derivatives: two simple and efficient synthetic methods for meglumine antimonate. Applied Organomet. Chem. 2003, 17, 226–231.Search in Google Scholar
Demicheli, C.; Santos, L. S.; Ferreira, C. S.; Bouchemal, N.; Hantz, E.; Eberlin, M. N.; Frézard, F. Synthesis and characterization of Sb(V)–adenosine and Sb(V)–guanosine complexes in aqueous solution. Inorg. Chim. Acta2006, 359, 159–167.Search in Google Scholar
Demicheli, C.; Frézard, F.; Mangrum, J. B.; Farrell, N. P. Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chem. Commun.2008, 39, 4828–4830.Search in Google Scholar
Denton, H.; McGregor, J. C.; Coombs, G. H. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem. J.2004, 381, 405–412.Search in Google Scholar
Deps, P. D.; Viana, M. C.; Falqueto, A.; Dietze, R. Comparative evaluation of efficacy and toxicity of antimoniate N-methylglucamine and sodium stibogluconate BP88 for the treatment of localized cutaneous leishmaniasis. Rev. Soc. Bras. Med. Trop. 2000, 33, 535–543.Search in Google Scholar
Di Cristina, G.; Caronia, G. Therapy of visceral leishmaniasis. Pathologica. 1915, 7, 82–83.Search in Google Scholar
Duffin, J.; René, P. Anti-moine; Anti-biotique. The public fortunes of the secret properties of antimony potassium tartrate (tartar emetic). J. Hist. Med. Allied Sci.1991, 46, 440–456.Search in Google Scholar
Dzamitika, S. A.; Falcão, C. A.; Oliveira, F. B.; Marbeuf, C.; Garnier-Suillerot, A.; Demicheli, C.; Rossi-Bergmann, B.; Frézard, F. Role of residual Sb(III) in meglumine antimoniate cytotoxicity and MRP1-mediated resistance. Chem. Biol. Int.2006, 160, 217–224.Search in Google Scholar
Estes, J. W. The Medical Skills of Ancient Egypt; Science History Publications: Canton, MA, 1989.Search in Google Scholar
Fairlamb, A. H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol. 1992, 46, 695–729.Search in Google Scholar
Ferreira, C. S.; Martins, P. S.; Demicheli, C.; Brochu, C.; Ouellette, M.; Frézard, F. Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. BioMetals2003, 16, 441–443.Search in Google Scholar
Ferreira, C. S.; Pimenta, A. M. C.; Demicheli, C.; Frézard, F. Characterization of reactions of antimoniate and meglumine antimoniate with a guanine ribonucleoside at different pH. Biometals2006, 19, 573–581.Search in Google Scholar
Ferreira, C. S.; da Rocha, I. C. M.; Neto, R. L. M.; Melo, M. N.; Frézard, F.; Demicheli, C. Influence of the nucleobase on the physicochemical characteristics and biological activities of sbv-ribonucleoside complexes J. Braz. Chem. Soc.2010, 21, 1258–1265.Search in Google Scholar
Filella, M.; May, P. M. Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochim. Cosmochim. Acta2003, 67, 4013–4031.10.1016/S0016-7037(03)00095-4Search in Google Scholar
Franco, M. A.; Barbosa, A. C.; Rath, S.; Dorea, J. G. Antimony oxidation-states in antileishmanial drugs. Am. J. Trop. Med. Hyg.1995, 52, 435–437.Search in Google Scholar
Frézard, F.; Demicheli, C.; Ferreira, C. S.; Costa, M. A. P. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob. Agents Chemother.2001, 45, 913–916.Search in Google Scholar
Frézard, F.; Martins, P. S.; Barbosa, M. C. M.; Pimenta, A. M. C.; Ferreira, W. A.; de Melo, J. E.; Mangrum, J. B.; Demicheli, C. New insights into the chemical structure and composition of the pentavalent antimonial drugs, meglumine antimonate and sodium stibogluconate. J. Inorg. Biochem.2008, 102, 656–665.Search in Google Scholar
Frézard, F.; Silva, H.; Pimenta, A. M. C.; Farrell, N.; Demicheli, C. Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to CCHC domain of kinetoplastid proteins. Metallomics2012, 4, 433–440.Search in Google Scholar
Fyfe, P. K.; Westrop, G. D.; Silva, A. M.; Coombs, G. H.; Hunter, W. N. Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation. Proc. Natl. Acad. Sci. USA2012, 109, 11693–11698.Search in Google Scholar
Gailliot, P. L. Process of preparation of antimony derivatives. Society of the chemical industries of Rhone-Poulenc. 1941.FR Patent 8.687.47.Search in Google Scholar
Gainey, D.; Short, S.; McCoy, K. L. Intracellular location of cysteine transport activity correlates with productive processing of antigen disulfide. J. Cell Physiol.1996, 168, 248–254.Search in Google Scholar
Goodwin, L. C.; Page, J. E. A study of the excretion of organic antimonials using a polarographic procedure. Biochem. J.1943, 22, 236–240.Search in Google Scholar
Gourbal, B.; Sonuc, N.; Bhattacharjee, H.; Legare, D.; Sundar, S.; Ouellette, M.; Rosen, B. P.; Mukhopadhyay, R. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem.2004, 279, 31010–31017.Search in Google Scholar
Guerin, P. J.; Olliaro, P.; Sundar, S.; Boelaert, M.; Croft, S. L.; Desjeux, P.; Wasunna, M. K.; Bryceson, A. D. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect. Dis. 2002, 2, 494–501.Search in Google Scholar
Hansen, H. R.; Pergantis, S. A. Mass spectrometric identification and characterization of antimony complexes with ribose-containing biomolecules and an RNA oligomer. Anal. Bioanal. Chem.2006, 385, 821–833.Search in Google Scholar
Hansen, H. R.; Hansen, C.; Jensen, K. P.; Hansen, S. H.; Sturup, S.; Gammelgaard, B. Characterization of sodium stibogluconate by online liquid separation cell technology monitored by ICPMS and ESMS and computational chemistry. Anal. Chem.2008, 80, 5993–6000.Search in Google Scholar
Hansen, C.; Hansen, E. W.; Hansen, H. R.; Gammelgaard, B.; Stürup, S. Reduction of Sb(V) in a human macrophage cell line measured by HPLC-ICP-MS. Biol. Trace Elem. Res.2011, 144, 234–243.Search in Google Scholar
Headley, J. V.; Yong, M. S.; Brooks, P. W.; Phillips, A. Fast-atom bombardment mass spectrometry of the organometallic parasiticide, meglumine antimonite. Rapid Comm. Mass Spectrom.1995, 9, 372–376.Search in Google Scholar
Jander, G.; Ostmann, H.-J. 1962. Antimony(V) solutions. II. electrochemical titration. Z. Anorg. Allg. Chem.1962, 315, 250–258.Search in Google Scholar
Joan, F. B.; Concepcio, M. C. New procedure for the preparation of antimonic acid derivatives applicable in the treatment of canine leishmaniosis. 1994.ES Patent 2.050.614.Search in Google Scholar
Krauth-Siegel, R. L.; Comini, M. A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta2008, 1780, 1236–1248.Search in Google Scholar
Lai, W. S., Kennington, E. A., Blackshear, P. J. Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J. Biol. Chem.2002,277, 9606–9613.Search in Google Scholar
Lefebvre, J.; Maria, H. Study of equilibria in fresh solutions of polyantimoniates. C. R. Acad. Sci. Paris1963, 256, 3121–3124.Search in Google Scholar
Légaré, D.; Richard, D.; Mukhopadhyay, R.; Stierhof, Y. D.; Rosen, B. P.; Haimeur, A.; Papadopoulou, B.; Ouellette, M. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J. Biol. Chem.2001, 276, 26301–26307.Search in Google Scholar
Leon, O.; Roth, M. Zinc fingers: DNA binding and protein-protein interactions. Biol. Res.2000, 33, 21–30.Search in Google Scholar
Lucumi, A.; Robledo, S.; Gama, V.; Saravia, N. G. Sensitivity of Leishmania Viannia panamensis to pentavalent antimony is correlated with the formation of cleavable DNA-protein complexes. Antimicrob. Agents Chemother.1998, 42, 1990–1995.Search in Google Scholar
Lukaszczyk, L.; Zyrnicki, W. Speciation analysis of Sb(III) and Sb(V) in antileishmaniotic drug using Dowex 1×4 resin from hydrochloric acid solution. J. Pharm. Biomed. Anal.2010, 52, 747–751.Search in Google Scholar
Marques-da-Silva, E. A.; De Oliveira, J. C.; Figueiredo, A. B.; Júnior, D. S. L; Carneiro, C. M.; Fietto, J. L. R.; Afonso, L. C. C. Extracellular nucleotide metabolism in Leishmania: influence of adenosine in the establishment of infection. Microbes Infect.2008, 10, 850–857.Search in Google Scholar
Marr, J. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J. Lab. Clin. Med.1995, 118, 111–119.Search in Google Scholar
Marsden, P. D. Pentavalent antimonials: old drugs for new diseases. Rev. Soc. Bras. Med. Trop.1985, 18, 187–198.Search in Google Scholar
Mego, J. L. Stimulation of intralysosomal proteolysis by cysteinyl-glycine, a product of the action of gamma-glutamyl transpeptidase on glutathione. Biochim. Biophys. Acta1985, 841, 139–144.10.1016/0304-4165(85)90014-5Search in Google Scholar
Monte-Neto, R. L.; Coelho, A. C.; Raymond, F.; Légaré, D.; Corbeil, J.; Melo, M. N.; Frézard, F.; Ouellette, M. Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl. Trop. Dis.2011, 5, e1167.Search in Google Scholar
Morais-Teixeira, E.; De Carvalho, A. S.; Da Costa, J. C. S.; Duarte, S. L.; Mendonça, J. S.; Boechat, N.; Rabello, A. In vitro and in vivo activity of meglumine antimoniate produced at Farmanguinhos-Fiocruz, Brazil, against Leishmania (Leishmania) amazonensis, L (L.) chagasi and L (Viannia) braziliensis. Mem. Inst. Oswaldo Cruz2008, 10, 358–362.Search in Google Scholar
Mukherjee, S. B.; Das, M.; Sudhandiran, G.; Shaha, C. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J. Biol. Chem.2002, 277, 24717–24727.Search in Google Scholar
Mukhopadhyay, R.; Dey, S.; Xu, N.; Gage, D.; Lightbody, J.; Ouellette, M.; Rosen, B. P. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc. Natl. Acad. Sci. USA1996, 93, 10383–10387.Search in Google Scholar
Muniz-Junqueira, M. I.; Paula-Coelho, V. N. Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-α production, but only via TNF-α it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int. Immunopharmacol.2008,8, 1633–1638.Search in Google Scholar
Murray, H. W. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob. Agents Chemother.2001, 45, 2185–2197.Search in Google Scholar
Nakano, H.; Ozawa, Y.; Yagasaki, A. Synthesis and characterization of the first polyantimonate, [Sb8O12(OH)20]4-J. Am. Chem. Soc. 1995, 117, 12007–12008.Search in Google Scholar
Oliveira, F. B.; Schettini, D. A.; Ferreira, C. S.; Rates, B.; Rocha, O. G. F.; Frézard, F.; Demicheli, C. Kinetics of antimony(V) reduction by L-cysteine. Pharmacological implications and application to the determination of antimony in pentavalent antimonial drugs J. Braz. Chem. Soc. 2006, 17, 1642–1650.Search in Google Scholar
Ouellette, M.; Fowler, F.; Borst, P. The amplified H circle of methotrexate resistant Leishmania tarentoleae contains a novel P-glycoprotein gene. EMBO J. 1990, 9, 1027–1033.Search in Google Scholar
Ouellette, M.; Drummelsmith, J.; Papadopoulou, B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist. Updat.2004,7, 257–266.Search in Google Scholar
Papadopoulou, B.; Roy, G.; Dey, S.; Rosen, B. P.; Ouellette, M. Contribution of the Leishmania P-glycoprotein-related gene ltpgpA to oxyanion resistance. J. Biol. Chem.1994, 22, 269, 11980–11986.Search in Google Scholar
Pathak, M. K.; Yi, T. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J. Immunol.2001, 167, 3391–3397.Search in Google Scholar
Perry, M. R.; Wyllie, S.; Prajapati, V. K.; Feldmann, J.; Sundar, S.; Boelaert, M.; Fairlamb, A. H. Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent?. PloS Negl. Trop. Dis.2011, 5, e1227.Search in Google Scholar
Pitman, A. L.; Pourbaix, M.; de Zoubov, N. Potential-pH diagram of the antimony-water system. Its applications to properties of the metal, its compounds, its corrosion, and antimony electrodes. J. Electrochem. Soc.1957, 104, 594–600.Search in Google Scholar
Plimmer, H. G.; Thomson, J. D. Further results of the experimental treatment of trypanosomiasis in rats; being a progress report of a committee of the Royal Society. Proc. R. Soc. Lond. B.1908, 80, 1–10.Search in Google Scholar
Roberts, W. L.; Rainey, P. M. Antileishmanial activity of sodium stibogluconate fractions, Antimicrob. Agents Chemother.1993, 37, 1842–1846.Search in Google Scholar
Roberts, W. L.; Berman, J. D.; Rainey, P. M. In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob. Agents Chemother.1995, 39, 1234–1239.Search in Google Scholar
Roberts, W. L.; McMurray, W. J.; Rainey, P. M. Characterization of the antimonial antileishmanial agent meglumine antimonate (Glucantime). Antimicrob. Agents Chemother.1998, 42, 1076–1082.Search in Google Scholar
Rogers, M. B.; Hilley, J. D.; Dickens, N. J.; Wilkes, J.; Bates, P. A.; Depledge, D. P.; Harris, D.; Her, Y.; Herzyk, P.; Imamura, H.; Otto, T. D.; Sanders, M.; Seeger, K.; Dujardin J.-C.; Berriman, M.; Smith, D. F.; Hertz-Fowler, C.; Mottram, J. C. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res.2011, 21, 2129–2142.Search in Google Scholar
Sansom, F. M., Robson, S. C., Hartland, E. L. Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol. Mol. Biol. Rev.2008, 72, 765–768.Search in Google Scholar
Santos, R. F., Possa, M. A., Bastos, M. S., Guedes, P. M., Almeida, M. R., Demarco, R., Verjovski-Almeida, S., Bahia, M. T., Fietto, J. L. Influence of Ecto-nucleoside triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and virulence. PLOS Negl. Trop. Dis.2009, 3, e387, 1–9.Search in Google Scholar
Savage-Smith, E. Dioscorides on Pharmacy and Medicine. Ed. In J. M. Riddle, University of Texas Press: Austin, 1985, pp. 96–97.Search in Google Scholar
Sereno, D.; Holzmuller, P.; Mangot, I.; Cuny, G.; Ouaissi, A.; Lemesre, J. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes Antimicrob. Agents Chemother.2001, 45, 2064–2069.Search in Google Scholar
Shaked-Mishan, P.; Ulrich, N.; Ephros, M.; Zilberstein, D. Novel intracellular Sb(V) reducing activity correlates with antimony susceptibility in Leishmania donovani. J. Biol. Chem.2001, 276, 3971–3976.Search in Google Scholar
Steck, E. A. The leishmaniases. Prog. Drug Res.1974,18, 289–351.Search in Google Scholar
Sterkers, Y.; Lachaud, L.; Bourgeois, N.; Crobu, L.; Bastien, P.; Pagès, M. Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol. Microbiol.2012, 86, 15–23.Search in Google Scholar
Sudhandiran, G.; Shaha, C. Antimonial induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J. Biol. Chem.2003, 278, 25120–25132.Search in Google Scholar
Sun, H.; Yan, S. C.; Cheng, W. S. Interaction of antimony tartrate with the tripeptide glutathione. Eur. J. Biochem.2000, 267, 5450–5457.Search in Google Scholar
Sundar, S.; Sinha, P. R.; Agrawal, N. K.; Srivastava, R.; Rainey, P. M.; Berman, J. D.; Murray, H. W.; Singh, V. P. A cluster of cases of severe cardiotoxicity among kala-azar patients treated with a high-osmolarity lot of sodium antimony gluconate. Am. J. Trop. Med. Hyg.1998, 59, 139–143.Search in Google Scholar
Vasudevan, G.; Carter, N. S.; Drew, M. E.; Beverley, S. M.; Sanchez, M. A.; Seyfang, A.; Ullman, B.; Landfear, A. M. Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc. Natl. Acad. Sci. USA1998, 95, 9873–9878.Search in Google Scholar
Vianna, G. Treatment of tegumentary leishmaniasis by intravenous injections of tartar emetic. 7° Congresso Brasileiro de Medicina Tropical de São Paulo, São Paulo, Brasil, 1912,4, 426–428.Search in Google Scholar
Walker, J.; Saravia, N. G. Inhibition of Leishmania donovani promastigote DNA topoisomerase I and human monocyte DNA topoisomerases I and II by antimonial drugs and classical antitopoisomerase agents. J. Parasitol.2004, 90, 1155–1162.Search in Google Scholar
Webb, J. R.; McMaster, W. R. Molecular cloning and expression of a Leishmania major gene encoding a single-stranded DNA-binding protein containing nine “CCHC” zinc finger motifs. J. Biol. Chem.1993, 268, 13994–14002.Search in Google Scholar
World Health Organization, http://www.who.int/tdr/diseases/leish. (accessed August 15, 2012).Search in Google Scholar
Wyllie, S.; Fairlamb, A. H. Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukaemia monocyte cell line, Biochem. Pharmacol.2006, 71, 257–267.Search in Google Scholar
Wyllie, S.; Cunningham, M. L.; Fairlamb, A. H. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J. Biol. Chem. 2004, 279, 39925–39993.Search in Google Scholar
Wyllie, S.; Vickers, T. J.; Fairlamb, A. H. Roles of trypanothione S-transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob. Agents Chemother.2008, 52, 1359–1365.Search in Google Scholar
Wyllie, S.; Mandal, G.; Singh, N.; Sundar, S.; Fairlamb, A. H.; Chatterjee, M. Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol. Biochem. Parasitol.2010, 173, 162–164.Search in Google Scholar
Yan, S. C.; Li, F.; Ding, K. Y.; Sun, H. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J. Biol. Inorg. Chem.2003, 8, 689–697.Search in Google Scholar
Yan, S.; Jin, L.; Sun, H., Gielen; E. R. T. Sb antimony in Medicine. In Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine; 1st Edition. Gielen, M., Tiekink, E. R., Eds. John Wiley & Sons: New York, USA, 2005, pp. 441–461.Search in Google Scholar
Zhou, Y.; Messier, N.; Ouellette, M.; Rosen, B. P.; Mukhopadhyay, R. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam. J. Biol. Chem.2004, 279, 37445–37451.Search in Google Scholar
©2013 by Walter de Gruyter Berlin Boston