Abstract
According to the report of the renewable energy policy network for the 21st century published in 2014, biodiesel and bioethanol are the most used biofuels and are responsible for transportation worldwide. Biodiesel specially has shown an increase in production globally by 15 times by volume from 2002 to 2012. Promising feedstock of biodiesel are cyanobacteria and microalgae as they possess a shorter cultivation time (4 fold lesser) and high oil content (10 fold higher) than corn, jatropha and soybean (conventional oil-producing territorial plants). Various valuable natural chemicals are also produced from these organisms including food supplements such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), pigments, and vitamins. Additionally, cellular components of microalgae and cyanobacteria are connected with therapeutic characteristics such as anti-inflammatory, antioxidant, antiviral and immune stimulating. Commercialization of algal biodiesel (or other products) can be achieved by isolating and identifying the high-yielding strains that possess a faster growth rate. Indigenous strains can be genetically engineered into high-yielding transgenic strains. The present article discusses about the use of nanotechnology and genetic engineering approach for improved lipid accumulation in microalgae for biodiesel production.
Acknowledgment
All authors acknowledge Prof. Aditya Shastri, Vice Chancellor of Banasthali Vidyapith, for providing the necessary facilities. We acknowledge the Bioinformatics Center, Banasthali Vidyapith supported by DBT for providing computation support, and DST for providing networking support through the FIST and CURIE programs at the Department of Bioscience and Biotechnology.
Research funding: No funding was received for this research.
Conflict of interest: All authors declare that they do not have any conflict of interest for publishing in this journal.
Ethical approval: The conducted research is not related to either human or animal use.
Informed consent: Not applicable.
References
1. Huang D, Zhou H, Lin L. Biodiesel: an alternative to conventional fuel. Energy Procedia 2012;16:1874–5.10.1016/j.egypro.2012.01.287Search in Google Scholar
2. Hassan MH, Kalam MA. An overview of biofuel as a renewable energy source: development and challenges. Procedia Eng 2013;56:39–53.10.1016/j.proeng.2013.03.087Search in Google Scholar
3. An EU strategy for biofuels, Commission of the European Communities. Belgium: Brussels; 2006:1–29.Search in Google Scholar
4. Bozbas K. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energ Rev 2008;12:542–2.10.1016/j.rser.2005.06.001Search in Google Scholar
5. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 2010;14:217–32.10.1016/j.rser.2009.07.020Search in Google Scholar
6. Owolabi RU, Adejumo AL, Aderibigbe AF. Biodiesel: fuel for the future (a brief review). Int J Energ Eng 2012;2:223–31.10.5923/j.ijee.20120205.06Search in Google Scholar
7. Garlapati VK, Gour RS, Sharma V, Roy LS, Prashant JKS, Prashant JKS, et al. Current status of biodiesel production from microalgae in India. In: Advances in Biofeedstocks and Biofuels: Production Technologies for Biofuels, Vol. 2. USA: Wiley-Scrivener Publishing LLC, 2017:129–54.10.1002/9781119117551.ch5Search in Google Scholar
8. Andrijanto E. Novel bifunctional mesoporous silica nanomaterial catalyst for biodiesel production. Poster of University of Huddersfield Research Festival; 2009.Search in Google Scholar
9. Lin V, Mahoney P, Gibson K. Nanofarming technology extracts biofuel oil without harming algae. USA: News Released from Office of Public Affairs, Ames Laboratory Creating Materials & Energy Solutions; 2009.Search in Google Scholar
10. Lu F. Developing innovative photobioreactor and extraction technology for production of biodiesel feedstock using microalgae. United State Department of Agriculture Research, Education & Economics Information System; 2010.Search in Google Scholar
11. Lenzen M, McBain B, Trainer T, Jutte S, Rey-Lescure O, Huang J. Simulating low-carbon electricity supply for Australia. Appl Energ 2016;179:553–64.10.1016/j.apenergy.2016.06.151Search in Google Scholar
12. Lapuerta M, Armas O, Rodriguez-Fernandez J. Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 2008;34:198–23.10.1016/j.pecs.2007.07.001Search in Google Scholar
13. Torres-Jimenez E, Jerman MS, Gregorc A, Lisec I, Dorado MP, Kegl B. Physical and chemical properties of ethanol–diesel fuel blends. Fuel 2011;90:795–2.10.1016/j.fuel.2010.09.045Search in Google Scholar
14. Shahid EM, Jamal Y. Production of biodiesel: a technical review. Renew Sust Energ Rev 2011;15:4732–45.10.1016/j.rser.2011.07.079Search in Google Scholar
15. Mishra VK, Goswami R. A review of production, properties and advantages of biodiesel. Biofuels 2018;9:273–89.10.1080/17597269.2017.1336350Search in Google Scholar
16. Mofizur M, Rasul MG, Hassan NMS, Nabi MN. Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 2019;156:53–8.10.1016/j.egypro.2018.11.088Search in Google Scholar
17. Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technol 1999;70:1–15.10.1016/S0960-8524(99)00025-5Search in Google Scholar
18. Roux JM, Lamotte H, Achard JL. An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia 2017;112:680–8.10.1016/j.egypro.2017.03.1137Search in Google Scholar
19. Chandra R, Rohit MV, Swamy YV, Mohan SV. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technol 2014;165:279–87.10.1016/j.biortech.2014.02.102Search in Google Scholar PubMed
20. Mohan SV, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresource Technol 2015;184:169–78.10.1016/j.biortech.2014.10.056Search in Google Scholar PubMed
21. Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO. Algae based biorefinery–how to make sense? Renew Sust Energ Rev 2015;47:295–07.10.1016/j.rser.2015.03.052Search in Google Scholar
22. Zhang XL, Yan S, Tyagi RD, Surampalli RY. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sust Energ Rev 2013;26:216–23.10.1016/j.rser.2013.05.061Search in Google Scholar
23. Jain VK, Rattan S, Verma A. Recent trends in materials and devices. In: Springer Proceedings in Physics, New York, NY, USA; 2015.Search in Google Scholar
24. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metal 2014;2014:1–8.10.1155/2014/692643Search in Google Scholar
25. Da-Silva TL, Gouveia L, Reis A. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 2014;98:1043–53.10.1007/s00253-013-5389-5Search in Google Scholar PubMed
26. Hossain N, Mahlia TMI, Saidur R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels 2019;12:125.10.1186/s13068-019-1465-0Search in Google Scholar PubMed PubMed Central
27. Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 2013;17:496–05.10.1016/j.cbpa.2013.04.007Search in Google Scholar PubMed
28. Srirangan K, Pyne ME, Chou CP. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresource Technol 2011;102:8589–604.10.1016/j.biortech.2011.03.087Search in Google Scholar PubMed
29. Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP. Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 2014;9:e94028.10.1371/journal.pone.0094028Search in Google Scholar PubMed PubMed Central
30. Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 2011;93:91–100.10.1016/j.biochi.2010.07.020Search in Google Scholar PubMed
31. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosirapseudonana: ecology, evolution, and metabolism. Science 2004;306:79–86.10.1126/science.1101156Search in Google Scholar PubMed
32. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A. The Chlorellavariabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010;22:2943–55.10.1105/tpc.110.076406Search in Google Scholar PubMed PubMed Central
33. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008;456:239–44.10.1038/nature07410Search in Google Scholar PubMed
34. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007;318:245–50.10.1126/science.1143609Search in Google Scholar PubMed PubMed Central
35. Orsini M, Costelli C, Malavasi V, Cusano R, Concas A, Angius A, et al. Complete sequence and characterization of mitochondrial and chloroplast genome of Chlorella variabilis NC64A. Mitochondrial DNA A 2016;27:3128–30.10.3109/19401736.2015.1007297Search in Google Scholar PubMed
36. Ortiz-Matamoros MF, Islas-Flores T, Voigt B, Menzel D,Baluska F, Villanueva MA. Heterologous DNA uptake in cultured Symbiodinium spp. aided by Agrobacterium tumefaciens. PLoS One 2015;10:e0132693.10.1371/journal.pone.0132693Search in Google Scholar PubMed PubMed Central
37. Sumiya N, Fujiwara T, Kobayashi Y, Misumi O, Miyagishima SY. Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 2014;9:e111261.10.1371/journal.pone.0111261Search in Google Scholar PubMed PubMed Central
38. Tablizo FA, Lluisma AO. The mitochondrial genome of the red alga Kappaphycus striatus (“Green Sacol” variety): complete nucleotide sequence, genome structure and organization, and comparative analysis. Mar Genomics 2014;18:155–61.10.1016/j.margen.2014.05.006Search in Google Scholar PubMed
39. Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2013;5:2368–81.10.1093/gbe/evt179Search in Google Scholar PubMed PubMed Central
40. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 2015;27:1–9.10.1016/j.ymben.2014.10.002Search in Google Scholar PubMed
41. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 2001;292:2073–5.10.1126/science.160015Search in Google Scholar PubMed
42. Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 2011;13:89–95.10.1016/j.ymben.2010.10.003Search in Google Scholar PubMed
43. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 2010;9:486–501.10.1128/EC.00364-09Search in Google Scholar PubMed PubMed Central
44. Herve C, De-Franco PO, Groisillier A, Tonon T, Boyen C. New members of the glutathione transferase family discovered in red and brown algae. Biochem J 2008;412:535–44.10.1042/BJ20071464Search in Google Scholar PubMed
45. Jiang P, Qin S, Tseng CK. Expression of the lacZ reporter gene in sporophytes of the seaweed Laminariajaponica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Rep 2003;21:1211–6.10.1007/s00299-003-0645-2Search in Google Scholar PubMed
46. Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 2010;76:6741–50.10.1128/AEM.01056-10Search in Google Scholar PubMed PubMed Central
47. Happe T, Schutz K, Bohme H. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 2000;182:1624–31.10.1128/JB.182.6.1624-1631.2000Search in Google Scholar PubMed PubMed Central
48. Hondo S, Takahashi M, Osanai T, Matsuda M, Hasunuma T, Tazuke A, et al. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria. J Biosci Bioeng 2015;120:510–7.10.1016/j.jbiosc.2015.03.004Search in Google Scholar PubMed
49. Ifuku K, Yan D, Miyahara M, Inoue-Kashino N, Yamamoto YY, Kashino Y. A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis. Photosynth Res 2015;123:203–11.10.1007/s11120-014-0048-ySearch in Google Scholar PubMed
50. Apt KE, Grossman AR, Kroth-Pancic PG. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996;252:572–79.Search in Google Scholar
51. Pochon X, Putnam HM, Gates RD. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. Peer J 2014;2:e394.10.7717/peerj.394Search in Google Scholar PubMed PubMed Central
52. Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB. Chloroplast transformation in Euglenagracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Gen 2001;39:49–60.10.1007/s002940000174Search in Google Scholar PubMed
53. Breglia SA, Slamovits CH, Leander BS. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. J Eukaryot Microbiol 2007;54:86–92.10.1111/j.1550-7408.2006.00233.xSearch in Google Scholar PubMed
54. Miller PW, Dunn WI, Schmidt RR. Alternative splicing of a precursor-mRNA encoded by the Chlorella sorokiniana NADP-specific glutamate dehydrogenase gene yields mRNAs for precursor proteins of isozyme subunits with different ammonium affinities. Plant Mol Biol 1998;37:243–63.10.1023/A:1005921018137Search in Google Scholar
55. Webber AN, Bingham SE, Lee H. Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. Photosynth Res 1995;44: 191–205.10.1007/BF00018309Search in Google Scholar PubMed
56. Feng S, Xue L, Liu H, Lu P. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 2009;36:1433–9.10.1007/s11033-008-9333-1Search in Google Scholar PubMed
57. Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, et al. Nuclear transformation of Volvox carteri. Proc Natl Acad Sci USA 1994;91:5080–4.10.1073/pnas.91.11.5080Search in Google Scholar PubMed PubMed Central
58. Hirata R, Takahashi M, Saga N, Mikami K. Transient gene expression system established in Porphyra yezoensis is widely applicable in Bangiophycean algae. Mar Biotechnol 2011;13:1038–47.10.1007/s10126-011-9367-6Search in Google Scholar PubMed
59. Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002;129:7–12.10.1104/pp.011023Search in Google Scholar PubMed PubMed Central
60. Aires T, Serrao EA, Kendrick G, Duarte CM, Arnaud-Haond S. Invasion is a community affair: clandestine followers in the bacterial community associated to green algae, Caulerparacemosa, track the invasion source. PLoS One 2013;8:e68429.10.1371/journal.pone.0068429Search in Google Scholar PubMed PubMed Central
61. Johanningmeier U, Fischer D. Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites: engineering chloroplasts of microalgae for the production of bioactive compounds. In: Bio-Farms for Nutraceuticals. Boston, MA: Springer, 2010:144–51.10.1007/978-1-4419-7347-4_11Search in Google Scholar PubMed
62. Adamczak M, Bornscheuer UT, Bednarski W. The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 2009;111(8):800–13.10.1002/ejlt.200900078Search in Google Scholar
63. Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25(3):294–306.10.1016/j.biotechadv.2007.02.001Search in Google Scholar PubMed
64. Lelong A, Haberkorn H, Le-Goic N, Hegaret H, Soudant P. A new insight into allelopathic effects of Alexandriumminutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microb Ecol 2011;62:919–30.10.1007/s00248-011-9889-5Search in Google Scholar PubMed
65. Greenfield DI, Duquette A, Goodson A, Keppler CJ, Williams SH, Brock LM. The effects of three chemical algaecides on cell numbers and toxin content of the cyanobacteria Microcystis aeruginosa and Anabaenopsis sp. Environ Manage 2014;54:1110–20.10.1007/s00267-014-0339-2Search in Google Scholar PubMed
66. He C, Baoxiang PE, Dezheng W. WangJinfu “Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts”. Front Chem Eng China 2007;1(1):11–5.10.1007/s11705-007-0003-ySearch in Google Scholar
67. Royon D, daz M, Ellenrieder G, Locatelli S. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 2007;98:648–53.10.1016/j.biortech.2006.02.021Search in Google Scholar PubMed
68. Miao X, Wu Q. High quality biodiesel production from heterotrophic microalgal oil. Bioresour Technol 2006;97:841–6.10.1016/j.biortech.2005.04.008Search in Google Scholar
69. Ahmad M, Rashid S, Khan MA, Zafar M, Sultana S, Gulzar S. Optimization of base catalyzed transesterification of peanut oil biodiesel. Afr J Biotechnol 2009;8(3):441–6.Search in Google Scholar
70. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 2008;99(6):1716–21.10.1016/j.biortech.2007.03.051Search in Google Scholar
71. Ghadge SV, Raheman H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy 2005;28(6):601–5.10.1016/j.biombioe.2004.11.009Search in Google Scholar
72. Meher LC, Dharmagadda VS, Naik SN. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol 2006;97(12):1392–7.10.1016/j.biortech.2005.07.003Search in Google Scholar
73. Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 2010;101(19):7201–10.10.1016/j.biortech.2010.04.079Search in Google Scholar
74. Darnoko D, Cheryan M. Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 2000;77(12):1263–7.10.1007/s11746-000-0198-ySearch in Google Scholar
75. Karmee SK, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 2005;96(13):1425–9.10.1016/j.biortech.2004.12.011Search in Google Scholar
76. Korus RA, Hoffman DS, Bam N, Peterson CL, Drown DC. Transesterification process to manufacture ethyl ester of rape oil. In: The Proceedings of the First Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, Vol. 2. National Renewable Energy Laboratory, Golden Co, 1993:815–26.Search in Google Scholar
77. Chen L, Liu T, Zhang W, Chen X, Wang J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 2012;111:208–14.10.1016/j.biortech.2012.02.033Search in Google Scholar
78. Saydut A, Duz MZ, Kaya C, Kafadar AB, Hamamci C. Transesterified sesame (Sesamumindicum L.) seed oil as a biodiesel fuel. Bioresour Technol 2008;99(14):6656–60.10.1016/j.biortech.2007.11.063Search in Google Scholar
79. Antolın G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramırez AI. Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 2002;83(2):111–4.10.1016/S0960-8524(01)00200-0Search in Google Scholar
80. Du W, Xu YY, Zeng J, Liu DH. Novozym 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium. Biotechnol Appl Biochem 2004;40(2):187–90.10.1042/BA20030142Search in Google Scholar
81. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101(2):87–96.10.1263/jbb.101.87Search in Google Scholar
82. Vijayaraghavan K, Hemanathan K. Biodiesel production from freshwater algae. Energy Fuels 2009;23(11):5448–53.10.1021/ef9006033Search in Google Scholar
83. Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Nat Renew Energy La 1998;328:1–294.Search in Google Scholar
84. Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energ Rev 2007;11(6):1300–11.10.1016/j.rser.2005.08.006Search in Google Scholar
85. Nelson LA, Foglia TA, Marmer WN. Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 1996;73(9):1191–5.10.1007/BF02523383Search in Google Scholar
86. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, et al. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 1999;76(7):789–93.10.1007/s11746-999-0067-6Search in Google Scholar
87. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 2000;77(4):355–60.10.1007/s11746-000-0058-9Search in Google Scholar
88. Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, et al. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J Biosci Bioeng 2000;90(2):180–3.10.1016/S1389-1723(00)80107-3Search in Google Scholar
89. Fedosov SN, Brask J, Pedersen AK, Nordblad M, Woodley JM, Xu X. Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B. J Mol Catal B Enzym 2013;85:156–68.10.1016/j.molcatb.2012.09.011Search in Google Scholar
90. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 2002;17(3–5):151–5.10.1016/S1381-1177(02)00022-XSearch in Google Scholar
91. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem Eng J 2014;90:103–13.10.1016/j.bej.2014.05.019Search in Google Scholar
92. Taher H, Al-Zuhair S, AlMarzouqui A, Hashim I. Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochem Eng J 2011;55(1):23–31.10.1016/j.bej.2011.03.003Search in Google Scholar
93. Al-Zuhair S, Hussein A, Al-Marzouqi AH, Hashim I. Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media. Biochem Eng J 2012;60:106–10.10.1016/j.bej.2011.10.010Search in Google Scholar
94. Moreno-Pirajan JC, Giraldo L. Study of immobilized candida rugosa lipase for biodiesel fuel production from palm oil by flow micro calorimetry. Arab J Chem 2011;4(1):55–62.10.1016/j.arabjc.2010.06.019Search in Google Scholar
95. Tan Z, Fang M, Du H, Song L, Ren D, Tang X, et al. Production of biodiesel catalyzed by Candida rugosa lipase at interface of w/o microemulsion system. J Braz Chem Soc 2014;25(9):1704–11.Search in Google Scholar
96. Lee JH, Kim SB, Kang SW, Song YS, Park C, Han SO, et al. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresour Technol 2011;102(2):2105–8.10.1016/j.biortech.2010.08.034Search in Google Scholar PubMed
97. Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 2005;96(7):769–77.10.1016/j.biortech.2004.05.029Search in Google Scholar PubMed
98. Guldhe A, Singh B, Rawat I, Permaul K, Bux F. Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel 2015;147:117–24.10.1016/j.fuel.2015.01.049Search in Google Scholar
99. Devanesan MG, Viruthagiri T, Sugumar N. Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol 2007;6(21):2497–501.10.5897/AJB2007.000-2396Search in Google Scholar
100. Huang D, Han S, Han Z, Lin Y. Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichiapastoris whole cells in an isooctane system. Biochem Eng J 2012;63:10–4.10.1016/j.bej.2010.08.009Search in Google Scholar
101. Huang J, Xia J, Yang Z, Guan F, Cui D, Guan G, et al. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichiapastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol Biofuels 2014;7(1):111.10.1186/1754-6834-7-111Search in Google Scholar PubMed PubMed Central
102. Dossat V, Combes D, Marty A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb Technol 1999;25(3–5):194–200.10.1016/S0141-0229(99)00026-5Search in Google Scholar
103. Xu Y, Nordblad M, Nielsen PM, Brask J, Woodley JM. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. J Mol Catal B Enzym 2011;72(3–4):213–9.10.1016/j.molcatb.2011.06.008Search in Google Scholar
104. Chen HC, Ju HY, Wu TT, Liu YC, Lee CC, Chang C, et al. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. Biomed Res Int 2010;2011:6.10.1155/2011/950725Search in Google Scholar
105. Azócar L, Navia R, Beroiz L, Jeison D, Ciudad G. Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor. New Biotechnol 2014;31(5):422–9.10.1016/j.nbt.2014.04.006Search in Google Scholar
106. Modi MK, Reddy JR, Rao BV, Prasad RB. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 2007;98(6):1260–4.10.1016/j.biortech.2006.05.006Search in Google Scholar
107. Fjerbaek L, Christensen KV, Norddahl B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 2009;102(5):1298–315.10.1002/bit.22256Search in Google Scholar
108. Du W, Xu Y, Liu D, Zeng J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 2004;30(3–4):125–9.10.1016/j.molcatb.2004.04.004Search in Google Scholar
109. Li L, Du W, Liu D, Wang L, Li Z. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 2006;43(1–4):58–62.10.1016/j.molcatb.2006.06.012Search in Google Scholar
110. Zheng Y, Quan J, Ning X, Zhu LM, Jiang B, He ZY. Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World J Microbiol Biotechnol 2009;25(1):41.10.1007/s11274-008-9858-4Search in Google Scholar
111. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 2002;17(3–5):133–42.10.1016/S1381-1177(02)00020-6Search in Google Scholar
112. Modi MK, Reddy JR, Rao BV, Prasad RB. Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol Lett 2006;28(9):637–40.10.1007/s10529-006-0027-2Search in Google Scholar
113. Rathore V, Madras G. Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel 2007;86(17–18):2650–9.10.1016/j.fuel.2007.03.014Search in Google Scholar
114. del Valle JM, Rivera O, Mattea M, Ruetsch L, Daghero J, Flores A. Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. J Supercrit Fluid 2004;31(2):159–74.10.1016/j.supflu.2003.11.005Search in Google Scholar
115. Reverchon E, Marrone C. Modeling and simulation of the supercritical CO2 extraction of vegetable oils. J Supercrit Fluid 2001;19(2):161–75.10.1016/S0896-8446(00)00093-0Search in Google Scholar
116. Sovova H, Zarevucka M, Vacek M, Stránský K. Solubility of two vegetable oils in supercritical CO2. J Supercrit Fluid 2001;20(1):15–28.10.1016/S0896-8446(01)00057-2Search in Google Scholar
117. Romero MD, Calvo L, Alba C, Daneshfar A, Ghaziaskar HS. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb Technol 2005;37(1):42–8.10.1016/j.enzmictec.2004.12.033Search in Google Scholar
118. Celia E, Cernia E, Palocci C, Soro S, Turchet T. Tuning Pseudomonas cepacea lipase (PCL) activity in supercritical fluids. J Supercrit Fluid 2005;33(2):193–9.10.1016/j.supflu.2004.07.002Search in Google Scholar
119. Novak Z, Habulin M, Krmelj V, Knez Ž. Silica aerogels as supports for lipase catalyzed esterifications at sub-and supercritical conditions. J Supercrit Fluid 2003;27(2):169–78.10.1016/S0896-8446(02)00233-4Search in Google Scholar
120. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M, Tariq S. Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. J Supercrit Fluid 2014;86:57–66.10.1016/j.supflu.2013.11.020Search in Google Scholar
121. Andrich G, Zinnai A, Nesti U, Venturi F. Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Aliment 2006;35(2):195–203.10.1556/AAlim.35.2006.2.6Search in Google Scholar
122. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 2003;356:328–34.10.1016/S0020-1693(03)00363-3Search in Google Scholar
123. Mendes RL, Fernandes HL, Coelho J, Reis EC, Cabral JM, Novais JM, et al. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 1995;53(1):99–103.10.1016/0308-8146(95)95794-7Search in Google Scholar
124. Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 2011;102(21):10151–3.10.1016/j.biortech.2011.08.064Search in Google Scholar PubMed
125. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol 2011;102(1):178–85.10.1016/j.biortech.2010.06.136Search in Google Scholar PubMed
126. Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol 2005;107(6):381–6.10.1002/ejlt.200501130Search in Google Scholar
127. Madeira Lau R, Van Rantwijk F, Seddon KR, Sheldon RA. Lipase-catalyzed reactions in ionic liquids. Org Lett 2000;2(26):4189–91.10.1021/ol006732dSearch in Google Scholar PubMed
128. Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL. Lipase catalysis in ionic liquids and supercritical carbon dioxide at 150 C. Biotechnol Prog 2003;19(2):380–2.10.1021/bp025759oSearch in Google Scholar PubMed
129. Lozano P, De Diego T, Carrie D, Vaultier M, Iborra JL. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 2001;23(18):1529–33.10.1023/A:1011697609756Search in Google Scholar
130. Dang DT, Ha SH, Lee SM, Chang WJ, Koo YM. Enhanced activity and stability of ionic liquid-pretreated lipase. J Mol Catal B Enzym 2007;45(3–4):118–21.10.1016/j.molcatb.2007.01.001Search in Google Scholar
131. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 2003;125(14):4125–31.10.1021/ja028557xSearch in Google Scholar PubMed
132. Klähn M, Lim GS, Wu P. How ion properties determine the stability of a lipase enzyme in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 2011;13(41):18647–60.10.1039/c1cp22056jSearch in Google Scholar PubMed
133. Choi SA, Oh YK, Jeong MJ, Kim SW, Lee JS, Park JY. Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 2014;65:169–74.10.1016/j.renene.2013.08.015Search in Google Scholar
134. Young G, Nippgen F, Titterbrandt S, Cooney MJ. Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 2010;72(1):118–21.10.1016/j.seppur.2010.01.009Search in Google Scholar
135. Lozano P, Bernal JM, Vaultier M. Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel 2011;90(11):3461–7.10.1016/j.fuel.2011.06.008Search in Google Scholar
136. Gonzalez C, Marciniak J, Villaverde S, Leon C, Garcia PA, Munoz R. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia. Water Sci Technol 2008;58(1):95–102.10.2166/wst.2008.655Search in Google Scholar PubMed
137. Hernandez D, Riano B, Coca M, Solana M, Bertucco A, Garcia-Gonzalez MC. Microalgae cultivation in high rate algal ponds using slaughter house wastewater for biofuel applications. Chem Eng J 2016;285:449–58.10.1016/j.cej.2015.09.072Search in Google Scholar
138. Rawat I, Kumar RR, Mutanda T, Bux F. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 2013;103:444–67.10.1016/j.apenergy.2012.10.004Search in Google Scholar
139. Ho SH, Chen CY, Lee DJ, Chang JS. Perspectives on microalgal CO2-emission mitigation systems–a review. Biotechnol Adv 2011;29(2):189–98.10.1016/j.biotechadv.2010.11.001Search in Google Scholar PubMed
140. Anbalagan A, Toledo-Cervantes A, Posadas E, Rojo EM, Lebrero R, Gonzalez-Sanchez A, et al. Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: evaluation of tubular algal-bacterial photo bioreactor. J CO2 Util 2017;21:353–9.10.1016/j.jcou.2017.07.016Search in Google Scholar
141. Wingender J, Neu TR, Flemming H-C. Microbial extracellular polymeric substances: characterization, structure and function. Berlin, Heidelberg: Springer Science & Business Media; 2012.Search in Google Scholar
142. Brennan L, Owende P. Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 2010;14(2):557–77.10.1016/j.rser.2009.10.009Search in Google Scholar
143. Zhang Q, Li X, Guo D, Ye T, Xiong M, Zhu L, et al. Operation of a vertical algal biofilm enhanced raceway pond for nutrient removal and microalgae-based byproducts production under different wastewater loadings. Bioresour Technol 2018;253:323–32.10.1016/j.biortech.2018.01.014Search in Google Scholar PubMed
144. Christenson LB, Sims RC. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 2012;109(7):1674–84.10.1002/bit.24451Search in Google Scholar PubMed
145. Guzzon A, Bohn A, Diociaiuti M, Albertano P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 2008;42(16):4357–67.10.1016/j.watres.2008.07.029Search in Google Scholar PubMed
146. Wu Y, Hu Z, Yang L, Graham B, Kerr PG. The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 2011;102(3):2419–26.10.1016/j.biortech.2010.10.113Search in Google Scholar PubMed
147. Ozkan A, Kinney K, Katz L, Berberoglu H. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 2012;114:542–8.10.1016/j.biortech.2012.03.055Search in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Benefits of basic research from the Superfund Research Program
- Sharing SRP data to reduce environmentally associated disease and promote transdisciplinary research
- Urban sanitation in Nigeria: the past, current and future status of access, policies and institutions
- Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology
- An overview on the concentration of radioactive elements and physiochemical analysis of soil and water in Iraq
- Association between human health and indoor air pollution in the Gulf Cooperation Council (GCC) countries: a review
- Involvement of green technology in microalgal biodiesel production
- Green space and early childhood development: a systematic review
- Mini Reviews
- A review on sources and health impacts of bisphenol A
- Optimization of solar-driven systems for off-grid water nanofiltration and electrification
Articles in the same Issue
- Frontmatter
- Reviews
- Benefits of basic research from the Superfund Research Program
- Sharing SRP data to reduce environmentally associated disease and promote transdisciplinary research
- Urban sanitation in Nigeria: the past, current and future status of access, policies and institutions
- Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology
- An overview on the concentration of radioactive elements and physiochemical analysis of soil and water in Iraq
- Association between human health and indoor air pollution in the Gulf Cooperation Council (GCC) countries: a review
- Involvement of green technology in microalgal biodiesel production
- Green space and early childhood development: a systematic review
- Mini Reviews
- A review on sources and health impacts of bisphenol A
- Optimization of solar-driven systems for off-grid water nanofiltration and electrification