Synthesis and characterization of the removal of organic pollutants in effluents
-
Moussa Bakayoko
, Loissi Kalakodio
Abstract
The use of a large number of organic pollutants results in the accumulation of effluents at the places of production and the environment. These substances are, therefore, dangerous for living organisms and can cause heavy environmental damage. Hence, to cure these problems certain methods were used for the elimination of organic effluents. Indeed, the methods of elimination through magnetic adsorption and/or separation prove to be effective in the treatment of certain wastes, but the effectiveness of each one of these methods depends on several characteristics and also present limitations according to the pollutants they adsorb. This review examines on the one hand the capacity of certain elements of these methods in the elimination of certain pollutants and on the other hand the advantages and limits of these methods. Elements like biochars, biosorbents and composite materials are used due to their very strong porosity which makes it possible for them to develop an important contact surface with the external medium, at low costs, and the possibility of producing them from renewable sources. The latter still run up however against the problems of formation of mud and regeneration. Depollution by magnetic separation is also used due to its capacity to mitigate the disadvantages of certain methods which generally lead to the formation of mud and overcoming also the difficulties like obtaining an active material and at the same time being able to fix the pollutants present in the effluents to treat and sensitize them to external magnetic fields.
Acknowledgments
The authors gratefully acknowledge all laboratory and schools.
Author statement
Research funding: Authors state no funding involved. Conflict of interest: Authors state no conflict of interest. Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animal use.
References
1. Schwarzenbach RP. The challenge of micropollutants in aquatic systems. Science 2006;313(5790):1072–7.10.1126/science.1127291Suche in Google Scholar PubMed
2. Hernández F, Ibáñez M, Portolés T, Cervera MI, Sancho JV, López FJ. Advancing towards universal screening for organic pollutants in waters. J Hazard Mater 2015;282:86–95.10.1016/j.jhazmat.2014.08.006Suche in Google Scholar PubMed
3. te Poele S, Menkveld W, Boom J, van Bragt W. Effluent treatment by multi-media filtration, microfiltration and ultrafiltration: results of a pilot investigation at WWTP Hoek van Holland. Water Sci Technol 2005;52(4):99–105.10.2166/wst.2005.0092Suche in Google Scholar
4. Sharma VK, Feng M. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: a review. J Hazard Mater 2017;31:15–9.10.1016/j.jhazmat.2017.09.043Suche in Google Scholar PubMed
5. Mariano E, Jones DL, Hill PW, Trivelin PCO. Mineralisation and sorption of dissolved organic nitrogen compounds in litter and soil from sugarcane fields. Soil Biol Biochem 2016;103:522–32.10.1016/j.soilbio.2016.10.004Suche in Google Scholar
6. Tao B, Fletcher AJ. Catalytic degradation and adsorption of metaldehyde from drinking water by functionalized mesoporous silicas and ion-exchange resin. Sep Purif Technol 2014;124:195–200.10.1016/j.seppur.2014.01.013Suche in Google Scholar
7. Wang X, Hou C, Qiu W, Ke Y, Xu Q, Liu XY, et al. Protein-directed synthesis of bifunctional adsorbent-catalytic hemin-graphene nanosheets for highly efficient removal of dye pollutants via synergistic adsorption and degradation. ACS Appl Mater Interfaces 2017;9(1):684–92.10.1021/acsami.6b12495Suche in Google Scholar PubMed
8. Sangiumsak N, Punrattanasin P. Adsorption behavior of heavy metals on biomaterials. Polish J Environ Stud 2014;23(3):853–65.Suche in Google Scholar
9. Dhillon GS, Lea Rosine GM, Kaur S, Hegde K, Brar SK, Drogui P, et al. Novel biomaterials from citric acid fermentation as biosorbents for removal of metals from waste chromated copper arsenate wood leachates. Int Biodeterior Biodegrad 2017;119:147–54.10.1016/j.ibiod.2016.09.014Suche in Google Scholar
10. Smith YR, Bhattacharyya D, Willhard T, Misra M. Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chem Eng J 2016;296:102–11.10.1016/j.cej.2016.03.082Suche in Google Scholar
11. Escolà Casas M, Bester K. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? Sci Total Environ 2015;506–507:315–22.10.1016/j.scitotenv.2014.10.113Suche in Google Scholar PubMed
12. Li L, Liu F, Duan H, Wang X, Li J, Wang Y, et al. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids Surf B Biointerfaces 2016;141:253–9.10.1016/j.colsurfb.2015.06.023Suche in Google Scholar PubMed
13. Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 2015;6:67–70.10.1038/ncomms7707Suche in Google Scholar PubMed
14. Maneerung T, Liew J, Dai Y, Kawi S, Chong C, Wang CH. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresour Technol 2016;200:350–9.10.1016/j.biortech.2015.10.047Suche in Google Scholar PubMed
15. Bouzid M, Sellaoui L, Khalfaoui M, Belmabrouk H, Lamine Ben A. Adsorption of ethanol onto activated carbon: modeling and consequent interpretations based on statistical physics treatment. Phys A Stat Mech Appl 2016;444:853–69.10.1016/j.physa.2015.09.097Suche in Google Scholar
16. El-Shafey EI, Ali SNF, Al-Busafi S, Al-Lawati HAJ. Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal. J Environ Chem Eng 2016;4(3):2713–24.10.1016/j.jece.2016.05.015Suche in Google Scholar
17. Yu F, Li Y, Han S, Ma J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016;153:365–85.10.1016/j.chemosphere.2016.03.083Suche in Google Scholar PubMed
18. Zhang X, Gao B, Creamer AE, Cao C, Li Y. Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 2017;338:102–23.10.1016/j.jhazmat.2017.05.013Suche in Google Scholar PubMed
19. Bhatnagar A, Hogland W, Marques M, Sillanpää M. An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 2013;219:499–511.10.1016/j.cej.2012.12.038Suche in Google Scholar
20. Tran N, Drogui P, Brar SK, De Coninck A. Synergistic effects of ultrasounds in the sonoelectrochemical oxidation of pharmaceutical carbamazepine pollutant. Ultrason Sonochem 2017;34:380–8.10.1016/j.ultsonch.2016.06.014Suche in Google Scholar PubMed
21. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut 2017;222:1–9.10.1016/j.envpol.2016.11.045Suche in Google Scholar PubMed
22. Simonich SL, Hites RA. Organic pollutant accumulation in vegetation. Environ Sci Technol 1995;29(12):2905–14.10.1021/es00012a004Suche in Google Scholar PubMed
23. Liu CM, Wu SY. From biomass waste to biofuels and biomaterial building blocks. Renew Energy 2016;96:1056–62.10.1016/j.renene.2015.12.059Suche in Google Scholar
24. Mo KH, Chin TS, Alengaram UJ, Jumaat MZ. Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres. J Clean Prod 2016;133:414–26.10.1016/j.jclepro.2016.05.162Suche in Google Scholar
25. Loh YF. The biomaterial for green composites. JEC Compos Mag 2010;126:29–30.Suche in Google Scholar
26. Streicher J, Ruhl AS, Gnirß R, Jekel M. Where to dose powdered activated carbon in a wastewater treatment plant for organic micro-pollutant removal. Chemosphere 2016;156:88–94.10.1016/j.chemosphere.2016.04.123Suche in Google Scholar PubMed
27. Li K, Tian S, Jiang J, Wang J, Chen X, Yan F. Pine cone shell-based activated carbon used for CO2 adsorption. J Mater Chem A 2016;4(14):5223–34.10.1039/C5TA09908KSuche in Google Scholar
28. Charles J, Bradu C, Morin-Crini N, Sancey B, Winterton P, Torri G, et al. Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: chemical abatement. J Saudi Chem Soc 2016;20(2):185–94.10.1016/j.jscs.2013.03.007Suche in Google Scholar
29. Nouacer S, Hazourli S, Despas C, Hébrant M. Sorption of polluting metal ions on a palm tree frond sawdust studied by the means of modified carbon paste electrodes. Talanta 2015;144:318–23.10.1016/j.talanta.2015.06.044Suche in Google Scholar PubMed
30. Sen Gupta S, Bhattacharyya KG. Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci 2011;162:39–58.10.1016/j.cis.2010.12.004Suche in Google Scholar PubMed
31. Kirkendale L, Saunders GW, Winberg P. A molecular survey of ulva (Chlorophyta) in temperate Australia reveals enhanced levels of cosmopolitanism. J Phycol 2013;49(1):69–81.10.1111/jpy.12016Suche in Google Scholar PubMed
32. Watson EB, Wigand C, Oczkowski AJ, Sundberg K, Vendettuoli D, Jayaraman S, et al. Ulva additions alter soil biogeochemistry and negatively impact Spartina alterniflora growth. Mar Ecol Prog Ser 2015;532:59–72.10.3354/meps11334Suche in Google Scholar
33. Wan AHL, Wilkes RJ, Heesch S, Bermejo R, Johnson MP, Morrison L. Assessment and characterisation of Ireland’s green tides (Ulva species). PLoS One 2017;12(1):e0169049. https://doi.org/10.1371/journal.pone.0169049.10.1371/journal.pone.0169049Suche in Google Scholar
34. Zeroual Y, Moutaouakkil A, Dzairi FZ, Talbi M, Chung PU, Lee K, et al. Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresour Technol 2003;90(3):349–51.10.1016/S0960-8524(03)00122-6Suche in Google Scholar
35. Ibrahim WM, Hassan AF, Azab YA. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt J Basic Appl Sci 2016;3(3):241–9.10.1016/j.ejbas.2016.07.005Suche in Google Scholar
36. Wichard T, Charrier B, Mineur F, Bothwell JH, Clerck O De, Coates JC. The green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci 2015;6:72.10.3389/fpls.2015.00072Suche in Google Scholar PubMed PubMed Central
37. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 2005;60(3):419–26.10.1016/j.chemosphere.2004.12.016Suche in Google Scholar PubMed
38. Dhir B, Srivastava S. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng 2011;37(6):893–6.10.1016/j.ecoleng.2011.01.007Suche in Google Scholar
39. Tofighy MA, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 2011;185(1):140–7.10.1016/j.jhazmat.2010.09.008Suche in Google Scholar PubMed
40. Vunain E, Mishra AK, Mamba BB. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 2016;86:570–86.10.1016/j.ijbiomac.2016.02.005Suche in Google Scholar PubMed
41. El Sikaily A, Khaled A, El Nemr A, Abdelwahab O. Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chem Ecol 2006;22(2):149–57.10.1080/02757540600579607Suche in Google Scholar
42. Rahman MA, Amin SMR, Alam a MS. Removal of methylene blue from waste water using activated carbon prepared from rice husk. Dhaka Univ J Sci 2012;60(2):185–9.10.3329/dujs.v60i2.11491Suche in Google Scholar
43. Zhang J, Zhou Y, Jiang M, Li J, Sheng J. Removal of methylene blue from aqueous solution by adsorption on pyrophyllite. J Mol Liq 2015;209:267–71.10.1016/j.molliq.2015.05.056Suche in Google Scholar
44. Di Gregorio F, Parrillo F, Salzano E, Cammarota F, Arena U. Removal of naphthalene by activated carbons from hot gas. Chem Eng J 2016;291:244–53.10.1016/j.cej.2016.01.081Suche in Google Scholar
45. Giordano M, Raven JA. Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 2014;118:45–61.10.1016/j.aquabot.2014.06.012Suche in Google Scholar
46. Dwivedi S. Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 2012;25:195–9.Suche in Google Scholar
47. Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv Healthc Mater 2015;4(11):1628–33.10.1002/adhm.201500021Suche in Google Scholar PubMed PubMed Central
48. Sigdel A, Jung W, Min B, Lee M, Choi U, Timmes T, et al. Concurrent removal of cadmium and benzene from aqueous solution by powdered activated carbon impregnated alginate beads. Catena 2017;148:101–7.10.1016/j.catena.2016.06.029Suche in Google Scholar
49. Baláž M, Bujňáková Z, Baláž P, Zorkovská A, Danková Z, Briančin J. Adsorption of cadmium(II) on waste biomaterial. J Colloid Interface Sci 2015;454:121–33.10.1016/j.jcis.2015.03.046Suche in Google Scholar PubMed
50. Focaroli S, Teti G, Salvatore V, Orienti I, Falconi M. Calcium/cobalt lginate beads as functional scaffolds for cartilage tissue engineering. Stem Cells Int 2016;201:60–86.Suche in Google Scholar
51. Barquilha CER, Cossich ES, Tavares CRG, Silva EA. Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J Clean Prod 2017;150:58–64.10.1016/j.jclepro.2017.02.199Suche in Google Scholar
52. Asthana A, Verma R, Singh AK, Susan MABH. Glycine functionalized magnetic nanoparticle entrapped calcium alginate beads: a promising adsorbent for removal of Cu(II) ions. J Environ Chem Eng 2016;4(2):1985–95.10.1016/j.jece.2016.03.024Suche in Google Scholar
53. Shang J, Pi J, Zong M, Wang Y, Li W, Liao Q. Chromium removal using magnetic biochar derived from herb-residue. J Taiwan Inst Chem Eng 2016;68:289–94.10.1016/j.jtice.2016.09.012Suche in Google Scholar
54. Wang Z, Liu N, Feng F, Ma Z. Synthesis of cadmium, lead and copper alginate nanobeads as immunosensing probes for the detection of AFP, CEA and PSA. Biosens Bioelectron 2015;70: 98–105.10.1016/j.bios.2015.03.015Suche in Google Scholar PubMed
55. Rocher V, Siaugue J-M, Cabuil V, Bee A. Removal of organic dyes by magnetic alginate beads. Water Res 2008;42(4–5):1290–8.10.1016/j.watres.2007.09.024Suche in Google Scholar PubMed
56. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook. From ocean algae to patient bedside. Adv Drug Deliv Rev 2016;96:54–76.10.1016/j.addr.2015.04.021Suche in Google Scholar PubMed
57. Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydr Polym 2016;136:1194–202.10.1016/j.carbpol.2015.09.099Suche in Google Scholar PubMed
58. Li C, Lu J, Li S, Tong Y, Ye B. Synthesis of magnetic microspheres with sodium alginate and activated carbon for removal of methylene blue. Materials (Basel) 2017;10(1):84.10.3390/ma10010084Suche in Google Scholar PubMed PubMed Central
59. Lasindrang M, Suwarno H, Tandjung SD, Kamiso HN. Adsorption pollution leather tanning industry wastewater by chitosan coated coconut shell active charcoal. Agric Agric Sci Procedia 2015;3:241–7.10.1016/j.aaspro.2015.01.047Suche in Google Scholar
60. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013;49(4):780–92.10.1016/j.eurpolymj.2012.12.009Suche in Google Scholar
61. Mende M, Schwarz D, Steinbach C, Boldt R, Schwarz S. Simultaneous adsorption of heavy metal ions and anions from aqueous solutions on chitosan—investigated by spectrophotometry and SEM-EDX analysis. Colloids Surf A Physicochem Eng Asp 2016;510:275–82.10.1016/j.colsurfa.2016.08.033Suche in Google Scholar
62. Pestov A, Bratskaya S. Chitosan and its derivatives as highly efficient polymer ligands. Molecules 2016;21(3):330.10.3390/molecules21030330Suche in Google Scholar PubMed PubMed Central
63. Zhang Y, Du M, Liu B, Su Z, Li G, Jiang T. Separation and recovery of iron and manganese from high-iron manganese oxide ores by reduction roasting and magnetic separation technique. Sep Sci Technol 2017;52(7):1321–32.10.1080/01496395.2017.1284864Suche in Google Scholar
64. Ahmad M, Ahmed S, Swami BL, Ikram S. Adsorption of heavy metal ions: role of chitosan and cellulose for water treatment. Int J Pharmacogn 2015;2(6):280–9.Suche in Google Scholar
65. Jianglian D. Application of chitosan based coating in fruit and vegetable preservation: a review. J Food Process Technol 2013;4(5):24–93.10.4172/2157-7110.1000227Suche in Google Scholar
66. Kyzas GZ, Bikiaris DN, Seredych M, Bandosz TJ, Deliyanni EA. Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite. Bioresour Technol 2014;152:399–406.10.1016/j.biortech.2013.11.046Suche in Google Scholar PubMed
67. Vandenbossche M, Jimenez M, Casetta M, Bellayer S, Beaurain A, Bourbigot S, et al. Chitosan-grafted nonwoven geotextile for heavy metals sorption in sediments. React Funct Polym 2013;73(1):53–9.10.1016/j.reactfunctpolym.2012.09.002Suche in Google Scholar
68. Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 2010;79(4):998–1005.10.1016/j.carbpol.2009.10.024Suche in Google Scholar
69. Syafalni S, Abustan I, Dahlan I, Wah CK, Umar G. Treatment of dye wastewater using granular activated carbon and zeolite filter. Mod Appl Sci 2012;6(2):37–51.Suche in Google Scholar
70. Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 2014;71:141–6.10.1016/j.ijbiomac.2014.05.036Suche in Google Scholar PubMed
71. Pasukamonset P, Kwon O, Adisakwattana S. Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocoll 2016;61:772–9.10.1016/j.foodhyd.2016.06.039Suche in Google Scholar
72. Alver E, Bulut M, Metin AÜ, Çiftçi H. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation. Spectrochim Acta Part A Mol Biomol Spectrosc 2017;171:132–8.10.1016/j.saa.2016.07.046Suche in Google Scholar PubMed
73. Yang Z, Lei C, Zhou Y, Liu Y, Sun X. A GMI biochip platform based on Co-based amorphous ribbon for the detection of magnetic Dynabeads. Anal Methods 2015;7(16):6883–9.10.1039/C5AY01498KSuche in Google Scholar
74. Cardarelli F. Composite materials. Materials Handbook 2008;122:1019–35.10.1007/978-3-319-38925-7_18Suche in Google Scholar
75. Irfan M, Seiler M. Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind Eng Chem Res 2010;49:1169–96.10.1021/ie900216rSuche in Google Scholar
76. Tumarkin E, Kumacheva E. Microfluidic generation of microgels from synthetic and natural polymers. Chem Soc Rev 2009;38(8):2161.10.1039/b809915bSuche in Google Scholar PubMed
77. Wang Y, Yan Y, Cui J, Hosta-Rigau L, Heath JK, Nice EC, et al. Encapsulation of water-insoluble drugs in polymer capsules prepared using mesoporous silica templates for intracellular drug delivery. Adv Mater 2010;22(38):4293–7.10.1002/adma.201001497Suche in Google Scholar PubMed
78. Priya James H, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B 2014;4(2):120–7.10.1016/j.apsb.2014.02.005Suche in Google Scholar PubMed PubMed Central
79. Li J, Yu F, Chen Y, Oupický D. Polymeric drugs: advances in the development of pharmacologically active polymers. J Control Release 2015;219:369–82.10.1016/j.jconrel.2015.09.043Suche in Google Scholar PubMed PubMed Central
80. Ammala A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci 2013;35:113–24.10.1111/ics.12017Suche in Google Scholar PubMed
81. Aleksendrić D, Carlone P. Introduction to composite materials. In: Soft computing in the design and manufacturing of composite materials. 2015;58:1–5.10.1533/9781782421801.1Suche in Google Scholar
82. Gibson RF. A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 2010;92:2793–810.10.1016/j.compstruct.2010.05.003Suche in Google Scholar
83. Ullah H, Azizi K, Man ZB, Ismail MBC, Khan I. The potential of microencapsulated self healing materials for microcracks recovery in self healing composite systems: a review. Polym Rev 2016;372(May):40–57.10.1080/15583724.2015.1107098Suche in Google Scholar
84. Tomaszewski JE, Schwarzenbach RP, Sander M. Protein encapsulation by humic substances. Environ Sci Technol 2011;45(14):6003–10.10.1021/es200663hSuche in Google Scholar PubMed
85. Cai KY, Zhou YM. Reduction of nitroarenes to aromatic amines with sodium borohydride in the presence of selenium and actived carbon. Bull Chem React Eng Catal 2015;10(3): 275–80.10.9767/bcrec.10.3.8512.275-280Suche in Google Scholar
86. Panthi G, Park M, Kim HY, Park SJ. Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. J Ind Eng Chem 2015;24:1–13.10.1016/j.jiec.2014.09.011Suche in Google Scholar
87. De Alteriis R, Vecchione R, Attanasio C, De Gregorio M, Porzio M, Battista E, et al. A method to tune the shape of protein-encapsulated polymeric microspheres. Sci Rep 2015;51:14–20.10.1038/srep12634Suche in Google Scholar PubMed PubMed Central
88. Rashidzadeh A, Olad A, Hejazi MJ. Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Adv Polym Technol 2017;36(2):177–85.10.1002/adv.21597Suche in Google Scholar
89. Drikas M, Dixon M, Morran J. Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal. Water Res 2011;45(4):1539–48.10.1016/j.watres.2010.11.024Suche in Google Scholar PubMed
90. Aryal A, Sathasivan A, Heitz A, Zheng G, Nikraz H, Ginige MP. Combined BAC and MIEX pre-treatment of secondary wastewater effluent to reduce fouling of nanofiltration membranes. Water Res 2015;70:214–23.10.1016/j.watres.2014.12.003Suche in Google Scholar PubMed
91. Palomino PA, Boyer TH. Magnetic ion exchange (MIEX) treatment of surface water, groundwater, and landfill leachate wastewater: effect on organic matter fluorescence. Sep Sci Technol 2013;48(15):2277–86.10.1080/01496395.2013.805227Suche in Google Scholar
92. Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomed 2012;7:297–306.10.2147/IJN.S28344Suche in Google Scholar PubMed PubMed Central
93. Kelley KW, Lewin HA. Monoclonal antibodies: pragmatic application of immunology and cell biology. J Anim Sci 1986;63:288–309.10.2527/jas1986.631288xSuche in Google Scholar PubMed
94. Rader C. Chemical biology: how to minimalize antibodies. Nature 2015;518:38–9.10.1038/518038aSuche in Google Scholar PubMed
95. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today 2015;20(7):838–47.10.1016/j.drudis.2015.02.008Suche in Google Scholar PubMed
96. Kuras L. Characterization of protein-DNA association in vivo by chromatin immunoprecipitation. Methods Mol Biol 2004;284:147–62.10.1385/1-59259-816-1:147Suche in Google Scholar
97. Seifert GJ, Roberts K. The biology of arabinogalactan proteins. Annu Rev Plant Biol 2007;58(1):137–61.10.1146/annurev.arplant.58.032806.103801Suche in Google Scholar PubMed
98. Curti G, Skowronek F, Vernochi R, Rodriguez-Buzzi AL, Rodriguez-Buzzi JC, Casanova G, et al. Morphological evaluation of sperm from infertile men selected by magnetic activated cell sorting (MACS). Reprod Biol 2014;14(4):289–92.10.1016/j.repbio.2014.07.002Suche in Google Scholar PubMed
99. Müller P, Gaebel R, Lemcke H, Wiekhorst F, Hausburg F, Lang C, et al. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS® purified stem cell products. Biomaterials 2017;135:74–84.10.1016/j.biomaterials.2017.05.002Suche in Google Scholar PubMed
100. Müller P, Gaebel R, Lemcke H, Steinhoff G, David R. Data on the fate of MACS® MicroBeads intramyocardially co-injected with stem cell products. Data Br 2017;13:569–74.10.1016/j.dib.2017.06.035Suche in Google Scholar PubMed PubMed Central
101. Ivashchenko O, Lewandowski M, Peplińska B, Jarek M, Nowaczyk G, Wiesner M, et al. Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Mater Sci Eng C 2015;55:343–59.10.1016/j.msec.2015.05.023Suche in Google Scholar PubMed
102. Chiou CS, Chuang KJ, Chen HW, Chen YC. Magnetite modified with amine polymer to adsorb indium ions. Powder Technol 2015;279:247–53.10.1016/j.powtec.2015.04.015Suche in Google Scholar
103. Yoon Y, Zheng M, Ahn YT, Park WK, Yang WS, Kang JW. Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep Purif Technol 2017;178:40–8.10.1016/j.seppur.2017.01.025Suche in Google Scholar
104. Singh LH, Pati SS, Coaquira JAH, Matilla J, Guimarães EM, Oliveira AC, et al. Magnetic interactions in cubic iron oxide magnetic nanoparticle bound to zeolite. J Magn Magn Mater 2016;416:98–102.10.1016/j.jmmm.2016.05.003Suche in Google Scholar
105. Salem Attia TM, Hu XL, Yin DQ. Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J Exp Nanosci 2014;9(6):551–60.10.1080/17458080.2012.677549Suche in Google Scholar
106. Wang L, Zhao Y, Duan C, Li P, Zhang B. Anode polarization character of metallic oxides loaded granular actived carbon during phenol electro-oxidation in a three dimensional electrode reactor. Procedia Eng 2015;102:249–55.10.1016/j.proeng.2015.01.140Suche in Google Scholar
107. Zubrik A, Lovas M, Matik M, Stefusova K, Hredzak S. Synthesis of magnetic materials from natural carbon precursors ‒ a review. J Polish Miner Eng Soc 2014;12:127–30.Suche in Google Scholar
108. Afkhami A, Sayari S, Moosavi R, Madrakian T. Magnetic nickel zinc ferrite nanocomposite as an efficient adsorbent for the removal of organic dyes from aqueous solutions. J Ind Eng Chem 2015;21:920–4.10.1016/j.jiec.2014.04.033Suche in Google Scholar
109. Springer V, Pecini E, Avena M. Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions. J Environ Chem Eng 2016;4(4):3882–90.10.1016/j.jece.2016.08.026Suche in Google Scholar
110. Sierra-Bermúdez S, Maldonado-Camargo LP, Orange F, Guinel MJF, Rinaldi C. Assessing magnetic nanoparticle aggregation in polymer melts by dynamic magnetic susceptibility measurements. J Magn Magn Mater 2015;378:64–72.10.1016/j.jmmm.2014.10.171Suche in Google Scholar
111. Mittal V. In-situ synthesis of polymer nanocomposites. In-situ synthesis of polymer nanocomposites. 2011;45:79–85.Suche in Google Scholar
112. Sun H, Yang B. In situ preparation of nanoparticles/polymer composites. Sci China Ser E Technol Sci 2008;51(11):1886–901.10.1007/s11431-008-0109-6Suche in Google Scholar
113. Elliott CM, Steiner UE, Kremer JJ, Hötzer KA. Polymer-encapsulated reverse micelles: a composite material design for the optical detection of weak magnetic fields. Chem Mater 2005;17(5):941–3.10.1021/cm0486971Suche in Google Scholar
114. Harris R, Lecumberri E, Mateos-Aparicio I, Mengíbar M, Heras A. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis: nanoparticules et microsphères de chitosane pour l’encapsulation d’antioxydants naturels extraits d’Ilex paraguariensis. Carbohydr Polym 2011;84(2):803–6.10.1016/j.carbpol.2010.07.003Suche in Google Scholar
115. Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 2015;50(1):30–7.10.1016/j.biomaterials.2015.01.048Suche in Google Scholar PubMed
116. Rescignano N, Fortunati E, Armentano I, Hernandez R, Mijangos C, Pasquino R, et al. Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. J Colloid Interface Sci 2015;445:31–9.10.1016/j.jcis.2014.12.032Suche in Google Scholar PubMed
117. Müller WEG, Schröder HC, Feng Q, Schlossmacher U, Link T, Wang X. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation. J Tissue Eng Regen Med 2015;9(11):E39–50.10.1002/term.1745Suche in Google Scholar PubMed
118. Best SP, Kolev SD, Gabriel JRP, Cattrall RW. Polymerisation effects in the extraction of Co(II) into polymer inclusion membranes containing Cyanex 272. Structural studies of the Cyanex 272-Co(II) complex. J Memb Sci 2016;497:377–86.10.1016/j.memsci.2015.09.046Suche in Google Scholar
119. Mubarok MZ, Hanif LI. Cobalt and nickel separation in nitric acid solution by solvent extraction using Cyanex 272 and Versatic 10. Procedia Chem 2016;19:743–50.10.1016/j.proche.2016.03.079Suche in Google Scholar
120. Cataldo S, Gianguzza A, Milea D, Muratore N, Pettignano A. Pb(II) adsorption by a novel activated carbon – alginate composite material. A kinetic and equilibrium study. Int J Biol Macromol 2016;92:769–78.10.1016/j.ijbiomac.2016.07.099Suche in Google Scholar
121. Navarro R, Arancibia C, Herrera ML, Matiacevich S. Effect of type of encapsulating agent on physical properties of edible films based on alginate and thyme oil. Food Bioprod Process 2016;97:63–75.10.1016/j.fbp.2015.11.001Suche in Google Scholar
122. Fu J, Xu Z, Li QS, Chen S, An SQ, Zeng QF, et al. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite. J Environ Sci 2010;22(4):512–8.10.1016/S1001-0742(09)60142-XSuche in Google Scholar
123. Jadhav AJ, Srivastava VC. Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. Chem Eng J 2013;229:450–9.10.1016/j.cej.2013.06.021Suche in Google Scholar
124. Gundogdu A, Duran C, Senturk HB, Soylak M, Ozdes D, Serencam H. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. J Chem Eng Data 2012;57:2733–43.10.1021/je300597uSuche in Google Scholar
125. Ahmed MJ, Theydan SK. Adsorption of p-chlorophenol onto microporous activated carbon from Albizia lebbeck seed pods by one-step microwave assisted activation. J Anal Appl Pyrolysis 2013;100:253–60.10.1016/j.jaap.2013.01.008Suche in Google Scholar
126. Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 2017;10:S1445–51.10.1016/j.arabjc.2013.04.021Suche in Google Scholar
127. Hameed BH, Din ATM, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 2007;141(3):819–25.10.1016/j.jhazmat.2006.07.049Suche in Google Scholar PubMed
128. Mahmoudi K, Hamdi N, Srasra E. Study of adsorption of methylene blue onto activated carbon from lignite. Surf Eng Appl Electrochem 2015;51(5):427–33.10.3103/S1068375515050105Suche in Google Scholar
129. Hajjaji M, Alami A, El Bouadili A. Removal of methylene blue from aqueous solution by fibrous clay minerals. J Hazard Mater 2006;135(1–3):188–92.10.1016/j.jhazmat.2005.11.048Suche in Google Scholar PubMed
130. Mohammed MA, Shitu A, Ibrahim A. Removal of methylene blue using low cost adsorbent: a review. Res J Chem Sci 2014;4(1): 91–102.Suche in Google Scholar
131. Salima A, Benaouda B, Noureddine B, Duclaux L. Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Res 2013;47(10):3375–88.10.1016/j.watres.2013.03.038Suche in Google Scholar PubMed
132. Jung M, Kyoung HJ, Kim B, Bong HL, Byoung WC, Oh KB, et al. Meroditerpenoids from the brown alga Sargassum siliquastrum. J Nat Prod 2008;71(10):1714–9.10.1021/np800321ySuche in Google Scholar PubMed
133. El-Sayed GO. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 2011;272(1–3):225–32.10.1016/j.desal.2011.01.025Suche in Google Scholar
134. Kim S, Nimni ME, Yang Z, Han B. Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res Part B Appl Biomater 2005;75(2):442–50.10.1002/jbm.b.30324Suche in Google Scholar PubMed
135. Crini G, Gimbert F, Robert C, Martel B, Adam O, Morin-Crini N, et al. The removal of basic blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies. J Hazard Mater 2008;153(1–2):96–106.10.1016/j.jhazmat.2007.08.025Suche in Google Scholar PubMed
136. He J, Huang M, Wang D, Zhang Z, Li G. Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal 2014;101:84–101.10.1016/j.jpba.2014.04.017Suche in Google Scholar PubMed
137. Jodra Y, Mijangos F. Phenol adsorption in immobilized activated carbon with alginate gels. Sep Sci Technol 2003;38(8):1851–67.10.1081/SS-120019412Suche in Google Scholar
138. Paques JP, Van Der Linden E, Van Rijn CJM, Sagis LMC. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 2014;209:163–71.10.1016/j.cis.2014.03.009Suche in Google Scholar PubMed
139. Peretz S, Cinteza O. Removal of some nitrophenol contaminants using alginate gel beads. Colloids Surf A Physicochem Eng Asp 2008;319(1–3):165–72.10.1016/j.colsurfa.2007.06.012Suche in Google Scholar
140. Mupa MMT. Preparation of rice hull activated carbon for the removal of selected pharmaceutical waste compounds in hospital effluent. J Environ Anal Toxicol 2015;7:21–8.10.4172/2161-0525.S7-008Suche in Google Scholar
141. Mazlan MAF, Uemura Y, Yusup S, Elhassan F, Uddin A, Hiwada A, et al. Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Eng 2016;148:530–7.10.1016/j.proeng.2016.06.549Suche in Google Scholar
142. Poots AVJP, Mckay G, Healy JJ, Journal S, Pollution W, Federation C, et al. Removal of basic dye from effluent using wood as an adsorbent. Water Pollut Control Fed 1978;50(5):926–35.Suche in Google Scholar
143. Garg VK, Amita M, Kumar R, Gupta R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dye Pigment 2004;63(3):243–50.10.1016/j.dyepig.2004.03.005Suche in Google Scholar
144. Wang SK, Stiles AR, Guo C, Liu CZ. Harvesting microalgae by magnetic separation: a review. Algal Res 2015;9:178–85.10.1016/j.algal.2015.03.005Suche in Google Scholar
145. Craciunescu I, Petran A, Liebscher J, Vekas L, Turcu R. Synthesis and characterization of size-controlled magnetic clusters functionalized with polymer layer for wastewater depollution. Mater Chem Phys 2017;185:91–7.10.1016/j.matchemphys.2016.10.009Suche in Google Scholar
146. Serdyuk SS, Lomayev VG, Kuzmin VI, Flett DS, Gudkova NV, Kuzmin DV, et al. The Chuktukon niobium-rare earth metals deposit: geology and investigation into the processing options of the ores. Miner Eng 2017;113:8–14.10.1016/j.mineng.2017.07.015Suche in Google Scholar
147. Sinha A, Ganguly R, Puri IK. Magnetic separation from superparamagnetic particle suspensions. J Magn Magn Mater 2009;321(14):2251–6.10.1016/j.jmmm.2009.01.034Suche in Google Scholar
148. Xu Q, Wang J, Chen S, Li W, Wang H. Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells. Express Polym Lett 2013;7(10):842–51.10.3144/expresspolymlett.2013.81Suche in Google Scholar
149. Kurlyandskaya G, Levit V. Magnetic dynabeads® detection by sensitive element based on giant magnetoimpedance. Biosens Bioelectron 2005;20:1611–6.10.1016/j.bios.2004.04.027Suche in Google Scholar PubMed
150. Deng N, Kang W, Liu Y, Ju J, Wu D, Li L, et al. A review on separators for lithiumsulfur battery: progress and prospects. J Power Sources 2016;331:132–55.10.1016/j.jpowsour.2016.09.044Suche in Google Scholar
151. Parker M. High gradient magnetic separation. Phys Technol 1981;12(6):263–8.10.1088/0305-4624/12/6/I03Suche in Google Scholar
152. Menzel K, Windt CW, Lindner JA, Michel A, Nirschl H. Dipolar openable halbach magnet design for high-gradient magnetic filtration. Sep Purif Technol 2013;105:114–20.10.1016/j.seppur.2012.12.019Suche in Google Scholar
153. Mast BA. Advantages and limitations of the MACS lift for facial rejuvenation. Ann Plast Surg 2014;72:S139–43.10.1097/SAP.0000000000000092Suche in Google Scholar
154. Gaballah I, Goy D, Kilbertus G, Thauront J. Decontamination of industrial effluents for environment protection and recycling of metals. Resour Conserv Recycl 1994;10(1–2):97–106.10.1016/0921-3449(94)90042-6Suche in Google Scholar
155. Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 2014;37:1805–25.10.1002/jssc.201400256Suche in Google Scholar PubMed
156. Oberteuffer J. Magnetic separation: a review of principles, devices, and applications. Magn IEEE Trans 1974;10(2):223–38.10.1109/TMAG.1974.1058315Suche in Google Scholar
157. Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990;11(2):231–8.10.1002/cyto.990110203Suche in Google Scholar PubMed
158. Moeser GD, Roach KA, Green WH, Hatton TA, Laibinis PE. High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J 2004;50(11):2835–48.10.1002/aic.10270Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Environmental health, engineering and public health
- Review Articles
- Mitochondrial dysfunction: a key player in the pathogenesis of cardiovascular diseases linked to air pollution
- Pesticide management approach towards protecting the safety and health of farmers in Southeast Asia
- Synthesis and characterization of the removal of organic pollutants in effluents
- A systematic review of micro correlates of maternal mortality
- A review on the sustainability of textile industries wastewater with and without treatment methodologies
- Mini Review
- Potential causes of asthma in the United Arab Emirates: drawing insights from the Arabian Gulf
- Original Article
- Moon/sun – suicide
- Short Communication
- Prevention-intervention strategies to reduce exposure to e-waste
Artikel in diesem Heft
- Frontmatter
- Editorial
- Environmental health, engineering and public health
- Review Articles
- Mitochondrial dysfunction: a key player in the pathogenesis of cardiovascular diseases linked to air pollution
- Pesticide management approach towards protecting the safety and health of farmers in Southeast Asia
- Synthesis and characterization of the removal of organic pollutants in effluents
- A systematic review of micro correlates of maternal mortality
- A review on the sustainability of textile industries wastewater with and without treatment methodologies
- Mini Review
- Potential causes of asthma in the United Arab Emirates: drawing insights from the Arabian Gulf
- Original Article
- Moon/sun – suicide
- Short Communication
- Prevention-intervention strategies to reduce exposure to e-waste