Home Climate change and managing water crisis: Pakistan’s perspective
Article
Licensed
Unlicensed Requires Authentication

Climate change and managing water crisis: Pakistan’s perspective

  • Mumtaz Hussain EMAIL logo and Saniea Mumtaz
Published/Copyright: April 1, 2014

Abstract

Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30–150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water scarcity. To minimize adverse impacts of climate change on the water crisis in Pakistan, the preparation of integrated national, provincial, and local level master plans encompassing technical, social, environmental, administrative, and financial considerations is necessary. It is imperative to implement two simultaneous approaches of adaptation (living with climate change) and mitigation (addressing negativities of climate change). Salient features are integrated management of watersheds/catchments/water bodies, optimum exploitation of present sources, development of new sources, water conservation, adequate drainage, efficient design of water storage, conveyance, distribution and supply systems, utilization of waste water, and regulation of water quality.


Corresponding author: Mumtaz Hussain, Society for Conservation of Environment and Sustainable Development, E-mail:

References

1. Asianics Agro Development International. Climate and water resources in South Asia: vulnerability and adaptation. 2005.Search in Google Scholar

2. Bhutta MN, Sufi AB. A Perspective scenario of water for irrigated agriculture in Pakistan. Proceedings of Pakistan Engineering Congress 2004;69.Search in Google Scholar

3. Hussain M. Environmental degradation: realities and remedies. Lahore: Ferozons (Pvt) Ltd, 1998.Search in Google Scholar

4. Ishfaq A. Water and new technologies. Islamabad: Global Change impacts Studies Centre, 2002.Search in Google Scholar

5. Pakistan Engineering Congress. Proceedings of 69th Annual Session 2004.Search in Google Scholar

6. The Environ Monitor. World Water Day, Water and Culture, 2006.Search in Google Scholar

7. The Environ Monitor. World Water Day, Coping With Water Scarcity, 2007.Search in Google Scholar

Received: 2014-1-16
Accepted: 2014-1-16
Published Online: 2014-4-1
Published in Print: 2014-4-1

©2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. The Pacific Basin Consortium for Environment and Health
  4. Environmental Exposures in Indigenous Communities
  5. Environmental exposure in indigenous communities: an international perspective
  6. Novel materials for environmental remediation of oil sands contaminants
  7. Metals
  8. Long-term health consequences of prenatal arsenic exposure: links to the genome and the epigenome
  9. Health hazards and mitigation of chronic poisoning from arsenic in drinking water: Taiwan experiences
  10. Remediation of mercury-contaminated soil – a case study
  11. Bioaccessibility, release kinetics, and molecular speciation of arsenic and lead in geo-dusts from the Iron King Mine Federal Superfund site in Humboldt, Arizona
  12. Mercury poisoning dentistry: high-level indoor air mercury contamination at selected dental sites
  13. Hazardous Waste
  14. New approaches and insights into bioremediation of hazardous waste
  15. Modeling the emission sources for polychlorinated biphenyls in India: implications for human health risk assessment
  16. Microorganism-assisted phytoremediation of heavy metal and endosulfan contaminated soil
  17. Chemicals: friends and foes
  18. Spatial distribution of persistent organic pollutants in the surface water of River Brahmaputra and River Ganga in India
  19. Hexachlorocyclohexane: persistence, toxicity and decontamination
  20. E-waste: impacts, issues and management strategies
  21. Water
  22. Clean water and sanitation in developing areas lacking conventional power
  23. Striving for success in sanitation, hygiene, and water supply
  24. Solar membrane distillation: desalination for the Navajo Nation
  25. Climate change and managing water crisis: Pakistan’s perspective
  26. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture
  27. Mining
  28. Socially responsible mining: the relationship between mining and poverty, human health and the environment
  29. Modeling the emission, transport and deposition of contaminated dust from a mine tailing site
  30. Coal mine drainage sludge and its application for treating metallic mine effluent
  31. Emerging Issues in the Pacific Basin
  32. Nanotechnology and toxicology
  33. Nanotoxicology and nanotechnology: new findings from the NIEHS and Superfund Research Program scientific community
  34. Nanotechnology in environmental remediation: degradation of volatile organic compounds (VOCs) over visible-light-active nanostructured materials
  35. Combating infectious diseases in the Pacific Islands: sentinel surveillance, environmental health, and geospatial tools
  36. Projected health impacts of heat events in Washington State associated with climate change
  37. Community-based approaches to environmental health research around the globe
  38. Air Pollution
  39. Particulate air pollution and cardiovascular disease – it is time to take it seriously
  40. Chemical exposure and respiratory health of children in an industrial setting
  41. Fine particles characterization in residential homes located in different microenvironment of India
  42. Respiratory health risk assessment of children living close to industrial areas in Indonesia
Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/reveh-2014-0020/html
Scroll to top button