Home Hollow fiber membrane technology applied for oily wastewater and wetland water treatment: a review
Article
Licensed
Unlicensed Requires Authentication

Hollow fiber membrane technology applied for oily wastewater and wetland water treatment: a review

  • Muthia Elma ORCID logo EMAIL logo , Aulia Rahma , Rhafiq Abdul Ghani , Zahratunisa Zahratunnisa , Fitri Ria Mustalifah , Riani Ayu Lestari , Nurul Huda , Erdina Lulu Atika Rampun and Awali Sir Kautsar Harivram
Published/Copyright: September 23, 2024
Become an author with De Gruyter Brill

Abstract

The application of hollow fiber membranes is one of the excellent processes to treat oily wastewater and wetland water. Treating oily wastewater and wetland water is a significant challenge and reported expensive. These wastes generally come from due the expansion of massive industries and human activities these days. This review discusses the critical ways of membrane hollow fiber application in treating oily wastewater as well as wetland water. It is also reported in literature that there is mostly organic contaminant accommodated in oily wastewater and wetland water. Due to that, the application of hollow fiber is the best way as a removal organic contaminant in oily wastewater as well as wetland water. Apart from that, the conventional and advanced methods are also well explained within this review followed by detail treatments, application, and performance of this hollow fiber membrane application. To achieve the best completed outcome of pollutants removal, several applications relate to other processes before contacting to hollow fiber membranes. The integration between conventional and advanced membrane technology in oily wastewater and wetland treatment is also well explained. The important factors in the fabrication and application of hollow fiber membrane depend on membrane materials and filtration processes. It means that the selection between membrane materials and final processes to choose are depending on the urgency, source of pollutants, and intended use.


Corresponding author: Muthia Elma, Chemical Engineering Department, 563576 Lambung Mangkurat University , Banjarbaru 70714, Indonesia; Materials and Membranes Research Group (M2ReG), Banjarbaru 70714, Indonesia; and Doctoral Program in Environmental Science, Postgraduate Program, Lambung Mangkurat University, Banjarbaru 70123, Indonesia, E-mail:

Funding source: Oil Palm Research Grant 2022

Award Identifier / Grant number: [PRJ-371/DPKS/2022]

  1. Research ethics: This manuscript was not subjected or related to human or animal protections.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors are very grateful to the Materials and Membranes Research Group (M2ReG) for the financial support and facilities. Special acknowledgment to the Oil Palm Research Grant (PRJ-371/DPKS/2022) for the financial support.

  5. Data availability: Not applicable.

Abbreviations

AGR

Aerobic granular activated sludge reactor

AOPs

Advanced oxidation processes

BET

Brunauer–Emmett–Teller

BOD

Biochemical oxygen demand

BT

Biological treatment

CF

Coagulation/flocculation

CFF

Cross flow filtration

CHP

Combined heat and power

COD

Chemical oxygen demand

CPO

Crude palm oil

CTC

Carbon tetrachloride

CWs

Constructed wetlands

DAF

Dissolved air flotation

DLHF

Dual layer hollow fibre

DMAc

Dimethylacetamide

DO

Dissolved oxygen

DOM

Dissolved organic matter

EC

Electrocoagulation

EfOM

Fate of effluent organic matter

ET

Electrochemical technology

FEB

Fresh fruit bunches

FO

Forward Osmosis

FTIR

Fourier transform infrared

GS

Gravity separation

HA

Humic acids

HF

Hollow fibre

HFCM

Hollow fiber ceramic membrane

HFMEs

Hollow fibre membrane modules

HRT

Hydraulic retention time

IE

Ion exchange

MBR

Membrane bioreactors

MD

Membrane distillation

MF

Micro filtration

MIEX

Magnetic ion exchange systems

MW

Molecular weight

NF

Nanofiltration

NMP

N-methyl-2-pyrrolidone

NOM

Natural organic matter

OM

Organic matter

PAC

Poly-(aluminum chloride)

PAC

Powdered activated carbon

PAI

Polyamide imide

PEG

Polyethylene glycol

PES

Poly(ether-sulfone)

PESf

Polyethersulfone

PET

Polyethylene terephthalate

POME

Palm oil mill effluent

PPSU

Polyphenyl sulfone

PV

Pervaporation

PVDF

Polyvinylidene fluoride

PVP

Polyvinylpyrrolidone

RO

Reverse osmosis

RVORW

Real vegetable oil refinery wastewater

SBR

Sequencing batch bioreactors

SDI

Silt density index

SEM

Scanning electron microscope

SPEEK

Sulfonated poly (ether ether ketone)

SS

Suspended solids

SUVA

Specific UV absorption

SVORW

Synthetic vegetable oil refinery wastewater

TCE

Tetrachloroethlene

TEOS

Tetraethyl orthosilicate

THM

Trihalomethane

TMP

Trans membrane pressure

TOC

Total organic carbon

TPH

Total petroleum hydrocarbon

TSS

Total suspended solids

UF

Ultrafiltration

UV254

UV absorption wavelength at 254 nm

UV280

UV absorption wavelength at 280 nm

UV365

UV absorption wavelength at 365 nm

VP

Vapor permeation

VUV

Vacuum ultraviolet

XRD

X-ray diffraction

References

Abadi, S.R.H., Sebzari, M.R., Hemati, M., Rekabdar, F., and Mohammadi, T. (2011). Ceramic membrane performance in microfiltration of oily wastewater. Desalination 265: 222–228, https://doi.org/10.1016/j.desal.2010.07.055.Search in Google Scholar

Abdullah, N., Rahman, M.A., Othman, M.H.D., Jaafar, J., and Ismail, A.F. (2018). Membranes and membrane processes: fundamentals. In: Current trends and future developments on (bio-) membranes. Elsevier, Italy.10.1016/B978-0-12-813549-5.00002-5Search in Google Scholar

Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y., and Jeng, Y.T. (2021). Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water 13: 980, https://doi.org/10.3390/w13070980.Search in Google Scholar

Adetunji, A.I. and Olaniran, A.O. (2021). Treatment of industrial oily wastewater by advanced technologies: a review. Applied Water Science 11: 98, https://doi.org/10.1007/s13201-021-01430-4.Search in Google Scholar

Ahmad, T., Belwal, T., Li, L., Ramola, S., Aadil, R.M., Xu, Y., and Zisheng, L. (2020). Utilization of wastewater from edible oil industry, turning waste into valuable products: a review. Trends Food Sci. Technol. 99: 21–33, https://doi.org/10.1016/j.tifs.2020.02.017.Search in Google Scholar

Akhondi, E., Zamani, F., Tng, K.H., Leslie, G., Krantz, W.B., Fane, A.G., and Chew, J.W. (2017). The performance and fouling control of submerged hollow fiber (HF) systems: a review. Appl. Sci. 7: 765, https://doi.org/10.3390/app7080765.Search in Google Scholar

Alftessi, S.A., Othman, M.H.D., Adam, M.R., Farag, T.M., Ismail, A.F., Rahman, M.A., Jaafar, J., Habib, M.A., Raji, Y.O., and Hubadillah, S.K. (2021). Novel silica sand hollow fibre ceramic membrane for oily wastewater treatment. J. Environ. Chem. Eng. 9: 104975, https://doi.org/10.1016/j.jece.2020.104975.Search in Google Scholar

Ali, A., Criscuoli, A., Macedonio, F., and Drioli, E. (2019a). A comparative analysis of flat sheet and capillary membranes for membrane distillation applications. Desalination 456: 1–12, https://doi.org/10.1016/j.desal.2019.01.006.Search in Google Scholar

Ali, F., Lestari, D.L., and Putri, M.D. (2019b). Application of ozone plasma technology for treating peat water into drinking water. IOP Conf. Ser. Earth Environ. Sci.: 012056, https://doi.org/10.1088/1755-1315/385/1/012056.Search in Google Scholar

AlJaberi, F.Y., Ahmed, S.A., and Makki, H.F. (2020). Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization. Heliyon 6, https://doi.org/10.1016/j.heliyon.2020.e03988.Search in Google Scholar PubMed PubMed Central

Al-Khafaji, S.S. and Al-Rekabi, W.S. (2022). Apply membrane biological reactor (MBR) in industrial wastewater treatment: a mini review. Eurasian J. Eng. Technol. 7: 98–106.Search in Google Scholar

Ashaghi, K.S., Ebrahimi, M., and Czermak, P. (2008). Ceramic ultra- and nanofiltration membranes for oilfield produced water treatment: a mini review. Open Environ. Sci. 1: 1–8, https://doi.org/10.2174/1876325100701010001.Search in Google Scholar

Badruzzaman, M., Voutchkov, N., Weinrich, L., and Jacangelo, J.G. (2019). Selection of pretreatment technologies for seawater reverse osmosis plants: a review. Desalination 449: 78–91, https://doi.org/10.1016/j.desal.2018.10.006.Search in Google Scholar

Baggio, A., Doan, H.N., Vo, P.P., Kinashi, K., Sakai, W., Tsutsumi, N., Fuse, Y., and Sangermano, M. (2021). Chitosan-functionalized recycled polyethylene terephthalate nanofibrous membrane for sustainable on-demand oil-water separation. Global Chall. 5: 2000107, https://doi.org/10.1002/gch2.202000107.Search in Google Scholar PubMed PubMed Central

Baker, R.W. (2012). Membrane technology and applications. John Wiley & Sons, California.10.1002/9781118359686Search in Google Scholar

Benito, J., Rios, G., Ortea, E., Fernández, E., Cambiella, A., Pazos, C., and Coca, J. (2002). Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters. Desalination 147: 5–10, https://doi.org/10.1016/s0011-9164(02)00563-5.Search in Google Scholar

Benito, J.M., Sánchez, M.J., Pena, P., and Rodríguez, M.A. (2007). Development of a new high porosity ceramic membrane for the treatment of bilge water. Desalination 214: 91–101, https://doi.org/10.1016/j.desal.2006.10.020.Search in Google Scholar

Berk, Z. (2018). Food process engineering and technology. Academic Press, Burlington.Search in Google Scholar

Bhatnagar, A. and Sillanpää, M. (2017). Removal of natural organic matter (NOM) and its constituents from water by adsorption–a review. Chemosphere 166: 497–510, https://doi.org/10.1016/j.chemosphere.2016.09.098.Search in Google Scholar PubMed

Bouhabila, E.H., Aı̈m, R.B., and Buisson, H. (2001). Fouling characterisation in membrane bioreactors. Sep. Purif. Technol. 22: 123–132.10.1016/S1383-5866(00)00156-8Search in Google Scholar

Bow, Y. and Dewi, T. (2019). Peat water treatment by electrocoagulation using aluminium electrodes. IOP Conf. Ser. Earth Environ. Sci.: 012013, https://doi.org/10.1088/1755-1315/258/1/012013.Search in Google Scholar

Brião, V.B., Vieira Salla, A.C., Miorando, T., Hemkemeier, M., and Cadore Favaretto, D.P. (2019). Water recovery from dairy rinse water by reverse osmosis: giving value to water and milk solids. Resour. Conserv. Recycl. 140: 313–323, https://doi.org/10.1016/j.resconrec.2018.10.007.Search in Google Scholar

Cai, W., Zhang, J., Li, Y., Chen, Q., Xie, W., and Wang, J. (2022). Characterizing membrane fouling formation during ultrafiltration of high-salinity organic wastewater. Chemosphere 287: 132057, https://doi.org/10.1016/j.chemosphere.2021.132057.Search in Google Scholar PubMed

Chang, S. (2011). Application of submerged hollow fiber membrane in membrane bioreactors: filtration principles, operation, and membrane fouling. Desalination 283: 31–39, https://doi.org/10.1016/j.desal.2011.03.025.Search in Google Scholar

Chang, S. and Fane, A.G. (2002). Filtration of biomass with laboratory-scale submerged hollow fibre modules–effect of operating conditions and module configuration. J. Chem. Technol. Biotechnol.: Int. Res. Process Environ. Clean Technol. 77: 1030–1038, https://doi.org/10.1002/jctb.675.Search in Google Scholar

Chang, Q., Wang, X., Wang, Y., Zhang, X., Cerneaux, S., and Zhou, J.E. (2016). Effect of hydrophilic modification with nano-titania and operation modes on the oil–water separation performance of microfiltration membrane. Desalination Water Treat. 57: 4788–4795, https://doi.org/10.1080/19443994.2014.1002010.Search in Google Scholar

Coca, J., Gutiérrez, G., and Benito, J. (2010). Treatment of oily wastewater. In: Water purification and management. Springer, Spain.10.1007/978-90-481-9775-0_1Search in Google Scholar

Curcio, E. and Drioli, E. (2005). Membrane distillation and related operations – a review. Separ. Purif. Rev. 34: 35–86, https://doi.org/10.1081/spm-200054951.Search in Google Scholar

Dayarathne, H.N.P., Angove, M.J., Aryal, R., Abuel-Naga, H., and Mainali, B. (2021). Removal of natural organic matter from source water: review on coagulants, dual coagulation, alternative coagulants, and mechanisms. J. Water Proc. Eng. 40: 101820, https://doi.org/10.1016/j.jwpe.2020.101820.Search in Google Scholar

Deng, L., Guo, W., Ngo, H.H., Zhang, J., Liang, S., Xia, S., Zhang, Z., and Li, J. (2014). A comparison study on membrane fouling in a sponge-submerged membrane bioreactor and a conventional membrane bioreactor. Bioresour. Technol. 165: 69–74, https://doi.org/10.1016/j.biortech.2014.02.111.Search in Google Scholar PubMed

Ding, X., Wang, F., Lin, G., Tang, B., Li, X., Zhou, G., Wang, W., Zhang, J., and Shi, Y. (2023). The enhancement of separation performance of hollow fiber membrane modules: from the perspective of membranes and membrane modules structural optimization design. Chem. Eng. Sci.: 119106.10.1016/j.ces.2023.119106Search in Google Scholar

Du, X., Qu, F.-S., Liang, H., Li, K., Bai, L.-M., and Li, G.-B. (2017). Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: shear stress and particle forces analysis. Sep. Purif. Technol. 172: 130–139, https://doi.org/10.1016/j.seppur.2016.08.011.Search in Google Scholar

Ebrahim, S., Abdel-Jawad, M., Bou-Hamad, S., and Safar, M. (2001). Fifteen years of R&D program in seawater desalination at KISR Part I. Pretreatment technologies for RO systems. Desalination 135: 141–153, https://doi.org/10.1016/s0011-9164(01)00146-1.Search in Google Scholar

Ebrahimi, M., Willershausen, D., Ashaghi, K.S., Engel, L., Placido, L., Mund, P., Bolduan, P., and Czermak, P. (2010). Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination 250: 991–996, https://doi.org/10.1016/j.desal.2009.09.088.Search in Google Scholar

Ediputra, K. and Aziz, H. (2019). Photoreactor design by clay pottery modification with TiO2 coating in peat water purification. KnE Eng.: 171–179, https://doi.org/10.18502/keg.v1i2.4442.Search in Google Scholar

El-badawy, T., Othman, M.H.D., Adam, M.R., Kamaludin, R., Ismail, A.F., Rahman, M.A., Jaafar, J., Rajabzadeh, S., Matsuyama, H., Usman, J., et al.. (2022a). Braid-reinforced PVDF hollow fiber membranes for high-efficiency separation of oily wastewater. J. Environ. Chem. Eng. 10: 107258, https://doi.org/10.1016/j.jece.2022.107258.Search in Google Scholar

El-badawy, T., Othman, M.H.D., Adam, M.R., Kamaludin, R., Ismail, A.F., Rahman, M.A., Jaafar, J., Rajabzadeh, S., Matsuyama, H., Usman, J., et al.. (2022b). Braid-reinforced PVDF hollow fiber membranes for high-efficiency separation of oily wastewater. J. Environ. Chem. Eng. 10: 107258, https://doi.org/10.1016/j.jece.2022.107258.Search in Google Scholar

Elfiana, E., Diana, S., Fuadi, A., and Fauzan, R. (2019). Characterization study of inorganic hybrid membrane of mixed activated zeolite and clay with PVA adhesives using sintering method for colourless peat water. IOP Conf. Ser. Mater. Sci. Eng.: 012036, https://doi.org/10.1088/1757-899x/536/1/012036.Search in Google Scholar

Elma, M. (2020). Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation. In: Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation. Elsevier, China.Search in Google Scholar

Elma, M., Bilad, M.R., Pratiwi, A.E., Rahma, A., Asyyaifi, Z.L., Hairullah, H., Syauqiah, I., Arifin, Y.F., and Lestari, R.A. (2022a). Long-term performance and stability of interlayer-free mesoporous silica membranes for wetland saline water pervaporation. Polymers 14: 895, https://doi.org/10.3390/polym14050895.Search in Google Scholar PubMed PubMed Central

Elma, M., Ghani, R.A., Rahma, A., Alyanti, A.D., and Dony, N. (2022b). Banana peels pectin templated silica ultrafiltration membrane in disk plate configuration applied for wetland water treatment. J. Adv. Res. Fluid Mech. Therm. Sci. 100: 77–88, https://doi.org/10.37934/arfmts.100.1.7788.Search in Google Scholar

Elma, M., Kadek Devi Ananda Saraswati, N., Fransiska Afrida Simatupang, P., Febriyanti, R., Rahma, A., and Ria Mustalifah, F. (2023a). Hydrogel derived from water hyacinth and pectin from banana peel as a membrane layer. Mater. Today: Proc. 87: 13–17. https://doi.org/10.1016/j.matpr.2023.01.368.Search in Google Scholar

Elma, M., Mawaddah, Y., Wati, L., Sumardi, A., Rampun, E., and Rahma, A. (2023b). TEOS/TEVS membrane by dual acid-base catalyzed in seawater desalination with different temperature feeds. AIP Conf. Proc. 2711: 050003, https://doi.org/10.1063/5.0137740.Search in Google Scholar

Elma, M., Mujiyanti, D.R., Ismail, N.M., Bilad, M.R., Rahma, A., Rahman, S.K., Rakhman, A., and Rampun, E.L.A. (2020a). Development of hybrid and templated silica-P123 membranes for brackish water desalination. Polymers 12: 2644, https://doi.org/10.3390/polym12112644.Search in Google Scholar PubMed PubMed Central

Elma, M., Mustalifah, F.R., Suryani, L., Rampun, E.L.A., and Rahma, A. (2020b). Wetland saline water and acid mine drainage desalination by InterlayeFree silica pectin membrane from Banan Peels. Nusantara Sci. Technol. Proc.: 271–279.10.11594/nstp.2020.0543Search in Google Scholar

Elma, M., Pradana, E.A., Ul-haq, M.D., Rampun, E.L., Rahma, A., Harivram, A.S., Assyaifi, Z.L., and Kamelia, Y. (2022c). Hollow fiber membrane applied for Sasirangan wastewater desalination integrated with photocatalysis and pervaporation set-up. Mater. Today: Proc. 51: 1298–1302, https://doi.org/10.1016/j.matpr.2021.10.343.Search in Google Scholar

Elma, M., Rahma, A., Mustalifah, F., Wahid, A.R., Lamandau, D., Fatimah, S., Huda, M., Alsiren, M., Saraswati, N., and Simatupang, P. (2023c). Nanofiltration technology applied for peat and wetland saline water. In: Nanofiltration membrane for water purification. Springer: Saudi Arabia.10.1007/978-981-19-5315-6_12Search in Google Scholar

Elma, M., Rahma, A., Pratiwi, A.E., and Rampun, E.L.A. (2020c). Coagulation as pretreatment for membrane-based wetland saline water desalination. Asia-Pac. J. Chem. Eng.: e2461, https://doi.org/10.1002/apj.2461.Search in Google Scholar

Elma, M., Rampun, E.L.A., Rahma, A., Assyaifi, Z.L., Sumardi, A., Lestari, A.E., Saputro, G.S., Bilad, M.R., and Darmawan, A. (2020d). Carbon templated strategies of mesoporous silica applied for water desalination: a review. J. Water Proc. Eng. 38: 101520, https://doi.org/10.1016/j.jwpe.2020.101520.Search in Google Scholar

Elma, M., Rampun, E.L.A., Rahma, A., Pratiwi, A.E., Abdi, C., and Rossadi, R. (2020e). Effect of two stages adsorption as pre-treatment of natural organic matter removal in ultrafiltration process for peat water treatment. Mater. Sci. Forum: 114–121, https://doi.org/10.4028/www.scientific.net/msf.988.114.Search in Google Scholar

Elma, M., Riskawati, N., and Marhamah (2018). Silica membranes for wetland saline water desalination: performance and long term stability. IOP Conf. Ser. Earth Environ. Sci. 175: 012006, https://doi.org/10.1088/1755-1315/175/1/012006.Search in Google Scholar

Elma, M., Saraswati, N.K.D.A., Simatupang, P.F.A., Febriyanti, R., Rahma, A., and Mustalifah, F.R. (2023d). Hydrogel derived from water hyacinth and pectin from banana peel as a membrane layer. Mater. Today: Proc. 9: 81–98. https://doi.org/10.1016/j.matpr.2023.01.368.Search in Google Scholar

Elma, M., Septyaningrum, L., Rahmawati, R., and Rahma, A. (2023e). Vacuum versus air calcination of modified TEOS-MTES based membrane for seawater desalination. AIP Conf. Proc. 2711: 050002, https://doi.org/10.1063/5.0137739.Search in Google Scholar

Elma, M., Yacou, C., Wang, D.K., Smart, S., and Diniz da Costa, J.C. (2012). Microporous silica based membranes for desalination. Water 4: 629–649, https://doi.org/10.3390/w4030629.Search in Google Scholar

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L.C., Biak, D.R.A., Madaeni, S.S., and Abidin, Z.Z. (2009). Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 170: 530–551, https://doi.org/10.1016/j.jhazmat.2009.05.044.Search in Google Scholar PubMed

Fuadi, A. and Diana, S. (2018). Effectiveness of inorganic membrane mixture of natural zeolite and portland white cement in purifying of peat water based on turbidity parameter. IOP Conf. Ser. Mater. Sci. Eng.: 012034, https://doi.org/10.1088/1757-899x/345/1/012034.Search in Google Scholar

Fulton, B.G. and Bérubé, P.R. (2012). Optimizing the sparging condition and membrane module spacing for a ZW500 submerged hollow fiber membrane system. Desalination Water Treat. 42: 8–16, https://doi.org/10.1080/19443994.2012.682962.Search in Google Scholar

Ghernaout, D., Moulay, S., Ait Messaoudene, N., Aichouni, M., Naceur, M.W., and Boucherit, A. (2014). Coagulation and chlorination of NOM and algae in water treatment: a review. Int. J. Environ. Monit. Anal. 2: 23–34, https://doi.org/10.11648/j.ijema.s.2014020601.14.Search in Google Scholar

Ghidossi, R., Veyret, D., Scotto, J., Jalabert, T., and Moulin, P. (2009). Ferry oily wastewater treatment. Sep. Purif. Technol. 64: 296–303, https://doi.org/10.1016/j.seppur.2008.10.013.Search in Google Scholar

Gu, J., Xiao, P., Chen, J., Liu, F., Huang, Y., Li, G., Zhang, J., and Chen, T. (2014). Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. J. Mater. Chem. A 2: 15268–15272, https://doi.org/10.1039/c4ta01603c.Search in Google Scholar

Gu, B., Xu, X.Y., and Adjiman, C.S. (2017). A predictive model for spiral wound reverse osmosis membrane modules: the effect of winding geometry and accurate geometric details. Comput. Chem. Eng. 96: 248–265, https://doi.org/10.1016/j.compchemeng.2016.07.029.Search in Google Scholar

Guibert, D., Aim, R.B., Rabie, H., and Cote, P. (2002). Aeration performance of immersed hollow-fiber membranes in a bentonite suspension. Desalination 148: 395–400, https://doi.org/10.1016/s0011-9164(02)00752-x.Search in Google Scholar

Hakami, M.W., Alkhudhiri, A., Al-Batty, S., Zacharof, M.-P., Maddy, J., and Hilal, N. (2020). Ceramic microfiltration membranes in wastewater treatment: filtration behavior, fouling and prevention. Membranes 10: 248, https://doi.org/10.3390/membranes10090248.Search in Google Scholar PubMed PubMed Central

Hamonangan, M.C. and Yuniarto, A. (2022). Kajian Penyisihan Amonia dalam Pengolahan Air Minum Konvensional. J. Tek. ITS 11: F35–F42, https://doi.org/10.12962/j23373539.v11i2.85611.Search in Google Scholar

Han, M., Zhang, J., Chu, W., Chen, J., and Zhou, G. (2019). Research progress and prospects of marine oily wastewater treatment: a review. Water 11: 2517, https://doi.org/10.3390/w11122517.Search in Google Scholar

Hasan, H.A. and Muhammad, M.H. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. J. Water Proc. Eng. 33: 101035, https://doi.org/10.1016/j.jwpe.2019.101035.Search in Google Scholar

Hosseini, M.K., Liu, L., Keyvan Hosseini, P., Bhattacharyya, A., Lee, K., Miao, J., and Chen, B. (2022). Review of hollow fiber (HF) membrane filtration technology for the treatment of oily wastewater: applications and challenges. J. Mar. Sci. Eng. 10: 1313, https://doi.org/10.3390/jmse10091313.Search in Google Scholar

Hu, G., Li, J., and Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: a review. J. Hazard. Mater. 261: 470–490, https://doi.org/10.1016/j.jhazmat.2013.07.069.Search in Google Scholar PubMed

Hu, J., Ma, Y., Zhang, L., Gan, F., and Ho, Y.-S. (2010). A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. Sci. Total Environ. 408: 1738–1744, https://doi.org/10.1016/j.scitotenv.2009.12.038.Search in Google Scholar PubMed

Hua, L.-C., Chao, S.-J., Huang, K., and Huang, C. (2020). Characteristics of low and high SUVA precursors: relationships among molecular weight, fluorescence, and chemical composition with DBP formation. Sci. Total Environ. 727: 138638, https://doi.org/10.1016/j.scitotenv.2020.138638.Search in Google Scholar PubMed

Huang, S., Ras, R.H., and Tian, X. (2018). Antifouling membranes for oily wastewater treatment: interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 36: 90–109, https://doi.org/10.1016/j.cocis.2018.02.002.Search in Google Scholar

Hubadillah, S.K., Othman, M.H.D., Ismail, A., Rahman, M.A., Jaafar, J., Iwamoto, Y., Honda, S., Dzahir, M.I.H.M., and Yusop, M.Z.M. (2018). Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceram. Int. 44: 10498–10509, https://doi.org/10.1016/j.ceramint.2018.03.067.Search in Google Scholar

Hubadillah, S.K., Othman, M.H.D., Rahman, M.A., Ismail, A., and Jaafar, J. (2020a). Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arab. J. Chem. 13: 2349–2367, https://doi.org/10.1016/j.arabjc.2018.04.018.Search in Google Scholar

Hubadillah, S.K., Othman, M.H.D., Rahman, M.A., Ismail, A.F., and Jaafar, J. (2020b). Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arab. J. Chem. 13: 2349–2367, https://doi.org/10.1016/j.arabjc.2018.04.018.Search in Google Scholar

Izadi, A., Hosseini, M., Najafpour Darzi, G., Nabi Bidhendi, G., Pajoum Shariati, F., and Mosaddeghi, M.R. (2018). Perspectives on membrane bioreactor potential for treatment of pulp and paper industry wastewater: a critical review. J. Appl. Biotechnol. Rep. 5: 139–150, https://doi.org/10.29252/jabr.05.04.02.Search in Google Scholar

Jacangelo, J.G., Voutchkov, N., Badruzzaman, M., and Weinrich, L. (2018). Pretreatment for seawater reverse osmosis: existing plant performance and selection guidance. The Water Research Foundation, Denver, CO, USA.Search in Google Scholar

Jamalludin, M.R., Harun, Z., Othman, M.H.D., Hubadillah, S.K., Yunos, M.Z., and Ismail, A.F. (2018). Morphology and property study of green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash (WSBA). Ceram. Int. 44: 18450–18461, https://doi.org/10.1016/j.ceramint.2018.07.063.Search in Google Scholar

Jasmine, J. and Mukherji, S. (2015). Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia. J. Environ. Manage. 149: 118–125, https://doi.org/10.1016/j.jenvman.2014.10.007.Search in Google Scholar PubMed

Jeong, S., Choi, Y.J., Nguyen, T.V., Vigneswaran, S., and Hwang, T.M. (2012). Submerged membrane hybrid systems as pretreatment in seawater reverse osmosis (SWRO): optimisation and fouling mechanism determination. J. Membr. Sci. 411: 173–181, https://doi.org/10.1016/j.memsci.2012.04.029.Search in Google Scholar

Johari, A., Razmjouei, M., Mansourizadeh, A., and Emadzadeh, D. (2020). Fabrication of blend hydrophilic polyamide imide (Torlon®)-sulfonated poly (ether ether ketone) hollow fiber membranes for oily wastewater treatment. Polym. Test. 91: 106733, https://doi.org/10.1016/j.polymertesting.2020.106733.Search in Google Scholar

Kalla, S. (2021). Use of membrane distillation for oily wastewater treatment – a review. J. Environ. Chem. Eng. 9: 104641, https://doi.org/10.1016/j.jece.2020.104641.Search in Google Scholar

Kamaludin, R., Mohamad Puad, A.S., Othman, M.H.D., Kadir, S.H.S.A., and Harun, Z. (2019). Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5. Polym. Test. 78: 105939.10.1016/j.polymertesting.2019.105939Search in Google Scholar

Kamarudin, N.H., Harun, Z., Othman, M.H.D., Abdullahi, T., Bahri, S.S., Kamarudin, N.H., Yunos, M.Z., and Salleh, W.N.W. (2020). Waste environmental sources of metakaolin and corn cob ash for preparation and characterisation of green ceramic hollow fibre membrane (h-MCa) for oil-water separation. Ceram. Int. 46: 1512–1525, https://doi.org/10.1016/j.ceramint.2019.09.118.Search in Google Scholar

Karabelas, A., Kostoglou, M., and Koutsou, C. (2015). Modeling of spiral wound membrane desalination modules and plants–review and research priorities. Desalination 356: 165–186, https://doi.org/10.1016/j.desal.2014.10.002.Search in Google Scholar

Keyvan Hosseini, M., Liu, L., Keyvan Hosseini, P., Bhattacharyya, A., Lee, K., Miao, J., and Chen, B. (2022). Review of hollow fiber (HF) membrane filtration technology for the treatment of oily wastewater: applications and challenges. J. Mar. Sci. Eng. 10: 1313, https://doi.org/10.3390/jmse10091313.Search in Google Scholar

Khalil, N.M., Algamal, Y., and Saleem, Q.M. (2018). Exploitation of petroleum waste sludge with local bauxite raw material for producing high-quality refractory ceramics. Ceram. Int. 44: 18516–18527, https://doi.org/10.1016/j.ceramint.2018.07.072.Search in Google Scholar

Kharraz, J.A., Khanzada, N.K., Farid, M.U., Kim, J., Jeong, S., and An, A.K. (2022). Membrane distillation bioreactor (MDBR) for wastewater treatment, water reuse, and resource recovery: a review. J. Water Proc. Eng. 47: 102687, https://doi.org/10.1016/j.jwpe.2022.102687.Search in Google Scholar

Khouni, I., Louhichi, G., Ghrabi, A., and Moulin, P. (2020). Efficiency of a coagulation/flocculation–membrane filtration hybrid process for the treatment of vegetable oil refinery wastewater for safe reuse and recovery. Process Saf. Environ. Prot. 135: 323–341, https://doi.org/10.1016/j.psep.2020.01.004.Search in Google Scholar

Kong, J. and Li, K. (1999). Oil removal from oil-in-water emulsions using PVDF membranes. Sep. Purif. Technol. 16: 83–93, https://doi.org/10.1016/s1383-5866(98)00114-2.Search in Google Scholar

Korotta-Gamage, S.M. and Sathasivan, A. (2017). A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 167: 120–138, https://doi.org/10.1016/j.chemosphere.2016.09.097.Search in Google Scholar PubMed

Krzeminski, P., Gil, J. A., van Nieuwenhuijzen, A. F., van der Graaf, J. H. J. M., and van Lier, J. B. (2012). Flat sheet or hollow fibre — comparison of full-scale membrane bio-reactor configurations. Desalin. Water Treat. J. 42: 100–106, https://doi.org/10.1080/19443994.2012.682963.Search in Google Scholar

Kuokkanen, V., Kuokkanen, T., Rämö, J., and Lassi, U. (2015). Electrocoagulation treatment of peat bog drainage water containing humic substances. Water Res. 79: 79–87, https://doi.org/10.1016/j.watres.2015.04.029.Search in Google Scholar PubMed

Lalia, B.S., Kochkodan, V., Hashaikeh, R., and Hilal, N. (2013). A review on membrane fabrication: structure, properties and performance relationship. Desalination 326: 77–95, https://doi.org/10.1016/j.desal.2013.06.016.Search in Google Scholar

Le-Clech, P., Chen, V., and Fane, T.A. (2006). Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 284: 17–53, https://doi.org/10.1016/j.memsci.2006.08.019.Search in Google Scholar

Lee, S. and Kim, Y.C. (2018). Performance analysis of plate-and-frame forward osmosis membrane elements and implications for scale-up design. J. Membr. Sci. 550: 219–229, https://doi.org/10.1016/j.memsci.2017.12.080.Search in Google Scholar

Lee, S., Kim, S., Cho, J., and Hoek, E.M. (2007). Natural organic matter fouling due to foulant–membrane physicochemical interactions. Desalination 202: 377–384, https://doi.org/10.1016/j.desal.2005.12.077.Search in Google Scholar

Lestari, R.A., Elma, M., Rahma, A., Suparsih, D., Anadhliyah, S., Sari, N.L., Pratomo, D.A., Sumardi, A., Lestari, A.E., Assyaifi, Z.L., et al.. (2020). Organo silica membranes for wetland saline water desalination: effect of membranes calcination temperatures. E3S Web Conf. 148: 07006, https://doi.org/10.1051/e3sconf/202014807006.Search in Google Scholar

Levchuk, I., Màrquez, J.J.R., and Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange–a review. Chemosphere 192: 90–104, https://doi.org/10.1016/j.chemosphere.2017.10.101.Search in Google Scholar PubMed

Li, G., Kujawski, W., Válek, R., and Koter, S. (2021). A review-the development of hollow fibre membranes for gas separation processes. Int. J. Greenh. Gas Control 104: 103195, https://doi.org/10.1016/j.ijggc.2020.103195.Search in Google Scholar

Li, T., Law, A.W.-K., Cetin, M., and Fane, A. (2013). Fouling control of submerged hollow fibre membranes by vibrations. J. Membr. Sci. 427: 230–239, https://doi.org/10.1016/j.memsci.2012.09.031.Search in Google Scholar

Li, X., Li, J., Cui, Z., and Yao, Y. (2016). Modeling of filtration characteristics during submerged hollow fiber membrane microfiltration of yeast suspension under aeration condition. J. Membr. Sci. 510: 455–465, https://doi.org/10.1016/j.memsci.2016.03.003.Search in Google Scholar

Li, P., Lim, S.S., Neo, J.G., Ong, R.C., Weber, M., Staudt, C., Widjojo, N., Maletzko, C., and Chung, T.S. (2014). Short- and long-term performance of the thin-film composite forward osmosis (TFC-FO) hollow fiber membranes for oily wastewater purification. Ind. Eng. Chem. Res. 53: 14056–14064, https://doi.org/10.1021/ie502365p.Search in Google Scholar

Li, X., Mo, Y., Li, J., Guo, W., and Ngo, H.H. (2017). In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: a critical review. J. Membr. Sci. 528: 187–200, https://doi.org/10.1016/j.memsci.2017.01.030.Search in Google Scholar

Li, X., Younas, M., Rezakazemi, M., Ly, Q.V., and Li, J. (2022). A review on hollow fiber membrane module towards high separation efficiency: process modeling in fouling perspective. Chin. Chem. Lett. 33: 3594–3602, https://doi.org/10.1016/j.cclet.2021.10.044.Search in Google Scholar

Lin, W., Zhang, Y., Li, D., Wang, X.-M., and Huang, X. (2021). Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: a 20-year review on research evolvement. Water Res. 198: 117146, https://doi.org/10.1016/j.watres.2021.117146.Search in Google Scholar PubMed

Luis, P. (2018). Fundamental modeling of membrane systems: membrane and process performance. Elsevier, Spain.Search in Google Scholar

Luo, L., Han, G., Chung, T.S., Weber, M., Staudt, C., and Maletzko, C. (2015). Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fiber membranes from sulfonated polyphenylenesulfone. J. Membr. Sci. 476: 162–170, https://doi.org/10.1016/j.memsci.2014.11.035.Search in Google Scholar

Madaki, Y.S. and Seng, L. (2013). Palm oil mill effluent (POME) from Malaysia palm oil mills: waste or resource. Int. J. Sci. Environ. Technol. 2: 1138–1155.Search in Google Scholar

Mahmud, M., Abdi, C., and Mu’min, B. (2013). Removal natural organic matter (NOM) in peat water from wetland area by coagulation-ultrafiltration hybrid process with pretreatment two-stage coagulation. J. Wetl. Environ. Manag. 1: 42–49, https://doi.org/10.20527/jwem.v1i1.88.Search in Google Scholar

Mahmud, M., Abdi, C., and Mu’min, B. (2016). Removal natural organic matter (NOM) in peat water from wetland area by coagulation-ultrafiltration hybrid process with pretreatment two-stage coagulation. J. Wetl. Environ. Manag. 1, https://doi.org/10.20527/jwem.v1i1.88.Search in Google Scholar

Mahmud, M., Elma, M., Rahma, A., Huda, N., Lestari, R.A., Harivram, A.S., Rampun, E.L., Othman, M.H., and Bilad, M.R. (2023). Step-by-step fabrication of PVDF-TiO2 hollow fiber membrane and its application desalination of wetland saline water via pervaporation. Indones. J. Sci. Technol. 8: 499–516, https://doi.org/10.17509/ijost.v8i3.63433.Search in Google Scholar

Mahmud, M., Elma, M., Rampun, E.L.A., Rahma, A., Pratiwi, A.E., Abdi, C., and Rosadi, R. (2020). Effect of two stages adsorption as pre-treatment of natural organic matter removal in ultrafiltration process for peat water treatment. Mater. Sci. Forum 988: 114–121, https://doi.org/10.4028/www.scientific.net/msf.988.114.Search in Google Scholar

Malaeb, L. and Ayoub, G.M. (2011). Reverse osmosis technology for water treatment: state of the art review. Desalination 267: 1–8, https://doi.org/10.1016/j.desal.2010.09.001.Search in Google Scholar

Marais, S., Ncube, E., Msagati, T., Mamba, B., and Nkambule, T.T. (2018). Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment. J. Environ. Chem. Eng. 6: 6282–6289, https://doi.org/10.1016/j.jece.2018.10.002.Search in Google Scholar

Martini, S., Ang, H.M., and Znad, H. (2017). Integrated ultrafiltration membrane unit for efficient petroleum refinery effluent treatment. CLEAN–Soil, Air, Water 45: 1600342, https://doi.org/10.1002/clen.201600342.Search in Google Scholar

Masoudnia, K., Raisi, A., Aroujalian, A., and Fathizadeh, M. (2015). A hybrid microfiltration/ultrafiltration membrane process for treatment of oily wastewater. Desalination Water Treat. 55: 901–912, https://doi.org/10.1080/19443994.2014.922501.Search in Google Scholar

Matilainen, A., Vepsäläinen, M., and Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Interface Sci. 159: 189–197, https://doi.org/10.1016/j.cis.2010.06.007.Search in Google Scholar PubMed

Maulida, N.A., Fitriah, S.H., Aliah, A., Rampun, E.L.A., and Elma, M. (2023). Preparation and performance of interlayer-free organosilica membranes on zirconia support. AIP Conf. Proc. 2667: 040011, https://doi.org/10.1063/5.0112161.Search in Google Scholar

Meng, F., Yang, F., Shi, B., and Zhang, H. (2008). A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities. Separ. Purif. Technol. 59: 91–100, https://doi.org/10.1016/j.seppur.2007.05.040.Search in Google Scholar

Metsämuuronen, S., Sillanpää, M., Bhatnagar, A., and Mänttäri, M. (2014). Natural organic matter removal from drinking water by membrane technology. Separ. Purif. Rev. 43: 1–61, https://doi.org/10.1080/15422119.2012.712080.Search in Google Scholar

Mohadesi, M. and Shokri, A. (2019). Treatment of oil refinery wastewater by photo-fenton process using Box–Behnken design method: kinetic study and energy consumption. Int. J. Environ. Sci. Technol. 16: 7349–7356, https://doi.org/10.1007/s13762-018-2153-5.Search in Google Scholar

Monteverde, S., Healy, M., O’Leary, D., Daly, E., and Callery, O. (2022). Management and rehabilitation of peatlands: the role of water chemistry, hydrology, policy, and emerging monitoring methods to ensure informed decision making. Ecol. Inf. 69: 101638, https://doi.org/10.1016/j.ecoinf.2022.101638.Search in Google Scholar

Mrayyan, B. and Battikhi, M.N. (2005). Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. J. Hazard. Mater. 120: 127–134, https://doi.org/10.1016/j.jhazmat.2004.12.033.Search in Google Scholar PubMed

Muhammad, J. (2020). Peat water purification by hybrid of slow sand filtration and coagulant treatment. J. Environ. Sci. Technol. 13: 22–28.10.3923/jest.2020.22.28Search in Google Scholar

Munirasu, S., Haija, M.A., and Banat, F. (2016). Use of membrane technology for oil field and refinery produced water treatment – a review. Process Saf. Environ. Prot. 100: 183–202, https://doi.org/10.1016/j.psep.2016.01.010.Search in Google Scholar

Muñoz-Alegría, J.A., Muñoz-España, E., and Flórez-Marulanda, J.F. (2021). Dissolved air flotation: a review from the perspective of system parameters and uses in wastewater treatment. TecnoLógicas 24: 281–303, https://doi.org/10.22430/22565337.2111.Search in Google Scholar

Mustereț, C.P., Morosanu, I., Ciobanu, R., Plavan, O., Gherghel, A., Al-Refai, M., Roman, I., and Teodosiu, C. (2021). Assessment of coagulation–flocculation process efficiency for the natural organic matter removal in drinking water treatment. Water 13: 3073, https://doi.org/10.3390/w13213073.Search in Google Scholar

Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A., and Olsson, G. (2012). Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination 305: 1–11, https://doi.org/10.1016/j.desal.2012.07.033.Search in Google Scholar

Notodarmojo, S. and Larasati, A. (2017). Adsorption of natural organic matter (NOM) in peat water by local Indonesia tropical clay soils. GEOMATE J. 13: 111–119, https://doi.org/10.21660/2017.38.30379.Search in Google Scholar

Obotey Ezugbe, E. and Rathilal, S. (2020). Membrane technologies in wastewater treatment: a review. Membranes 10: 89, https://doi.org/10.3390/membranes10050089.Search in Google Scholar PubMed PubMed Central

Ojeda, F., Bakonyi, P., and Buitrón, G. (2017). Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop. Bioresour. Technol. 245: 1294–1298, https://doi.org/10.1016/j.biortech.2017.08.183.Search in Google Scholar PubMed

Okoro, B.U., Sharifi, S., Jesson, M.A., and Bridgeman, J. (2021). Natural organic matter (NOM) and turbidity removal by plant-based coagulants: a review. J. Environ. Chem. Eng. 9: 106588, https://doi.org/10.1016/j.jece.2021.106588.Search in Google Scholar

Ong, C.S., Lau, W.J., Goh, P.S., Ng, B.C., and Ismail, A.F. (2015). Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalination Water Treat. 53: 1213–1223, https://doi.org/10.1080/19443994.2013.855679.Search in Google Scholar

Ong, C.S., Lau, W.J., Goh, P.S., Ng, B.C., Matsuura, T., and Ismail, A.F. (2014). Effect of PVP molecular weights on the properties of PVDF-TiO2 composite membrane for oily wastewater treatment process. Separ. Sci. Technol. (Phila.) 49: 2303–2314, https://doi.org/10.1080/01496395.2014.928323.Search in Google Scholar

Otitoju, T.A., Ahmad, A.L., and Ooi, B.S. (2017). Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance. J. Polym. Res. 24: 1–11, https://doi.org/10.1007/s10965-017-1268-6.Search in Google Scholar

Pabby, A.K., Rizvi, S.S., and Requena, A.M.S. (2015). Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC Press, Mumbai.10.1201/b18319Search in Google Scholar

Padaki, M., Surya Murali, R., Abdullah, M.S., Misdan, N., Moslehyani, A., Kassim, M.A., Hilal, N., and Ismail, A.F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination 357: 197–207, https://doi.org/10.1016/j.desal.2014.11.023.Search in Google Scholar

Pan, Y., Li, H., Zhang, X., and Li, A. (2016). Characterization of natural organic matter in drinking water: sample preparation and analytical approaches. Trends Environ. Anal. Chem. 12: 23–30, https://doi.org/10.1016/j.teac.2016.11.002.Search in Google Scholar

Pan, Y., Wang, T., Sun, H., and Wang, W. (2012). Preparation and application of titanium dioxide dynamic membranes in microfiltration of oil-in-water emulsions. Sep. Purif. Technol. 89: 78–83, https://doi.org/10.1016/j.seppur.2012.01.010.Search in Google Scholar

Park, S., Yeon, K.-M., Moon, S., and Kim, J.-O. (2018). Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit. Chemosphere 191: 573–579, https://doi.org/10.1016/j.chemosphere.2017.10.079.Search in Google Scholar PubMed

Pendashteh, A.R., Fakhru’l-Razi, A., Madaeni, S.S., Abdullah, L.C., Abidin, Z.Z., and Biak, D.R.A. (2011). Membrane foulants characterization in a membrane bioreactor (MBR) treating hypersaline oily wastewater. Chem. Eng. J. 168: 140–150, https://doi.org/10.1016/j.cej.2010.12.053.Search in Google Scholar

Peters, T.A., Poeth, C.H.S., Benes, N.E., Buijs, H.C.W.M., Vercauteren, F.F., and Keurentjes, J.T.F. (2006). Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm. J. Membr. Sci. 276: 42–50, https://doi.org/10.1016/j.memsci.2005.06.066.Search in Google Scholar

Pintor, A.M.A., Martins, A.G., Souza, R.S., Vilar, V.J.P., Botelho, C.M.S., and Boaventura, R.A.R. (2015). Treatment of vegetable oil refinery wastewater by sorption of oil and grease onto regranulated cork – a study in batch and continuous mode. Chem. Eng. J. 268: 92–101, https://doi.org/10.1016/j.cej.2015.01.025.Search in Google Scholar

Pradhana, E., Elma, M., Othman, M., Huda, N., Ul-haq, M., Rampun, E.L., and Rahma, A. (2021). The functionalization study of PVDF/TiO2 hollow fibre membranes under vacuum calcination exposure. J. Phys.: Conf. Ser.: 012035, https://doi.org/10.1088/1742-6596/1912/1/012035.Search in Google Scholar

Pratiwi, E.N., Elma, M., Mahmud, M., Basir, B., Rezki, M.R., Oktaviana, E.N.R., Fatimah, S., Saputro, G.S., Rampun, E.L.A., and Rahma, A. (2023). Novel carbon templated silica membrane prepared from Nypa fruticans leaf for seawater desalination. AIP Conf. Proc.: 030006.10.1063/5.0114125Search in Google Scholar

Qadafi, M., Wulan, D.R., Notodarmojo, S., and Zevi, Y. (2023). Characteristics and treatment methods for peat water as clean water sources: a mini review. Water Cycle 4: 60–69, https://doi.org/10.1016/j.watcyc.2023.02.005.Search in Google Scholar

Quezada, C., Estay, H., Cassano, A., Troncoso, E., and Ruby-Figueroa, R. (2021). Prediction of permeate flux in ultrafiltration processes: a review of modeling approaches. Membranes 11: 368, https://doi.org/10.3390/membranes11050368.Search in Google Scholar PubMed PubMed Central

Racar, M., Obajdin, K., Dolar, D., and Košutić, K. (2020). Pretreatment for the reclamation of rendering plant secondary effluent with NF/RO: UF flat sheet versus UF hollow fiber membranes. Clean Technol. Environ. Policy 22: 399–408, https://doi.org/10.1007/s10098-019-01789-8.Search in Google Scholar

Radzuan, M.A., Belope, M.A.-B., and Thorpe, R. (2016). Removal of fine oil droplets from oil-in-water mixtures by dissolved air flotation. Chem. Eng. Res. Des. 115: 19–33, https://doi.org/10.1016/j.cherd.2016.09.013.Search in Google Scholar

Rahma, A., Elma, M., Bilad, M.R., Wahid, A.R., Huda, M.S., and Lamandau, D.R. (2023). Novel spent bleaching earth industrial waste as low-cost ceramic membranes material: elaboration and characterization. Mater. Today: Proc. 87: 136–140. https://doi.org/10.1016/j.matpr.2023.02.387.Search in Google Scholar

Rahma, A., Elma, M., Mahmud, M., Irawan, C., Pratiwi, A.E., and Rampun, E.L.A. (2019). Removal of natural organic matter for wetland saline water desalination by coagulation-pervaporation. J. Kimia Sains Aplikasi 22: 85–92, https://doi.org/10.14710/jksa.22.3.85-92.Search in Google Scholar

Rahma, A., Elma, M., Pratiwi, A.E., and Rampun, E.L. (2020a). Performance of interlayer-free pectin template silica membranes for brackish water desalination. Membr. Technol. 2020: 7–11, https://doi.org/10.1016/s0958-2118(20)30108-7.Search in Google Scholar

Rahma, A., Elma, M., Rampun, E.L.A., Pratiwi, A.E., Rakhman, A., and Fitriani (2020b). Rapid thermal processing and long term stability of interlayer-free silica-P123 membranes for wetland saline water desalination. Adv. Res. Fluid Mech. Therm. Sci. 71: 1–9, https://doi.org/10.37934/arfmts.71.2.19.Search in Google Scholar

Rahma, A., Elma, M., Rampun, E.L.A., Situngkir, S.L., and Hidayat, M.F. (2022). Effect of backwashing process on the performance of an interlayer-free silica–pectin membrane applied to wetland saline water pervaporation. Membr. Technol. 2022, https://doi.org/10.12968/s0958-2118(22)70019-5.Search in Google Scholar

Rahman, N.A., Jol, C.J., Linus, A.A., Dampam, F.L., Jalal, N.S.A., Baharudin, N., and Borhan, W.W.S.W. (2022). Desalination of Borneo tropical brackish peat water with adsorption process in continuous electrocoagulation treatment. Desalination 527: 115574, https://doi.org/10.1016/j.desal.2022.115574.Search in Google Scholar

Rahman, M.M., Lee, Y.S., Tamiri, F.M., and Hong, M.G.J. (2018). Anaerobic digestion of food waste. Green Energy and Technology, Sabah.10.1007/978-981-10-8129-3_7Search in Google Scholar

Rahman, N.A., Linus, A.A., Jihed, E.E., Gilan, U.J., Kumar, N.K.M.F., Phillip, A., Yassin, A., and Parabi, A. (2021). Experimental studies on continuous electrocoagulation treatment of peat water in Sarawak with copper electrodes. Int. J. Integrated Eng. 13: 168–176, https://doi.org/10.30880/ijie.2021.13.02.019.Search in Google Scholar

Rahman, N.A., Tomiran, N.A., and Hashim, A.H. (2020). Batch electrocoagulation treatment of peat water in Sarawak with galvanized iron electrodes. Mater. Sci. Forum: 127–138, https://doi.org/10.4028/www.scientific.net/msf.997.127.Search in Google Scholar

Rahmanian, N., Jafari, S.M., and Galanakis, C.M. (2014). Recovery and removal of phenolic compounds from olive mill wastewater. J. Am. Oil Chem. Soc. 91: 1–18, https://doi.org/10.1007/s11746-013-2350-9.Search in Google Scholar

Raji, Y.O., Othman, M.H.D., Nordin, N.A.H.S.M., ShengTai, Z., Usman, J., Mamah, S.C., Ismail, A.F., Rahman, M.A., and Jaafar, J. (2020). Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation. Arab. J. Chem. 13: 5996–6008, https://doi.org/10.1016/j.arabjc.2020.05.001.Search in Google Scholar

Ramona Ciobanu, M.M.A.C.T. (2022). An overview of natural organic matter removal by coagulation in drinking water treatment. Bul. Inst. Politehnic Din. Iasi 68.Search in Google Scholar

Rana, S., Singh, L., Wahid, Z., and Liu, H. (2017). A recent overview of palm oil mill effluent management via bioreactor configurations. Curr. Pollut. Rep. 3: 254–267, https://doi.org/10.1007/s40726-017-0068-2.Search in Google Scholar

Reddy, A.V., e. a. 2012. WO2012035402A1.pdf.Search in Google Scholar

Reddy, M.V., Devi, M.P., Chandrasekhar, K., Goud, R.K., and Mohan, S.V. (2011). Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis. J. Hazard. Mater. 197: 80–87, https://doi.org/10.1016/j.jhazmat.2011.09.061.Search in Google Scholar PubMed

Reig, M., Pagès, N., Licon, E., Valderrama, C., Gibert, O., Yaroshchuk, A., and Cortina, J.L. (2015). Evolution of electrolyte mixtures rejection behaviour using nanofiltration membranes under spiral wound and flat-sheet configurations. Desalination Water Treat. 56: 3519–3529, https://doi.org/10.1080/19443994.2014.974215.Search in Google Scholar

Rupani, P.F., Singh, R.P., Ibrahim, M.H., and Esa, N. (2010). Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl. Sci. J. 11: 70–81.Search in Google Scholar

Salahi, A., Badrnezhad, R., Abbasi, M., Mohammadi, T., and Rekabdar, F. (2011). Oily wastewater treatment using a hybrid UF/RO system. Desalination Water Treat. 28: 75–82, https://doi.org/10.5004/dwt.2011.2204.Search in Google Scholar

Salahi, A., Mohammadi, T., Behbahani, R.M., and Hemmati, M. (2015). Preparation and performance evaluation of polyethersulfone hollow fiber membranes for ultrafiltration processes, https://doi.org/10.1080/03602559.2015.1010213.Search in Google Scholar

Sari, D.P., Elma, M., Mahmud, M., Basir, B., Rezki, M.R., Rahmawati, R., Septyaningrum, L., Saputro, G.S., and Rahma, A. (2023). Fabrication of organo-silica thin film for water desalination from dual silicate precursor (tetraethylorthosilicate & methyltriethoxysilane). AIP Conf. Proc. 2682: 030007, https://doi.org/10.1063/5.0114126.Search in Google Scholar

Shakir, N.A.A., Wong, K.Y., Noordin, M.Y., and Sudin, I. (2015). Development of a high performance PES ultrafiltration hollow fiber membrane for oily wastewater treatment using response surface methodology. Sustainability 7: 16465–16482, https://doi.org/10.3390/su71215826.Search in Google Scholar

She, Q., Chi, L., Zhou, W., and Zhang, Z. (2010). Overview of forward osmosis membrane separation technology: research and its application to water treatment. Environ. Sci. Technol. (China) 33: 117–122.Search in Google Scholar

Shen, S.S., Liu, K.P., Yang, J.J., Li, Y., Bai, R.B., and Zhou, X.J. (2018). Application of a triblock copolymer additive modified polyvinylidene fluoride membrane for effective oil/water separation. R. Soc. Open Sci. 5, https://doi.org/10.1098/rsos.171979.Search in Google Scholar PubMed PubMed Central

Shen, C., Zhang, Q., and Meng, Q. (2021). PSU-g-SBMA hollow fiber membrane for treatment of oily wastewater. Water Sci. Technol. 84: 3576–3585, https://doi.org/10.2166/wst.2021.363.Search in Google Scholar PubMed

Shenvi, S.S., Isloor, A.M., and Ismail, A. (2015). A review on RO membrane technology: developments and challenges. Desalination 368: 10–26, https://doi.org/10.1016/j.desal.2014.12.042.Search in Google Scholar

Shi, H., He, Y., Pan, Y., Di, H., Zeng, G., Zhang, L., and Zhang, C. (2016). A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci. 506: 60–70, https://doi.org/10.1016/j.memsci.2016.01.053.Search in Google Scholar

Sillanpää, M., Ncibi, M.C., Matilainen, A., and Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. Chemosphere 190: 54–71, https://doi.org/10.1016/j.chemosphere.2017.09.113.Search in Google Scholar PubMed

Sima Mirzadeh, S. and Amirinejad, M. (2021). Surface water treatment for production of potable water by coagulation/filtration/nanofiltration membranes hybrid system. Water Environ. Res. 93: 1391–1401, https://doi.org/10.1002/wer.1532.Search in Google Scholar PubMed

Song, X., Zhao, Y., Wang, Y., Si, Z., Ge, X., Gong, Z., Zhou, J., and Cao, X. (2020). Micro-aeration with hollow fiber membrane enhanced the nitrogen removal in constructed wetlands. Environ. Sci. Pollut. Res. 27: 25877–25885, https://doi.org/10.1007/s11356-019-06315-3.Search in Google Scholar PubMed

Sumardi, A., Elma, M., Rampun, E.L.A., Lestari, A.E., Assyaifi, Z.L., Darmawan, A., Yanto, D.H.Y., Syauqiah, I., Mawaddah, Y., and Wati, L.S. (2021). Designing a mesoporous hybrid organo-silica thin film prepared from an organic catalyst. Membr. Technol. 2021: 5–8, https://doi.org/10.1016/s0958-2118(21)00029-x.Search in Google Scholar

Sun, Y., Zhu, C., Zheng, H., Sun, W., Xu, Y., Xiao, X., You, Z., and Liu, C. (2017). Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment. Chem. Eng. Res. Des. 119: 23–32, https://doi.org/10.1016/j.cherd.2017.01.009.Search in Google Scholar

Suresh, K. and Pugazhenthi, G. (2016). Development of ceramic membranes from low-cost clays for the separation of oil–water emulsion. Desalination Water Treat. 57: 1927–1939, https://doi.org/10.1080/19443994.2014.979445.Search in Google Scholar

Suresh, K., Pugazhenthi, G., and Uppaluri, R. (2017). Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane. Front. Chem. Sci. Eng. 11: 266–279, https://doi.org/10.1007/s11705-017-1608-4.Search in Google Scholar

Tang, C.Y., Kwon, Y.-N., and Leckie, J.O. (2009). The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling – theoretical basis, experimental evidence, and AFM interaction force measurement. J. Membr. Sci. 326: 526–532, https://doi.org/10.1016/j.memsci.2008.10.043.Search in Google Scholar

Tanudjaja, H.J., Hejase, C.A., Tarabara, V.V., Fane, A.G., and Chew, J.W. (2019). Membrane-based separation for oily wastewater: a practical perspective. Water Res. 156: 347–365, https://doi.org/10.1016/j.watres.2019.03.021.Search in Google Scholar PubMed

Tawalbeh, M., Al Mojjly, A., Al-Othman, A., and Hilal, N. (2018). Membrane separation as a pre-treatment process for oily saline water. Desalination 447: 182–202, https://doi.org/10.1016/j.desal.2018.07.029.Search in Google Scholar

Teh, C.Y., Budiman, P.M., Shak, K.P.Y., and Wu, T.Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 55: 4363–4389, https://doi.org/10.1021/acs.iecr.5b04703.Search in Google Scholar

Tian, J., Wu, C., Yu, H., Gao, S., Li, G., Cui, F., and Qu, F. (2018). Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 132: 190–199, https://doi.org/10.1016/j.watres.2018.01.005.Search in Google Scholar PubMed

Trisakti, B., Manalu, V., Taslim, I., and Turmuzi, M. (2015). Acidogenesis of palm oil mill effluent to produce biogas: effect of hydraulic retention time and pH. Proc. – Soc. Behav. Sci. 195: 2466–2474, https://doi.org/10.1016/j.sbspro.2015.06.293.Search in Google Scholar

Turken, T., Sengur-Tasdemir, R., Ates-Genceli, E., Tarabara, V.V., and Koyuncu, I. (2019). Progress on reinforced braided hollow fiber membranes in separation technologies: a review. J. Water Proc. Eng. 32: 100938, https://doi.org/10.1016/j.jwpe.2019.100938.Search in Google Scholar

Twibi, M.F., Othman, M.H.D., Hubadillah, S.K., Alftessi, S.A., Kurniawan, T.A., Ismail, A.F., Rahman, M.A., Jaafar, J., and Raji, Y.O. (2021). Development of high strength, porous mullite ceramic hollow fiber membrane for treatment of oily wastewater. Ceram. Int. 47: 15367–15382, https://doi.org/10.1016/j.ceramint.2021.02.102.Search in Google Scholar

Ulbricht, M. (2006). Advanced functional polymer membranes. Polymer 47: 2217–2262, https://doi.org/10.1016/j.polymer.2006.01.084.Search in Google Scholar

Ullah, A., Tanudjaja, H.J., Ouda, M., Hasan, S.W., and Chew, J.W. (2021). Membrane fouling mitigation techniques for oily wastewater: a short review. J. Water Proc. Eng. 43: 102293, https://doi.org/10.1016/j.jwpe.2021.102293.Search in Google Scholar

Ulucan, K. and Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: a kinetic approach. J. Electroanal. Chem. 747: 104–111, https://doi.org/10.1016/j.jelechem.2015.04.005.Search in Google Scholar

Usha, Z.R., Babiker, D.M.D., Zhao, Y., Chen, X., and Li, L. (2023). Advanced super-wetting biaxial polypropylene membrane with hierarchical rough surface for multipollutant removal from oily wastewater. J. Environ. Chem. Eng. 11: 110775, https://doi.org/10.1016/j.jece.2023.110775.Search in Google Scholar

Varjani, S., Joshi, R., Srivastava, V.K., Ngo, H.H., and Guo, W. (2020). Treatment of wastewater from petroleum industry: current practices and perspectives. Environ. Sci. Pollut. Res. 27: 27172–27180, https://doi.org/10.1007/s11356-019-04725-x.Search in Google Scholar PubMed

Wan, C.F., Yang, T., Lipscomb, G.G., Stookey, D.J., and Chung, T.-S. (2017). Design and fabrication of hollow fiber membrane modules. J. Membr. Sci. 538: 96–107, https://doi.org/10.1016/j.memsci.2017.05.047.Search in Google Scholar

Wardani, A., Ariono, D., and Wenten, I.G. (2019a). Hydrophilic modification of polypropylene ultrafiltration membrane by air-assisted polydopamine coating. Polym. Adv. Technol. 30: 1148–1155.10.1002/pat.4549Search in Google Scholar

Wardani, A., Ariono, D., Yespin, Y., Sihotang, D., and Wenten, I. (2019b). Preparation of hydrophilic polypropylene membrane by acid dipping technique. Mater. Res. Express 6: 075308, https://doi.org/10.1088/2053-1591/ab10cf.Search in Google Scholar

Warsinger, D.M., Chakraborty, S., Tow, E.W., Plumlee, M.H., Bellona, C., Loutatidou, S., Karimi, L., Mikelonis, A.M., Achilli, A., and Ghassemi, A. (2018). A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 81: 209–237, https://doi.org/10.1016/j.progpolymsci.2018.01.004.Search in Google Scholar PubMed PubMed Central

Wenten, I., Khoiruddin, K., Wardani, A., Aryanti, P., Astuti, D., and Komaladewi, A. (2020). Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. J. Water Proc. Eng. 34: 101158, https://doi.org/10.1016/j.jwpe.2020.101158.Search in Google Scholar

Wibisono, Y., Cornelissen, E., Kemperman, A., Van Der Meer, W., and Nijmeijer, K. (2014). Two-phase flow in membrane processes: a technology with a future. J. Membr. Sci. 453: 566–602, https://doi.org/10.1016/j.memsci.2013.10.072.Search in Google Scholar

Wicaksana, F., Fan, A., and Chen, V. (2005). The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system. Water Sci. Technol. 51: 115–122, https://doi.org/10.2166/wst.2005.0629.Search in Google Scholar

Wu, S.-L., Quan, L.-N., Huang, Y.-T., Li, Y.-T., Yang, H.-C., and Darling, S.B. (2021). Suspended membrane evaporators integrating environmental and solar evaporation for oily wastewater purification. ACS Appl. Mater. Interfaces 13: 39513–39522, https://doi.org/10.1021/acsami.1c12120.Search in Google Scholar PubMed

Xue, Y.L., Zhang, R., Cao, B., and Li, P. (2021). Tubular membranes and modules. In: Hollow fiber membranes. Elsevier, China.10.1016/B978-0-12-821876-1.00011-1Search in Google Scholar

Yaacob, N., Goh, P.S., Ismail, A.F., Mohd Nazri, N.A., Ng, B.C., Zainal Abidin, M.N., and Yogarathinam, L.T. (2020). ZrO2–TiO2 incorporated PVDF dual-layer hollow fiber membrane for oily wastewater treatment: effect of air gap. Membranes 10: 124, https://doi.org/10.3390/membranes10060124.Search in Google Scholar PubMed PubMed Central

Yang, X., Fridjonsson, E., Johns, M., Wang, R., and Fane, A.G. (2014). A non-invasive study of flow dynamics in membrane distillation hollow fiber modules using low-field nuclear magnetic resonance imaging (MRI). J. Membr. Sci. 451: 46–54, https://doi.org/10.1016/j.memsci.2013.09.015.Search in Google Scholar

Yanqing, Y., Yan, Q., Yanhui, L., and Yan, Z. (2021). Analysis of fouling characteristics of diatomite ceramic membrane using filtration models. E3S Web Conf.: 01049, https://doi.org/10.1051/e3sconf/202123301049.Search in Google Scholar

Yeo, A. and Fane, A. (2005). Performance of individual fibers in a submerged hollow fiber bundle. Water Sci. Technol. 51: 165–172, https://doi.org/10.2166/wst.2005.0635.Search in Google Scholar

Yi, X.S., Shi, W.X., Yu, S.L., Ma, C., Sun, N., Wang, S., Jin, L.M., and Sun, L.P. (2011). Optimization of complex conditions by response surface methodology for APAM-oil/water emulsion removal from aqua solutions using nano-sized TiO2/Al2O3 PVDF ultrafiltration membrane. J. Hazard. Mater. 193: 37–44, https://doi.org/10.1016/j.jhazmat.2011.06.063.Search in Google Scholar PubMed

Yi, X.S., Yu, S.L., Shi, W.X., Wang, S., Sun, N., Jin, L.M., and Ma, C. (2013). Estimation of fouling stages in separation of oil/water emulsion using nano-particles Al2O3/TiO2 modified PVDF UF membranes. Desalination 319: 38–46, https://doi.org/10.1016/j.desal.2013.03.031.Search in Google Scholar

Yin, J., Fidalgo, M., and Deng, B. (2023). Removal of NOMs by carbon nanotubes/polysulfone nanocomposite hollow fiber membranes for the control of disinfection byproducts (DBPs). Water 15: 2054, https://doi.org/10.3390/w15112054.Search in Google Scholar

Yogarathinam, L.T., Usman, J., Othman, M.H.D., Ismail, A.F., Goh, P.S., Gangasalam, A., and Adam, M.R. (2022). Low-cost silica based ceramic supported thin film composite hollow fiber membrane from Guinea corn husk ash for efficient removal of microplastic from aqueous solution. J. Hazard. Mater. 424: 127298, https://doi.org/10.1016/j.jhazmat.2021.127298.Search in Google Scholar PubMed

Yu, L., Han, M., and He, F. (2017). A review of treating oily wastewater. Arab. J. Chem. 10: S1913–S1922, https://doi.org/10.1016/j.arabjc.2013.07.020.Search in Google Scholar

Zahratunnisa, Elma, M., Aisyah, E.R., Hastati, Subkhan, R., Widiawardani, S., Rahma, A., and Syauqiah, I. (2024). Polyamide 66 hybrid TiO2–pectin flat-sheet membrane applied to wetland water ultrafiltration. Membr. Technol. 2024: null, https://doi.org/10.12968/s0958-2118(24)70001-9.Search in Google Scholar

Zein, R., Mukhlis, N.S., Novita, L., Novrian, E., and Ningsih, S. (2016). Peat water treatment by using multi soil layering (MSL) method. Der Pharma Chem. 8: 254–261.Search in Google Scholar

Zhang, G., Jin, W., and Xu, N. (2018). Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 4: 848–860, https://doi.org/10.1016/j.eng.2017.05.001.Search in Google Scholar

Zhao, Y., Phuntsho, S., Gao, B., Yang, Y., Kim, J.-H., and Shon, H. (2015). Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: coagulation performance and floc characteristics. J. Environ. Manag. 147: 194–202, https://doi.org/10.1016/j.jenvman.2014.09.023.Search in Google Scholar PubMed

Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M., and Zheng, H. (2021). Application of coagulation/flocculation in oily wastewater treatment: a review. Sci. Total Environ. 765: 142795, https://doi.org/10.1016/j.scitotenv.2020.142795.Search in Google Scholar PubMed

Zhong, J., Sun, X., and Wang, C. (2003). Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep. Purif. Technol. 32: 93–98, https://doi.org/10.1016/s1383-5866(03)00067-4.Search in Google Scholar

Zhu, L., Chen, M., Dong, Y., Tang, C.Y., Huang, A., and Li, L. (2016). A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Res. 90: 277–285, https://doi.org/10.1016/j.watres.2015.12.035.Search in Google Scholar PubMed

Zhu, X., Loo, H.E., and Bai, R. (2013). A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci. 436: 47–56, https://doi.org/10.1016/j.memsci.2013.02.019.Search in Google Scholar

Zhu, X., Tu, W., Wee, K.H., and Bai, R. (2014). Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci. 466: 36–44, https://doi.org/10.1016/j.memsci.2014.04.038.Search in Google Scholar

Zhu, Z., Xiao, J., He, W., Wang, T., Wei, Z., and Dong, Y. (2015). A phase-inversion casting process for preparation of tubular porous alumina ceramic membranes. J. Eur. Ceram. Soc. 35: 3187–3194, https://doi.org/10.1016/j.jeurceramsoc.2015.04.026.Search in Google Scholar

Zsirai, T., Al-Jaml, A.K., Qiblawey, H., Al-Marri, M., Ahmed, A., Bach, S., Watson, S., and Judd, S. (2016). Ceramic membrane filtration of produced water: impact of membrane module. Sep. Purif. Technol. 165: 214–221, https://doi.org/10.1016/j.seppur.2016.04.001.Search in Google Scholar

Received: 2023-09-04
Accepted: 2024-08-16
Published Online: 2024-09-23
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2023-0048/html
Scroll to top button