Home Membrane-aerated biofilm reactor (MABR): recent advances and challenges
Article
Licensed
Unlicensed Requires Authentication

Membrane-aerated biofilm reactor (MABR): recent advances and challenges

  • Utjok W. R. Siagian , Dwi L. Friatnasary , Khoiruddin Khoiruddin , Reynard Reynard , Guanglei Qiu , Yen-Peng Ting and I Gede Wenten ORCID logo EMAIL logo
Published/Copyright: February 6, 2023
Become an author with De Gruyter Brill

Abstract

Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.


Corresponding author: I Gede Wenten, Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, 40132 Bandung, Indonesia; and Research Center for Bioscience and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, 40132 Bandung, Indonesia; E-mail:

Funding source: Indonesian Ministry of Research, Technology and Higher Education

Award Identifier / Grant number: Basic Research Programs

Funding source: Institut Teknologi Bandung

Award Identifier / Grant number: PPMI 2021

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research is financially supported by PPMI, ITB.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abderrezak, B., Mehdi, M., Drouiche, N., Wenten, I.G., and Hakim, L. (2020). Progress of fitting models describing transport phenomena within nanofiltration membranes: a review. Desalin. Water Treat. 18: 94–129, https://doi.org/10.5004/dwt.2020.25083.Search in Google Scholar

Ahmed, S.F., Mofijur, M., Nuzhat, S., Chowdhury, A.T., Rafa, N., Uddin, M.A., Inayat, A., Mahlia, T.M.I., Ong, H.C., Chia, W.Y., et al.. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 416: 125912, https://doi.org/10.1016/j.jhazmat.2021.125912.Search in Google Scholar PubMed

Ahmed, T. and Semmens, M.J. (1992). Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies. J. Membr. Sci. 69: 1–10, https://doi.org/10.1016/0376-7388(92)80162-D.Search in Google Scholar

Ahmed, T. and Semmens, M.J. (1996). Use of transverse flow hollow fibers for bubbleless membrane aeration. Water Res. 30: 440–446, https://doi.org/10.1016/0043-1354(95)00167-0.Search in Google Scholar

Ahmed, T., Semmens, M.J., and Voss, M.A. (2004). Oxygen transfer characteristics of hollow-fiber, composite membranes. Adv. Environ. Res. 8: 637–646, https://doi.org/10.1016/S1093-0191(03)00036-4.Search in Google Scholar

Anh-Vu, N., Yun-Je, L., Masumi, K., and Visvanathan, C. (2022). Effects of membrane relaxation rate on performance of pilot-scale membrane aerated biofilm reactors treating domestic wastewater. Environ. Res. 211: 113003, https://doi.org/10.1016/j.envres.2022.113003.Search in Google Scholar PubMed

Aybar, M., Perez-Calleja, P., Li, M., Pavissich, J.P., and Nerenberg, R. (2019). Predation creates unique void layer in membrane-aerated biofilms. Water Res. 149: 232–242, https://doi.org/10.1016/j.watres.2018.10.084.Search in Google Scholar PubMed

Badgujar, N.R., Di Capua, F., Papirio, S., Pirozzi, F., Lens, P.N.L., and Esposito, G. (2020). CO2 biofixation by Chlamydomonas reinhardtii using different CO2 dosing strategies. In: Naddeo, V., Balakrishnan, M., and Choo, K.H. (Eds.), Frontiers in water-energy-nexus – nature-based solutions. Advanced technologies and best practices for environmental sustainability. Advances in Science, Technology & Innovation. Springer, Cham, pp. 321–324.10.1007/978-3-030-13068-8_80Search in Google Scholar

Bishop, P.L., Zhang, T.C., and Fu, Y.C. (1995). Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes. Water Sci. Technol. 31: 143–152, https://doi.org/10.1016/0273-1223(95)00162-G.Search in Google Scholar

Bui, X.-T., Chiemchaisri, C., Fujioka, T., and Varjani, S. (2019). Water and wastewater treatment technologies. Springer Nature, Singapore.10.1007/978-981-13-3259-3Search in Google Scholar

Carlson, A.L., He, H., Yang, C., and Daigger, G.T. (2021). Comparison of hybrid membrane aerated biofilm reactor (MABR)/suspended growth and conventional biological nutrient removal processes. Water Sci. Technol. 83: 1418–1428, https://doi.org/10.2166/wst.2021.062.Search in Google Scholar

Casey, E., Glennon, B., and Hamer, G. (1999a). Review of membrane aerated biofilm reactors. Resour. Conserv. Recycl. 27: 203–215, https://doi.org/10.1016/S0921-3449(99)00007-5.Search in Google Scholar

Casey, E., Glennon, B., and Hamer, G. (1999b). Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor. Biotechnol. Bioeng. 62: 183–192, https://doi.org/10.1002/(sici)1097-0290(19990120)62:2<183::aid-bit8>3.0.co;2-l.10.1002/(SICI)1097-0290(19990120)62:2<183::AID-BIT8>3.0.CO;2-LSearch in Google Scholar

Casey, E., Glennon, B., and Hamer, G. (2000). Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance. Biotechnol. Bioeng. 67: 476–486, https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4<476::AID-BIT11>3.0.CO;2-2.10.1002/(SICI)1097-0290(20000220)67:4<476::AID-BIT11>3.0.CO;2-2Search in Google Scholar

Castrillo, M., Díez-Montero, R., Esteban-García, A.L., and Tejero, I. (2019). Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration. Water Res. 152: 1–11, https://doi.org/10.1016/j.watres.2019.01.001.Search in Google Scholar

Celmer, D., Oleszkiewicz, J.A., and Cicek, N. (2008). Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater. Water Res. 42: 3057–3065, https://doi.org/10.1016/j.watres.2008.02.031.Search in Google Scholar

Cerqueira, A.C., Nobrega, R., Sant’Anna, G.L.Jr., and Dezotti, M. (2013). Oxygen air enrichment through composite membrane: application to an aerated biofilm reactor. Braz. J. Chem. Eng. 30: 771–779, https://doi.org/10.1590/S0104-66322013000400009.Search in Google Scholar

Chaali, M., Naghdi, M., Brar, S.K., and Avalos-Ramirez, A. (2018). A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. J. Chem. Technol. Biotechnol. 93: 3113–3124, https://doi.org/10.1002/jctb.5692.Search in Google Scholar

Chen, M., Ren, L., Qi, K., Li, Q., Lai, M., Li, Y., Li, X., and Wang, Z. (2020). Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour. Technol. 311: 123579, https://doi.org/10.1016/j.biortech.2020.123579.Search in Google Scholar

Chen, R. and Zhou, Y. (2021). Mainstream nitrogen removal in membrane aerated biofilm reactor at minimal lumen pressure. Sci. Total Environ. 818: 151758, https://doi.org/10.1016/j.scitotenv.2021.151758.Search in Google Scholar

Chen, R., Cao, S., Zhang, L., and Zhou, Y. (2022). NOB suppression strategies in a mainstream membrane aerated biofilm reactor under exceptionally low lumen pressure. Chemosphere 290: 133386, https://doi.org/10.1016/j.chemosphere.2021.133386.Search in Google Scholar PubMed

Chen, X., Huo, P., Liu, J., Li, F., Yang, L., Li, X., Wei, W., Liu, Y., and Ni, B.-J. (2021). Model predicted N2O production from membrane-aerated biofilm reactor is greatly affected by biofilm property settings. Chemosphere 281: 130861, https://doi.org/10.1016/j.chemosphere.2021.130861.Search in Google Scholar PubMed

Clapp, L.W., Regan, J.M., Ali, F., Newman, J.D., Park, J.K., and Noguera, D.R. (1999). Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degrading trichloroethylene. Water Sci. Technol. 39: 153–161, https://doi.org/10.1016/S0273-1223(99)00163-8.Search in Google Scholar

Cole, A.C., Semmens, M.J., and LaPara, T.M. (2004). Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Appl. Environ. Microbiol. 70: 1982–1989, https://doi.org/10.1128/AEM.70.4.1982-1989.2004.Search in Google Scholar PubMed PubMed Central

Corsino, S.F. and Torregrossa, M. (2022). Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater. J. Environ. Chem. Eng. 10: 106983, https://doi.org/10.1016/j.jece.2021.106983.Search in Google Scholar

Côté, P., Bersillon, J.L., and Huyard, A. (1989). Bubble-free aeration using membranes: mass transfer analysis. J. Membr. Sci. 47: 91–106, https://doi.org/10.1016/S0376-7388(00)80862-5.Search in Google Scholar

Côté, P., Bersillon, J.L., Huyard, A., and Faup, G. (1988). Bubble-free aeration using membranes: process analysis. J. Membr. Sci. 60: 1986–1992, https://doi.org/10.1016/S0376-7388(00)80862-5.Search in Google Scholar

Cote, P.L. and Husain, H. (2005). Membrane supported biofilm reactor for municipal and industrial wastewater treatment, CA2438432.Search in Google Scholar

Davis, M.L. (2010). Water and wastewater engineering. McGraw-Hill, New York.Search in Google Scholar

Debus, O. and Wanner, O. (1992). Degradation of xylene by a biofilm growing on a gas-permeable membrane. Water Sci. Technol. 26: 607–616, https://doi.org/10.2166/wst.1992.0441.Search in Google Scholar

Debus, O., Baumgartl, H., and Sekulov, I. (1994). Influence of fluid velocities on the degradation of volatile aromatic compounds in membrane bound biofilms. Water Sci. Technol. 29: 253–262, https://doi.org/10.2166/wst.1994.0768.Search in Google Scholar

Dong, W.Y., Wang, H.J., Li, W.G., Ying, W.C., Gan, G.H., and Yang, Y. (2009). Effect of DO on simultaneous removal of carbon and nitrogen by a membrane aeration/filtration combined bioreactor. J. Membr. Sci. 344: 219–224, https://doi.org/10.1016/j.memsci.2009.08.007.Search in Google Scholar

dos Santos, L.M.F. and Livingston, A.G. (1995). Membrane-attached biofilms for VOC wastewater treatment I: novel in situ biofilm thickness measurement technique. Biotechnol. Bioeng. 47: 82–89, https://doi.org/10.1002/bit.260470110.Search in Google Scholar PubMed

DuPont (2021). OxyMem – The MABR solution for treating municipal and industrial wastewater. DuPont, Westmeath.Search in Google Scholar

Elsayed, A., Hurdle, M., and Kim, Y. (2021). Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance. J. Water Proc. Eng. 40: 101894, https://doi.org/10.1016/j.jwpe.2020.101894.Search in Google Scholar

Essila, N.J., Semmens, M.J., and Voller, V.R. (2000). Modeling biofilms on gas-permeable supports: concentration and activity profiles. J. Environ. Eng. 126: 250–257, https://doi.org/10.1061/(asce)0733-9372(2000)126:3(250).10.1061/(ASCE)0733-9372(2000)126:3(250)Search in Google Scholar

Feng, Y.-J., Tseng, S.-K., Hsia, T.-H., Ho, C.-M., and Chou, W.-P. (2008). Aerated membrane-attached biofilm reactor as an effective tool for partial nitrification in pretreatment of anaerobic ammonium oxidation (ANAMMOX) process. J. Chem. Technol. Biotechnol. 83: 1163–1169, https://doi.org/10.1002/jctb.Search in Google Scholar

Fitch, M.W. (2005). Membrane bioreactor technology (chapter 9). In: Shareefdeen, Z. and Singh, A. (Eds.), Biotechnology for odor and air pollution control. Springer, Berlin/Heidelberg, pp. 195–212.10.1007/3-540-27007-8_9Search in Google Scholar

Fluence (2021). MABR technology for efficient biological nutrient removal wastewater treatment for every need at any scale. Fluence, Minnesota.Search in Google Scholar

Fortunato, L., Qamar, A., Wang, Y., Jeong, S., and Leiknes, T. (2017). In-situ assessment of biofilm formation in submerged membrane system using optical coherence tomography and computational fluid dynamics. J. Membr. Sci. 521: 84–94, https://doi.org/10.1016/j.memsci.2016.09.004.Search in Google Scholar

Gao, W.J., Han, M.N., Xu, C., Charles, Liao, B.Q., Hong, Y., Cumin, J., and Dagnew, M. (2016). Performance of submerged anaerobic membrane bioreactor for thermomechanical pulping wastewater treatment. J. Water Proc. Eng. 13: 70–78, https://doi.org/10.1016/j.jwpe.2016.05.004.Search in Google Scholar

George, S.C., Ninan, K.N., and Thomas, S. (2001). Permeation of nitrogen and oxygen gases through styrene–butadiene rubber, natural rubber and styrene–butadiene rubber/natural rubber blend membranes. Eur. Polym. J. 37: 183–191, https://doi.org/10.1016/S0014-3057(00)00083-5.Search in Google Scholar

Ghasemi, M., Chang, S., and Sivaloganathan, S. (2021). Development of an integrated ultrasonic biofilm detachment model for biofilm thickness control in membrane aerated bioreactors. Appl. Math. Model. 100: 596–611, https://doi.org/10.1016/j.apm.2021.08.027.Search in Google Scholar

Ghimire, U. and Gude, V.G. (2019). Accomplishing a N-E-W (nutrient-energy-water) synergy in a bioelectrochemical nitritation-anammox process. Sci. Rep. 9: 1–13, https://doi.org/10.1038/s41598-019-45620-2.Search in Google Scholar PubMed PubMed Central

Gilmore, K.R., Little, J.C., Smets, B.F., and Love, N.G. (2009). Oxygen transfer model for a flow-through hollow-fiber membrane biofilm reactor. J. Environ. Eng. 135: 806–814, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000035.Search in Google Scholar

Guglielmi, G., Coutts, D., Houweling, D., and Peeters, J. (2020). Full-scale application of MABR technology for upgrading and retrofitting an existing WWTP: performances and process modelling. Environ. Eng. Manag. J. 19: 1781–1789, https://doi.org/10.30638/eemj.2020.169.Search in Google Scholar

Hage, J.C., Van Houten, R.T., Tramper, J., and Hartmans, S. (2004). Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1. Appl. Microbiol. Biotechnol. 64: 718–725, https://doi.org/10.1007/s00253-004-1586-6.Search in Google Scholar PubMed

He, H., Wagner, B.M., Carlson, A.L., Yang, C., and Daigger, G.T. (2021). Recent progress using membrane aerated biofilm reactors for wastewater treatment. Water Sci. Technol. 84: 2131–2157, https://doi.org/10.2166/wst.2021.443.Search in Google Scholar PubMed

Heffernan, B., Murphy, C.D., Syron, E., and Casey, E. (2009). Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor. Environ. Sci. Technol. 43: 6776–6785, https://doi.org/10.1021/es9001554.Search in Google Scholar PubMed

Hemmati, A., Dolatabad, M.M., Naeimpoor, F., Pak, A., and Mohammdi, T. (2012). Effect of hydraulic retention time and temperature on submerged membrane bioreactor (SMBR) performance. Kor. J. Chem. Eng. 29: 369–376, https://doi.org/10.1007/s11814-011-0180-8.Search in Google Scholar

Henzler, H.J. and Kauling, D.J. (1993). Oxygenation of cell cultures. Bioprocess Eng. 9: 61–75, https://doi.org/10.1007/BF00369033.Search in Google Scholar

Hibiya, K., Terada, A., Tsuneda, S., and Hirata, A. (2003). Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. J. Biotechnol. 100: 23–32, https://doi.org/10.1016/s0168-1656(02)00227-4.Search in Google Scholar PubMed

Hou, F., Li, B., Xing, M., Wang, Q., Hu, L., and Wang, S. (2013). Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR). Bioresour. Technol. 140: 1–9, https://doi.org/10.1016/j.biortech.2013.04.056.Search in Google Scholar PubMed

Hou, J., Wang, C., Rozenbaum, R.T., Gusnaniar, N., de Jong, E.D., Woudstra, W., Geertsema-Doornbusch, G.I., Atema-Smit, J., Sjollema, J., Ren, Y., et al.. (2019). Bacterial density and biofilm structure determined by optical coherence tomography. Sci. Rep. 9: 1–12, https://doi.org/10.1038/s41598-019-46196-7.Search in Google Scholar PubMed PubMed Central

Iorhemen, O.T., Hamza, R.A., and Tay, J.H. (2017). Membrane fouling control in membrane bioreactors (MBRs) using granular materials. Bioresour. Technol. 240: 9–24, https://doi.org/10.1016/j.biortech.2017.03.005.Search in Google Scholar PubMed

Joss, A., Salzgeber, D., Eugster, J., König, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., and Siegrist, H.R. (2009). Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ. Sci. Technol. 43: 5301–5306, https://doi.org/10.1021/es900107w.Search in Google Scholar PubMed

Judd, S. (2011). The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment, 2nd ed. Elsevier, Massachusetts.Search in Google Scholar

Karna, D. and Visvanathan, C. (2019). From conventional activated sludge process to membrane-aerated biofilm reactors: scope, applications, and challenges. In: Bui, X.T., Chiemchaisri, C., Fujioka, T., and Varjani, S. (Eds.), Water and wastewater treatment technologies. Energy, environment, and sustainability. Springer, Singapore, pp. 237–263.10.1007/978-981-13-3259-3_12Search in Google Scholar

Khulbe, K.C., Matsuura, T., Lamarche, G., and Kim, H.J. (1997). The morphology characterisation and performance of dense PPO membranes for gas separation. J. Membr. Sci. 135: 211–223, https://doi.org/10.1016/S0376-7388(97)00138-5.Search in Google Scholar

Kim, B., Perez-Calleja, P., Li, M., and Nerenberg, R. (2020). Effect of predation on the mechanical properties and detachment of MABR biofilms. Water Res. 186: 116289, https://doi.org/10.1016/j.watres.2020.116289.Search in Google Scholar PubMed

Kim, D.J. and Kim, H. (2005). Degradation of toluene vapor in a hydrophobic polyethylene hollow fiber membrane bioreactor with Pseudomonas putida. Process Biochem. 40: 2015–2020 https://doi.org/10.1016/j.procbio.2004.04.018.Search in Google Scholar

Kinh, C.T., Suenaga, T., Hori, T., Riya, S., Hosomi, M., Smets, B.F., and Terada, A. (2017). Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: insights from depth-profile analysis. Water Res. 124: 363–371, https://doi.org/10.1016/j.watres.2017.07.058.Search in Google Scholar PubMed

Kobayashi, M., Agari, R., Kigo, Y., and Terada, A. (2022). Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor. Biochem. Eng. J. 183: 108442, https://doi.org/10.1016/j.bej.2022.108442.Search in Google Scholar

Kreulen, H., Smolders, C.A., Versteeg, G.F., and Van Swaaij, W.P.M. (1993). Determination of mass transfer rates in wetted and non-wetted microporous membranes. Chem. Eng. Sci. 48: 2093–2102, https://doi.org/10.1016/0009-2509(93)80084-4.Search in Google Scholar

Kuenen, J.G. (2008). Anammox bacteria: from discovery to application. Nature 6: 320–326, https://doi.org/10.1038/nrmicro1857.Search in Google Scholar PubMed

Kunlasubpreedee, P. and Visvanathan, C. (2020). Performance evaluation of membrane-aerated biofilm reactor for acetonitrile wastewater treatment. J. Environ. Eng. 146: 04020055, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001706.Search in Google Scholar

Lackner, S., Terada, A., Horn, H., Henze, M., and Smets, B.F. (2010). Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res. 44: 6073–6084, https://doi.org/10.1016/j.watres.2010.07.074.Search in Google Scholar PubMed

Lan, M., Li, M., Liu, J., Quan, X., Li, Y., and Li, B. (2018). Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system. Bioresour. Technol. 270: 120–128, https://doi.org/10.1016/j.biortech.2018.09.011.Search in Google Scholar PubMed

Lan, M., Yang, P., Xie, L., Li, Y., Liu, J., Zhang, P., Zhang, P., and Li, B. (2022). Start-up and synergistic nitrogen removal of partial nitrification and anoxic/aerobic denitrification in membrane aerated biofilm reactor. Environ. Res. 214: 113901, https://doi.org/10.1016/j.envres.2022.113901.Search in Google Scholar PubMed

Li, J., Ma, J., Liao, H., Li, X., Shen, L., Lin, H., Sun, L., Ou, R., and He, D. (2022). Hot-pressed membrane assemblies enhancing the biofilm formation and nitrogen removal in a membrane-aerated biofilm reactor. Sci. Total Environ. 833: 155003, https://doi.org/10.1016/j.scitotenv.2022.155003.Search in Google Scholar PubMed

Li, L., Hou, J., Ye, Y., Mansouri, J., and Chen, V. (2017). Composite PVA/PVDF pervaporation membrane for concentrated brine desalination: salt rejection, membrane fouling and defect control. Desalination 422: 49–58, https://doi.org/10.1016/j.desal.2017.08.011.Search in Google Scholar

Li, P., Zhao, D., Zhang, Y., Sun, L., Zhang, H., Lian, M., and Li, B. (2015). Oil-field wastewater treatment by hybrid membrane-aerated biofilm reactor (MABR) system. Chem. Eng. J. 264: 595–602, https://doi.org/10.1016/j.cej.2014.11.131.Search in Google Scholar

Li, P., Li, M., Zhang, Y., Zhang, H., Sun, L., and Li, B. (2016a). The treatment of surface water with enhanced membrane-aerated biofilm reactor (MABR). Chem. Eng. Sci. 144: 267–274, https://doi.org/10.1016/j.ces.2016.01.030.Search in Google Scholar

Li, T., Liu, J., and Bai, R. (2008a). Membrane aerated biofilm reactors: a brief current review. Recent Pat. Biotechnol. 2: 88–93, https://doi.org/10.2174/187220808784619739.Search in Google Scholar PubMed

Li, T., Liu, J., Bai, R., and Wong, F.S. (2008b). Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environ. Sci. Technol. 42: 2099–2104, https://doi.org/10.1021/es702150f.Search in Google Scholar PubMed

Li, X. and Li, J. (2016). Encyclopedia of membranes. Springer, Berlin.10.1007/978-3-662-44324-8_2195Search in Google Scholar

Li, X., Sun, S., Badgley, B.D., Sung, S., Zhang, H., and He, Z. (2016b). Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. Water Res. 94: 23–31, https://doi.org/10.1016/j.watres.2016.02.031.Search in Google Scholar PubMed

Liao, B.Q. and Liss, S.N. (2007). A comparative study between thermophilic and mesophilic membrane aerated biofilm reactors. J. Environ. Eng. Sci. 6: 247–252, https://doi.org/10.1139/s06-053.Search in Google Scholar

Liao, B.Q., Zheng, M.R., and Ratana-Rueangsri, L. (2010). Treatment of synthetic kraft evaporator condensate using thermophilic and mesophilic membrane aerated biofilm reactors. Water Sci. Technol. 61: 1749–1756, https://doi.org/10.2166/wst.2010.114.Search in Google Scholar PubMed

Lin, J., Zhang, P., Yin, J., Zhao, X., and Li, J. (2015). Nitrogen removal performances of a polyvinylidene fluoride membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 102: 49–55, https://doi.org/10.1016/j.ibiod.2015.01.013.Search in Google Scholar

Lin, J., Zhang, P., Li, G., Yin, J., Li, J., and Zhao, X. (2016). Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 113: 74–79, https://doi.org/10.1016/j.ibiod.2016.01.009.Search in Google Scholar

Liu, H., Yang, F., Wang, T., Liu, Q., and Hu, S. (2007). Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment. Bioproc. Biosyst. Eng. 30: 217–224, https://doi.org/10.1007/s00449-007-0116-1.Search in Google Scholar PubMed

Liu, Y., Zhu, T., Ren, S., Zhao, T., Chai, H., Xu, Y., Peng, L., and Liu, Y. (2022). Contribution of nitrification and denitrification to nitrous oxide turnovers in membrane-aerated biofilm reactors (MABR): a model-based evaluation. Sci. Total Environ. 806: 151321, https://doi.org/10.1016/j.scitotenv.2021.151321.Search in Google Scholar PubMed

Lu, D., Bai, H., Kong, F., Liss, S.N., and Liao, B. (2021). Recent advances in membrane aerated biofilm reactors. Crit. Rev. Environ. Sci. Technol. 51: 649–703, https://doi.org/10.1080/10643389.2020.1734432.Search in Google Scholar

Ma, Y., Piscedda, A., Veras, A.D.L.C., Domingo-Félez, C., and Smets, B.F. (2022). Intermittent aeration to regulate microbial activities in membrane-aerated biofilm reactors: energy-efficient nitrogen removal and low nitrous oxide emission. Chem. Eng. J. 433: 133630, https://doi.org/10.1016/j.cej.2021.133630.Search in Google Scholar

Mahboubi, A., Ylitervo, P., Doyen, W., De Wever, H., and Taherzadeh, M.J. (2016). Reverse membrane bioreactor: introduction to a new technology for biofuel production. Biotechnol. Adv. 34: 954–975, https://doi.org/10.1016/j.biotechadv.2016.05.009.Search in Google Scholar

Martin, K.J. and Nerenberg, R. (2012). The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour. Technol. 122: 83–94, https://doi.org/10.1016/j.biortech.2012.02.110.Search in Google Scholar

Martin, K.J., Picioreanu, C., and Nerenberg, R. (2013). Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR). Water Res. 47: 4739–4751, https://doi.org/10.1016/j.watres.2013.04.031.Search in Google Scholar

Matsuoka, H., Fukada, S., and Toda, K. (1992). High oxygen transfer rate in a new aeration system using hollow fiber membrane. Biotechnol. Bioeng. 40: 346–352, https://doi.org/10.1002/bit.260400303.Search in Google Scholar

Mei, X., Guo, Z., Liu, J., Bi, S., Li, P., Wang, Y., Shen, W., Yang, Y., Wang, Y., Xiao, Y., et al.. (2019). Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR): the degradation of formaldehyde in the presence of the cosubstrate methanol. Chem. Eng. J. 372: 673–683, https://doi.org/10.1016/j.cej.2019.04.184.Search in Google Scholar

Mei, X., Ma, M., Guo, Z., Shen, W., Wang, Y., Xu, L., Zhang, Z., Ding, Y., Xiao, Y., Yang, X., et al.. (2021). A novel clean and energy-saving system for urea-formaldehyde resin wastewater treatment: combination of a low-aeration-pressure plate membrane-aerated biofilm reactor and a biological aerated filter. J. Environ. Chem. Eng. 9: 105955, https://doi.org/10.1016/j.jece.2021.105955.Search in Google Scholar

Merkel, T.C., Bondar, V.I., Nagai, K., Freeman, B.D., and Pinnau, I. (2000). Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. Part B: Polym. Phys. 38: 415–434, https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z.10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-ZSearch in Google Scholar

Molina-Burgos, J., Jácome-Burgos, J.A., and Suárez-López, J. (2018). Case study on nitrification rates in a non-stirred membrane-aerated biofilm reactor operated under laminar regime. J. Urban Environ. Eng. 11: 193–201, https://doi.org/10.4090/juee.2017.v11n2.193201.Search in Google Scholar

Moussavi, G. and Ghorbanian, M. (2015). The biodegradation of petroleum hydrocarbons in an upflow sludge-blanket/fixed-film hybrid bioreactor under nitrate-reducing conditions: performance evaluation and microbial identification. Chem. Eng. J. 280: 121–131, https://doi.org/10.1016/j.cej.2015.05.117.Search in Google Scholar

Mulder, M. (1996). Basic principles of membrane technology. Springer, The Netherlands.10.1007/978-94-009-1766-8Search in Google Scholar

Nathan, N., Shefer, I., Shechter, R., Sisso, Y., Gordon, K.J., and Downing, L.S. (2020). Start-up of a full-scale activated sludge retrofit using a spirally-wound MABR – results and model evaluation. In: 93rd Water environment federation technical Exhibition and conference 2020, WEFTEC 2020. Fluence, Caesarea, Israel, pp. 4079–4087.Search in Google Scholar

Nerenberg, R. (2016). The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotechnol. 38: 131–136, https://doi.org/10.1016/j.copbio.2016.01.015.Search in Google Scholar PubMed

Nezhadmoghadam, E., Chenar, M.P., Omidkhah, M., Nezhadmoghadam, A., and Abedini, R. (2018). Aminosilane grafted Matrimid 5218/nano-silica mixed matrix membrane for CO2/light gases separation. Kor. J. Chem. Eng. 35: 526–534, https://doi.org/10.1007/s11814-017-0282-z.Search in Google Scholar

Nishidome, K., Kusuda, T., Watanabe, Y., Yamamuchi, M., and Mihara, M. (1994). Determination of oxygen transfer rate to a rotating biological contactor by microelectrode measurement. Water Sci. Technol. 29: 471–477, https://doi.org/10.2166/wst.1994.0794.Search in Google Scholar

Ohandja, D.-G. and Stuckey, D.C. (2007). Biodegradation of PCE in a hybrid membrane aerated biofilm reactor. J. Environ. Eng. 133: 20–27.10.1061/(ASCE)0733-9372(2007)133:1(20)Search in Google Scholar

Pankhania, M., Brindle, K., and Stephenson, T. (1999). Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation. Chem. Eng. J. 73: 131–136, https://doi.org/10.1016/s1385-8947(99)00026-1.Search in Google Scholar

Peeters, J. and Kicsi, G. (2019). Full scale MABR experience: intensification of nutrient removal and energy reduction. In: Water New Zealand Conference and Expo, 18–20 September 2019, pp. 1–7.Search in Google Scholar

Pellicer-Nàcher, C., Sun, S., Lackner, S., Terada, A., Schreiber, F., Zhou, Q., and Smets, B.F. (2010). Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: experimental demonstration. Environ. Sci. Technol. 44: 7628–7634, https://doi.org/10.1021/es1013467.Search in Google Scholar PubMed

Pellicer-Nàcher, C., Domingo-Félez, C., Lackner, S., and Smets, B.F. (2013). Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors. J. Membr. Sci. 446: 465–471, https://doi.org/10.1016/j.memsci.2013.06.063.Search in Google Scholar

Perez-Calleja, P., Aybar, M., Picioreanu, C., Esteban-Garcia, A.L., Martin, K.J., and Nerenberg, R. (2017). Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies. Water Res. 121: 349–360, https://doi.org/10.1016/j.watres.2017.05.042.Search in Google Scholar PubMed

Pérez-Calleja, P., Clements, E., and Nerenberg, R. (2022). Enhancing ammonium oxidation fluxes and nitritation efficiencies in MABRs: a modeling study. Environ. Sci. Water Res. Technol. 8: 358–374, https://doi.org/10.1039/D1EW00337B.Search in Google Scholar

Picard, C., Logette, S., Schrotter, J.C., Aimar, P., and Remigy, J.C. (2012). Mass transfer in a membrane aerated biofilm. Water Res. 46: 4761–4769, https://doi.org/10.1016/j.watres.2012.05.056.Search in Google Scholar PubMed

Pinnau, I. and Koros, W.J. (1991). Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J. Appl. Polym. Sci. 43: 1491–1502, https://doi.org/10.1002/app.1991.070430811.Search in Google Scholar

Piret, J.M. and Cooney, C.L. (1991). Model of oxygen transport limitations in hollow fiber bioreactors. Biotechnol. Bioeng. 37: 80–92, https://doi.org/10.1002/bit.260370112.Search in Google Scholar PubMed

Potvin, C.M., Long, Z., and Zhou, H. (2012). Removal of tetrabromobisphenol A by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors. Chemosphere 89: 1183–1188, https://doi.org/10.1016/j.chemosphere.2012.07.011.Search in Google Scholar PubMed

Qin, Y., Han, B., Cao, Y., and Wang, T. (2017). Impact of substrate concentration on anammox-UBF reactors start-up. Bioresour. Technol. 239: 422–429, https://doi.org/10.1016/j.biortech.2017.04.126.Search in Google Scholar PubMed

Quan, X., Huang, K., Li, M., Lan, M., and Li, B. (2018). Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor. Front. Environ. Sci. Eng. 12: 5, https://doi.org/10.1007/s11783-018-1047-6.Search in Google Scholar

Rastogi, N.K. and Nayak, C.A. (2011). Membranes for forward osmosis in industrial applications. In: Basile, A. and Nunes, S.P. (Eds.), Advanced membrane science and technology for sustainable energy and environmental applications. Woodhead Publishing Series in Energy, Cambridge, pp. 680–717.10.1533/9780857093790.5.680Search in Google Scholar

Ratnaningsih, E, Kadja, G.T.M., Putri, R.M., Alni, A., Khoiruddin, K., Djunaidi, M.C., Ismadji, S., and Wenten, I.G. (2022). Molecularly imprinted affinity membrane: a review. ACS Omega 7: 23009–23026, https://doi.org/10.1021/acsomega.2c02158.Search in Google Scholar PubMed PubMed Central

Reij, M.W., Keurentjes, J.T.F., and Hartmans, S. (1998). Membrane bioreactors for waste gas treatment. J. Biotechnol. 59: 155–167, https://doi.org/10.1016/j.jedc.2006.07.004.Search in Google Scholar

Ren, L. and Liu, J. (2019). Synthesis and gas transport properties of polyamide membranes containing PDMS groups. RSC Adv. 9: 9737–9744, https://doi.org/10.1039/C8RA10550B.Search in Google Scholar PubMed PubMed Central

Ren, L., Chen, M., Zheng, J., Li, Z., Tian, C., Wang, Q., and Wang, Z. (2021). Efficacy of a novel electrochemical membrane-aerated biofilm reactor for removal of antibiotics from micro-polluted surface water and suppression of antibiotic resistance genes. Bioresour. Technol. 338: 125527, https://doi.org/10.1016/j.biortech.2021.125527.Search in Google Scholar PubMed

Rothemund, C., Amann, R., Klugbauer, S., Manz, W., Bieber, C., Schleifer, K.H., and Wilderer, P. (1996). Microflora of 2,4-dichlorophenoxyacetic acid degrading biofilms on gas permeable membranes. Syst. Appl. Microbiol. 19: 608–615, https://doi.org/10.1016/S0723-2020(96)80033-6.Search in Google Scholar

Rumana, R. (2013). Fundamentals of wastewater treatment and engineering. CRC Press, London.Search in Google Scholar

Saeki, D., Nagashima, Y., Sawada, I., and Matsuyama, H. (2016). Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids Surf. A Physicochem. Eng. Asp. 506: 622–628, https://doi.org/10.1016/j.colsurfa.2016.07.036.Search in Google Scholar

Samarasinghe, S.A.S.C., Chuah, C.Y., Li, W., Sethunga, G.S.M.D.P., Wang, R., and Bae, T.-H. (2019). Incorporation of CoIII acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Separ. Purif. Technol. 223: 133–141, https://doi.org/10.1016/j.seppur.2019.04.075.Search in Google Scholar

Sanchez-Huerta, C., Fortunato, L., Leiknes, T., and Hong, P.-Y. (2022). Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a membrane aerated biofilm reactor (MABR). J. Hazard. Mater. 432: 128698, https://doi.org/10.1016/j.jhazmat.2022.128698.Search in Google Scholar PubMed

Schaefer, S., Walther, J., Strieth, D., Ulber, R., and Bröckel, U. (2021). Insights into the development of phototrophic biofilms in a bioreactor by a combination of X-ray microtomography and optical coherence tomography. Microorganisms 9: 1743, https://doi.org/10.3390/microorganisms9081743.Search in Google Scholar PubMed PubMed Central

Semmens, M.J. (1991). Bubbleless gas transfer device and process, US5034164.Search in Google Scholar

Semmens, M. and Hanus, D. (1999). Studies of a membrane aerated bioreactor for wastewater treatment. Membr. Technol. 1999: 9–13, https://doi.org/10.1016/S0958-2118(00)80056-7.Search in Google Scholar

Semmens, M.J., Dahm, K., Shanahan, J., and Christianson, A. (2003). COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Res. 37: 4343–4350, https://doi.org/10.1016/S0043-1354(03)00416-0.Search in Google Scholar PubMed

Sen, D., Kalipcilar, H., and Yilmaz, L. (2006). Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination 200: 222–224, https://doi.org/10.1016/j.desal.2006.03.303.Search in Google Scholar

Sethunga, G.S.M.D.P., Lee, J., Wang, R., and Bae, T.H. (2020). Influences of operating parameters and membrane characteristics on the net energy production in dense, porous, and composite hollow fiber membrane contactors for dissolved biomethane recovery. J. Membr. Sci. 610: 118301, https://doi.org/10.1016/j.memsci.2020.118301.Search in Google Scholar

Shanahan, J.W. and Semmens, M.J. (2004). Multipopulation model of membrane-aerated biofilms. Environ. Sci. Technol. 38: 3176–3183, https://doi.org/10.1021/es034809y.Search in Google Scholar PubMed

Shanahan, J.W. and Semmens, M.J. (2006). Influence of a nitrifying biofilm on local oxygen fluxes across a micro-porous flat sheet membrane. J. Membr. Sci. 277: 65–74, https://doi.org/10.1016/j.memsci.2005.10.010.Search in Google Scholar

Siagian, U.W.R., Dwipramana, A.S., Perwira, S.B., Khoiruddin, K., and Wenten, I.G. (2018). Ceramic membrane ozonator for soluble organics removal from produced water. IOP Conf. Ser.: Mater. Sci. Eng. 285: 012012, https://doi.org/10.1088/1757-899X/285/1/012012.Search in Google Scholar

Siagian, U.W.R., Khoiruddin, K., Ting, Y.P., Boopathy, R., and Wenten, I.G. (2022). Advances in membrane bioreactor: High performance and antifouling configurations. Curr. Pollution Rep. 8: 98–112, https://doi.org/10.1007/s40726-022-00217-8.Search in Google Scholar

Siatou, A., Manali, A., and Gikas, P. (2020). Energy consumption and internal distribution in activated sludge wastewater treatment plants of Greece. Water 12: 1–15, https://doi.org/10.3390/W12041204.Search in Google Scholar

Siddiqui, M.A., Kumar Biswal, B., Siriweera, B., Chen, G., and Wu, D. (2022). Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal. Bioresour. Technol. 345: 126554, https://doi.org/10.1016/j.biortech.2021.126554.Search in Google Scholar PubMed

Silveira, I.T., Cadee, K., and Bagg, W. (2022). Startup and initial operation of an MLE-MABR treating municipal wastewater. Water Sci. Technol. 85: 1155–1166, https://doi.org/10.2166/wst.2022.045.Search in Google Scholar PubMed

Singh, N., Husson, S.M., Zdyrko, B., and Luzinov, I. (2005). Surface modification of microporous PVDF membranes by ATRP. J. Membr. Sci. 262: 81–90, https://doi.org/10.1016/j.memsci.2005.03.053.Search in Google Scholar

Splendiani, A., Livingston, A.G., and Nicolella, C. (2006). Control of membrane-attached biofilms using surfactants. Biotechnol. Bioeng. 94: 15–23, https://doi.org/10.1002/bit.Search in Google Scholar

Stephenson, T., Judd, S., Jefferson, B., and Brindle, K. (2000). Membrane bioreactors for wastewater treatment. IWA Publishing, London.Search in Google Scholar

Stricker, A.-E., Lossing, H., Gibson, J.H., Hong, Y., and Urbanic, J.C. (2011). Pilot scale testing of a new configuration of the membrane aerated biofilm reactor (MABR) to treat high-strength industrial sewage. Water Environ. Res. 83: 3–14, https://doi.org/10.2175/106143009x12487095236991.Search in Google Scholar PubMed

Su, W.W. and Humphrey, A.E. (1991). Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor. Biotechnol. Lett. 13: 889–892, https://doi.org/10.1007/BF01022093.Search in Google Scholar

Suárez, J.I., Aybar, M., Nancucheo, I., Poch, B., Martínez, P., Rittmann, B.E., and Schwarz, A. (2020). Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. Chemosphere 244: 125508, https://doi.org/10.1016/j.chemosphere.2019.125508.Search in Google Scholar PubMed

Subagjo, S., Prasetya, N., and Wenten, I.G. (2015). Hollow fiber membrane bioreactor for COD biodegradation of tapioca wastewater. J. Membr. Sci. Res. 1: 79–84, https://doi.org/10.22079/JMSR.2015.13533.Search in Google Scholar

Sun, J., Dai, X., Liu, Y., Peng, L., and Ni, B.-J. (2017). Sulfide removal and sulfur production in a membrane aerated biofilm reactor: model evaluation. Chem. Eng. J. 309: 454–462, https://doi.org/10.1016/j.cej.2016.09.146.Search in Google Scholar

Sun, L., Wang, Z., Wei, X., Li, P., Zhang, H., Li, M., Li, B., and Wang, S. (2015). Enhanced biological nitrogen and phosphorus removal using sequencing batch membrane-aerated biofilm reactor. Chem. Eng. Sci. 135: 559–565, https://doi.org/10.1016/j.ces.2015.07.033.Search in Google Scholar

Syron, E. and Casey, E. (2008a). Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 42: 1833–1844, https://doi.org/10.1021/es0719428.Search in Google Scholar PubMed

Syron, E. and Casey, E. (2008b). Model-based comparative performance analysis of membrane aerated biofilm reactor configurations. Biotechnol. Bioeng. 99: 1361–1373, https://doi.org/10.1002/bit.21700.Search in Google Scholar PubMed

Syron, E., Semmens, M.J., and Casey, E. (2015). Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate. Chem. Eng. J. 273: 120–129, https://doi.org/10.1016/j.cej.2015.03.043.Search in Google Scholar

Tchobanoglous, G., Burton, F.L., and Stensel, H.D. (2003). Wastewater engineering: treatment and reuse. McGraw-Hill, Inc, New York.Search in Google Scholar

Terada, A., Hibiya, K., Nagai, J., Tsuneda, S., and Hirata, A. (2003). Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J. Biosci. Bioeng. 95: 170–178, https://doi.org/10.1016/s1389-1723(03)80124-x.Search in Google Scholar PubMed

Terada, A., Yamamoto, T., Igarashi, R., Tsuneda, S., and Hirata, A. (2006). Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification. Biochem. Eng. J. 28: 123–130, https://doi.org/10.1016/j.bej.2005.10.001.Search in Google Scholar

Tian, H., Zhang, H., Li, P., Sun, L., Hou, F., and Li, B. (2015). Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system. RSC Adv. 5: 69829–69838, https://doi.org/10.1039/C5RA10091G.Search in Google Scholar

Tian, H., Liu, J., Feng, T., Li, H., Wu, X., and Li, B. (2017). Assessing the performance and microbial structure of biofilms adhering on aerated membranes for domestic saline sewage treatment. RSC Adv. 7: 27198–27205, https://doi.org/10.1039/c7ra03755d.Search in Google Scholar

Tian, H., Hu, Y., Xu, X., Hui, M., Hu, Y., Qi, W., Xu, H., and Li, B. (2019). Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresour. Technol. 289: 121649, https://doi.org/10.1016/j.biortech.2019.121649.Search in Google Scholar PubMed

Tijhuis, L., van Loosdrecht, M.C.M., and Heijnen, J.J. (1994). Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol. Bioeng. 44: 595–608, https://doi.org/10.1002/bit.260470511.Search in Google Scholar PubMed

Uchida, M., Numazawa, R., and Robinson, P.E.W. (1992). Multi-layered porous hollow fiber membrane for use in cell culture. US5149649.Search in Google Scholar

Ukaigwe, S., Zhou, Y., Shaheen, M., and Liu, Y. (2021). Municipal wastewater treatment using a membrane aerated biofilm reactor (MABR). J. Environ. Eng. Sci. 17: 99–107, https://doi.org/10.1680/jenes.21.00025.Search in Google Scholar

Uri-Carreño, N., Nielsen, P.H., Gernaey, K.V., and Flores-Alsina, X. (2021). Long-term operation assessment of a full-scale membrane-aerated biofilm reactor under Nordic conditions. Sci. Total Environ. 779: 146366, https://doi.org/10.1016/j.scitotenv.2021.146366.Search in Google Scholar PubMed

van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C., and van Loosdrecht, M.C.M. (2007). Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41: 4149–4163, https://doi.org/10.1016/j.watres.2007.03.044.Search in Google Scholar PubMed

van Loosdrecht, M.C.M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L., and Heijnen, J.J. (1995). Biofilm structures. Water Sci. Technol. 32: 35–43, https://doi.org/10.1016/0273-1223(96)00005-4.Search in Google Scholar

Veleva, I., Van Weert, W., Van Belzen, N., Cornelissen, E., Verliefde, A., and Vanoppen, M. (2022). Petrochemical condensate treatment by membrane aerated biofilm reactors: a pilot study. Chem. Eng. J. 428: 131013, https://doi.org/10.1016/j.cej.2021.131013.Search in Google Scholar

Voss, M.A., Ahmed, T., and Semmens, M.J. (1999). Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators. Water Environ. Res. 71: 23–30, https://doi.org/10.2175/106143099X121616.Search in Google Scholar

Wagner, M. and Horn, H. (2017). Optical coherence tomography in biofilm research: a comprehensive review. Biotechnol. Bioeng. 114: 1386–1402, https://doi.org/10.1002/bit.26283.Search in Google Scholar PubMed

Wang, B., Li, H., Liu, T., and Guo, J. (2021). Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. Chemosphere 263: 128224, https://doi.org/10.1016/j.chemosphere.2020.128224.Search in Google Scholar PubMed

Wang, J., Liu, G.-F., Lu, H., Jin, R.-F., Zhou, J.-T., and Lei, T.-M. (2012). Biodegradation of Acid Orange 7 and its auto-oxidative decolorization product in membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 67: 73–77, https://doi.org/10.1016/j.ibiod.2011.12.003.Search in Google Scholar

Wang, L., Wu, Y., Ren, Y., Wang, Y., Wang, Y., and Zhang, H. (2022). Transition of fouling characteristics after development of membrane wetting in membrane-aerated biofilm reactors (MABRs). Chemosphere 299: 134355, https://doi.org/10.1016/j.chemosphere.2022.134355.Search in Google Scholar PubMed

Wei, X., Li, B., Zhao, S., Qiang, C., Zhang, H., and Wang, S. (2012a). COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). J. Membr. Sci. 389: 257–264, https://doi.org/10.1016/j.memsci.2011.10.038.Search in Google Scholar

Wei, X., Li, B., Zhao, S., Wang, L., Zhang, H., Li, C., and Wang, S. (2012b). Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system – a pilot-scale study. Bioresour. Technol. 122: 189–195, https://doi.org/10.1016/j.biortech.2012.06.041.Search in Google Scholar PubMed

Wenten, I.G., Friatnasary, D.L., Khoiruddin, K., Setiadi, T., and Boopaty, R. (2020a). Extractive membrane bioreactor (EMBR): recent advances and applications. Bioresour. Technol. 297: 122424, https://doi.org/10.1016/j.biortech.2019.122424.Search in Google Scholar PubMed

Wenten, I.G., Khoiruddin, K., Hakim, A.N., Aryanti, P.T.P., and Rova, N. (2020b). Long-term performance of a pilot scale combined chemical precipitation-ultrafiltration Technique for waste brine regeneration at Chevron steam flooding plant. J. Eng. Technol. Sci. 52: 501–513, https://doi.org/10.5614/j.eng.technol.sci.2020.52.4.4.Search in Google Scholar

Werkneh, A.A. (2022). Application of membrane-aerated biofilm reactor in removing water and wastewater pollutants: current advances, knowledge gaps and research needs. A review. Environ. Challenges 8: 100529, https://doi.org/10.1016/j.envc.2022.100529.Search in Google Scholar

Wilderer, P.A., Brautigam, J., and Sekulov, I. (1985). Application of gas permeable membranes for auxiliary oxygenation of sequencing batch reactor. Conserv. Recycl. 8: 181–192, https://doi.org/10.1017/CBO9781107415324.004.Search in Google Scholar

Wobus, A. and Röske, I. (2000). Reactors with membrane-grown biofilms: their capacity to cope with fluctuating inflow conditions and with shock loads of xenobiotics. Water Res. 34: 279–287, https://doi.org/10.1016/S0043-1354(99)00124-4.Search in Google Scholar

Wobus, A., Ulrich, S., and Röske, I. (1995). Degradation of chlorophenols by biofilms on semi-permeable membranes in two types of fixed bed reactors. Water Sci. Technol. 32: 205–212, https://doi.org/10.1016/0273-1223(96)00027-3.Search in Google Scholar

Wu, Y., Wu, Z., Chu, H., Li, J., Ngo, H.H., Guo, W., Zhang, N., and Zhang, H. (2019). Comparison study on the performance of two different gas-permeable membranes used in a membrane-aerated biofilm reactor. Sci. Total Environ. 658: 1219–1227, https://doi.org/10.1016/j.scitotenv.2018.12.121.Search in Google Scholar PubMed

Yu, C.P., Liang, Z., Das, A., and Hu, Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res. 45: 1157–1164, https://doi.org/10.1016/j.watres.2010.11.002.Search in Google Scholar PubMed

Zeng, M., Yang, J., Wang, H., Wang, C., Wu, N., Zhang, W., and Yang, H. (2020). Application of a composite membrane aerated biofilm with controllable biofilm thickness in nitrogen removal. J. Chem. Technol. Biotechnol. 95: 875–884, https://doi.org/10.1002/jctb.6277.Search in Google Scholar

Zhang, L.-Q., Jiang, X., Rong, H.-W., Wei, C.-H., Luo, M., Ma, W.-C., and Ng, H.-Y. (2022). Exploring the carbon and nitrogen removal capacity of a membrane aerated biofilm reactor for low-strength municipal wastewater treatment. Environ. Sci. Water Res. Technol. 8: 280–289, https://doi.org/10.1039/D1EW00724F.Search in Google Scholar

Zhao, H., Chen, S., Guo, M., Zhou, D., Shen, Z., Wang, W., Feng, B., and Jiang, B. (2019). Catalytic dehydrochlorination of 1,2-dichloroethane into vinyl chloride over nitrogen-doped activated carbon. ACS Omega 4: 2081–2089, https://doi.org/10.1021/acsomega.8b01622.Search in Google Scholar PubMed PubMed Central

Zheng, M.R. and Liao, B.Q. (2016). Membrane aerated biofilm reactors for thermomechanical pulping pressate treatment. Int. J. Chem. React. Eng. 14: 1017–1024, https://doi.org/10.1515/ijcre-2015-0183.Search in Google Scholar

Zheng, P., Li, Y., Chi, Q., Cheng, Y., Jiang, X., Chen, D., Mu, Y., and Shen, J. (2022). Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. J. Hazard. Mater. 437: 129370, https://doi.org/10.1016/j.jhazmat.2022.129370.Search in Google Scholar PubMed

Zhong, H., Wang, H., Tian, Y., Liu, X., Yang, Y., Zhu, L., Yan, S., and Liu, G. (2019). Treatment of polluted surface water with nylon silk carrier-aerated biofilm reactor (CABR). Bioresour. Technol. 289: 121617, https://doi.org/10.1016/j.biortech.2019.121617.Search in Google Scholar PubMed

Received: 2021-11-01
Accepted: 2022-11-26
Published Online: 2023-02-06
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2021-0078/html
Scroll to top button