Abstract
The high-temperature proton exchange membrane fuel cell (HT-PEMFC) offers several advantages, such as high proton conductivity, high CO tolerance, good chemical/thermal stability, good mechanical properties, and low cost. The proton exchange membrane (PEM) is the critical component of HT-PEMFC. This work discusses the methods of current PEMs development for HT-PEMFC including modifications of Nafion® membranes and the advancement in composite PEMs based on non-fluorinated polymers. The modified Nafion®-based membranes can be used at temperatures up to 140 °C. Nevertheless, the application of Nafion®-based membranes is limited by their humidification with water molecules acting as proton carriers and, thus, by the operation conditions of membranes under a relative humidity below 20%. To obtain PEMs applied at higher temperatures under non-humidified conditions, phosphoric acid (PA) or ionic liquids (ILs) are used as proton carriers in PEMs based on non-fluorinated polymers. The research discussed in this work provides the approaches to improving the physicochemical properties and performance fuel cell of PEMs. The effects of polymer blending, crosslinking, and the incorporation of inorganic particles on the membrane properties and fuel cell performance have been scrutinized. The incorporation of inorganic particles modified with ILs might be an effective approach to designing high-performance PEMs for HT-PEMFC.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This project received funding from the Polish National Science Centre (grant agreement 2016/23/N/ST5/01919).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., Hosseini, M.G., and Eikani, M.H. (2010). Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy 35: 9252–9260, https://doi.org/10.1016/j.ijhydene.2010.01.005.Search in Google Scholar
Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., and Sedghi, S. (2012). Preparation, characterization and cell performance of durable Nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J. Power Sources 210: 350–357, https://doi.org/10.1016/j.jpowsour.2012.03.011.Search in Google Scholar
Anahidzade, N., Abdolmaleki, A., Dinari, M., Firouz Tadavani, K., and Zhiani, M. (2018). Metal-organic framework anchored sulfonated poly (ether sulfone) as a high temperature proton exchange membrane for fuel cells. J. Membr. Sci. 565: 281–292, https://doi.org/10.1016/j.memsci.2018.08.037.Search in Google Scholar
Araya, S.S., Zhou, F., Liso, V., Sahlin, S.L., Vang, J.R., Thomas, S., Gao, X., Jeppesen, C., and Kær, S.K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. Int. J. Hydrogen Energy 41: 21310–21344, https://doi.org/10.1016/j.ijhydene.2016.09.024.Search in Google Scholar
Aslan, A. and Bozkurt, A. (2014). Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255: 89–95, https://doi.org/10.1016/j.ssi.2013.11.054.Search in Google Scholar
Authayanun, S., Im-orb, K., and Arpornwichanop, A. (2015). A review of the development of high temperature proton exchange membrane fuel cells. Chin. J. Catal. 36: 473–483, https://doi.org/10.1016/s1872-2067(14)60272-2.Search in Google Scholar
Bai, H., Wang, H., Zhang, J., Wu, C., Zhang, J., Xiang, Y., and Lu, S. (2018). Simultaneously enhancing ionic conduction and mechanical strength of poly (ether sulfones)-poly (vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application. J. Membr. Sci. 558: 26–33, https://doi.org/10.1016/j.memsci.2018.04.039.Search in Google Scholar
Bai, H., Wang, H., Zhang, J., Zhang, J., Lu, S., and Xiang, Y. (2019). High temperature polymer electrolyte membrane achieved by grafting poly (1-vinylimidazole) on polysulfone for fuel cells application. J. Membr. Sci. 592: 117395, https://doi.org/10.1016/j.memsci.2019.117395.Search in Google Scholar
Bakonyi, P., Nemestóthy, N., and Bélafi-Bakó, K. (2013). Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrogen Energy 38: 9673–9687, https://doi.org/10.1016/j.ijhydene.2013.05.158.Search in Google Scholar
Bao, X., Zhang, F., and Liu, Q. (2015). Sulfonated poly (2,5-benzimidazole) (ABPBI)/ MMT/ ionic liquids composite membranes for high temperature PEM applications. Int. J. Hydrogen Energy 40: 16767–16774, https://doi.org/10.1016/j.ijhydene.2015.07.127.Search in Google Scholar
Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.-T., and Lee, J.H. (2011). Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36: 813–843, https://doi.org/10.1016/j.progpolymsci.2011.01.003.Search in Google Scholar
Cai, Y., Yue, Z., Teng, X., and Xu, S. (2018). Radiation grafting graphene oxide reinforced polybenzimidazole membrane with a sandwich structure for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Eur. Polym. J. 103: 207–213, https://doi.org/10.1016/j.eurpolymj.2018.02.020.Search in Google Scholar
Campanari, S. and Guandalini, G. (2019). Chapter 18-fuel cells: opportunities and challenges. In: Basile, A., Centi, G., Falco, M.D., and Iaquaniello, G. (Eds.). Studies in surface science and catalysis. Elsevier, pp. 335–358.10.1016/B978-0-444-64337-7.00018-5Search in Google Scholar
Ceynowa, J. (1978). Electron microscopy investigation of ion exchange membranes. Polymer 19: 73–76, https://doi.org/10.1016/0032-3861(78)90176-3.Search in Google Scholar
Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., and Bujalski, W. (2013). High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–a review. J. Power Sources 231: 264–278, https://doi.org/10.1016/j.jpowsour.2012.11.126.Search in Google Scholar
Che, Q., Chen, N., Yu, J., and Cheng, S. (2016). Sulfonated poly (ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics 289: 199–206, https://doi.org/10.1016/j.ssi.2016.03.009.Search in Google Scholar
Chen, K., Wang, Y., Yao, J., and Li, H. (2018). Equilibrium in protic ionic liquids: the degree of proton transfer and thermodynamic properties. J. Phys. Chem. B 122: 309–315, https://doi.org/10.1021/acs.jpcb.7b10671.Search in Google Scholar
Chu, F., Lin, B., Yan, F., Qiu, L., and Lu, J. (2011). Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. J. Power Sources 196: 7979–7984, https://doi.org/10.1016/j.jpowsour.2011.05.064.Search in Google Scholar
Costamagna, P., Yang, C., Bocarsly, A.B., and Srinivasan, S. (2002). Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C. Electrochim. Acta 47: 1023–1033, https://doi.org/10.1016/s0013-4686(01)00829-5.Search in Google Scholar
Cozzi, D., de Bonis, C., D’Epifanio, A., Mecheri, B., Tavares, A.C., and Licoccia, S. (2014). Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J. Power Sources 248: 1127–1132, https://doi.org/10.1016/j.jpowsour.2013.10.070.Search in Google Scholar
Díaz, M., Ortiz, A., and Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469: 379–396, https://doi.org/10.1016/j.memsci.2014.06.033.Search in Google Scholar
da Trindade, L.G., Borba, K.M.N., Zanchet, L., Lima, D.W., Trench, A.B., Rey, F., Diaz, U., Longo, E., Bernardo-Gusmão, K., and Martini, E.M.A. (2019). SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Mater. Chem. Phys. 236: 121792, https://doi.org/10.1016/j.matchemphys.2019.121792.Search in Google Scholar
del Valle Martínez de Yuso, M., Arango-Díaz, A., Bijani, S., Romero, V., Benavente, J., and Rodríguez-Castellón, E. (2014). Chemical surface, thermal and electrical characterization of Nafion membranes doped with IL-cations. Appl. Sci. 4: 195–206, https://doi.org/10.3390/app4020195.Search in Google Scholar
Diaz, M., Ortiz, A., Vilas, M., Tojo, E., and Ortiz, I. (2014). Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int. J. Hydrogen Energy 39: 3970–3977, https://doi.org/10.1016/j.ijhydene.2013.04.155.Search in Google Scholar
Eguizábal, A., Lemus, J., and Pina, M.P. (2013). On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 222: 483–492, https://doi.org/10.1016/j.jpowsour.2012.07.094.Search in Google Scholar
Elumalai, V., Annapooranan, R., Ganapathikrishnan, M., and Sangeetha, D. (2018). A synthesis study of phosphonated PSEBS for high temperature proton exchange membrane fuel cells. J. Appl. Polym. Sci. 135: 45954, https://doi.org/10.1002/app.45954.Search in Google Scholar
Esmaeili, N., Gray, E.M., and Webb, C.J. (2019). Non-fluorinated polymer composite proton exchange membranes for fuel cell applications–a review. ChemPhysChem 20: 2016–2053, https://doi.org/10.1002/cphc.201900423.Search in Google Scholar PubMed
Gierke, T.D., Munn, G., and Wilson, F. (1981). The morphology in Nafion perfluorinated membrane products, as determined by wide‐and small‐angle x‐ray studies. J. Polym. Sci., Polym. Phys. Ed. 19: 1687–1704, https://doi.org/10.1002/pol.1981.180191103.Search in Google Scholar
Guhan, S., Muruganantham, R., and Sangeetha, D. (2012). Development of a solid polymer electrolyte membrane based on sulfonated poly (ether ether) ketone and polysulfone for fuel cell applications. Can. J. Chem. 90: 205–213, https://doi.org/10.1139/v11-139.Search in Google Scholar
Guo, Z., Xiu, R., Lu, S., Xu, X., Yang, S., and Xiang, Y. (2015). Submicro-pore containing poly (ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications. J. Mater. Chem. A 3: 8847–8854, https://doi.org/10.1039/c5ta00415b.Search in Google Scholar
Haque, M.A., Sulong, A.B., Loh, K.S., Majlan, E.H., Husaini, T., and Rosli, R.E. (2017). Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review. Int. J. Hydrogen Energy 42: 9156–9179, https://doi.org/10.1016/j.ijhydene.2016.03.086.Search in Google Scholar
Hempelmann, R. (1996). Hydrogen diffusion mechanism in proton conducting oxides. Phys. B 226: 72–77, https://doi.org/10.1016/0921-4526(96)00251-7.Search in Google Scholar
Ibrahim, A., Hossain, O., Chaggar, J., Steinberger-Wilckens, R., and El-Kharouf, A. (2020). GO-Nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. Int. J. Hydrogen Energy 45: 5526–5534, https://doi.org/10.1016/j.ijhydene.2019.05.210.Search in Google Scholar
Jheng, L.-C., Chang, W.J.-Y., Hsu, S.L.-C., and Cheng, P.-Y. (2016). Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 323: 57–66, https://doi.org/10.1016/j.jpowsour.2016.05.043.Search in Google Scholar
Jheng, L.-C., Hsu, S.L.-C., Tsai, T.-Y., and Chang, W.J.-Y. (2014). A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J. Mater. Chem. A 2: 4225–4233, https://doi.org/10.1039/c3ta14631f.Search in Google Scholar
Jothi, P.R. and Dharmalingam, S. (2014). An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J. Membr. Sci. 450: 389–396, https://doi.org/10.1016/j.memsci.2013.09.034.Search in Google Scholar
Karimi, M.B., Mohammadi, F., and Hooshyari, K. (2019). Recent approaches to improve Nafion performance for fuel cell applications: a review. Int. J. Hydrogen Energy 44: 28919–28938, https://doi.org/10.1016/j.ijhydene.2019.09.096.Search in Google Scholar
Kraytsberg, A. and Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28: 7303–7330, https://doi.org/10.1021/ef501977k.Search in Google Scholar
Kujawa, J., Rynkowska, E., Fatyeyeva, K., Knozowska, K., Wolan, A., Dzieszkowski, K., Li, G., and Kujawski, W. (2019). Preparation and characterization of cellulose acetate propionate films functionalized with reactive ionic liquids. Polymers 11: 1217, https://doi.org/10.3390/polym11071217.Search in Google Scholar PubMed PubMed Central
Kuo, Y.-J. and Lin, H.-L. (2018). Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells. Int. J. Hydrogen Energy 43: 4448–4457, https://doi.org/10.1016/j.ijhydene.2017.12.128.Search in Google Scholar
Li, J., Wang, S., Liu, F., Tian, X., Wang, X., Chen, H., Mao, T., and Wang, Z. (2018). HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. Int. J. Hydrogen Energy 43: 16248–16257, https://doi.org/10.1016/j.ijhydene.2018.06.165.Search in Google Scholar
Li, Y., Zhang, M., Wang, X., Li, Z., and Zhao, L. (2016). Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange. Electrochim. Acta 222: 1308–1315, https://doi.org/10.1016/j.electacta.2016.11.106.Search in Google Scholar
Liew, C.-W., Ramesh, S., and Arof, A.K. (2014a). Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int. J. Hydrogen Energy 39: 2953–2963, https://doi.org/10.1016/j.ijhydene.2013.06.061.Search in Google Scholar
Liew, C.-W., Ramesh, S., and Arof, A.K. (2014b). A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int. J. Hydrogen Energy 39: 2917–2928, https://doi.org/10.1016/j.ijhydene.2013.07.092.Search in Google Scholar
Lin, B., Cheng, S., Qiu, L., Yan, F., Shang, S., Lu, J. (2010). Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem. Mater. 22: 1807–1813, https://doi.org/10.1021/cm9033758.Search in Google Scholar
Lin, B., Yuan, W., Xu, F., Chen, Q., Zhu, H., Li, X., Yuan, N., Chu, F., and Ding, J. (2018). Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications. Appl. Surf. Sci. 455: 295–301, https://doi.org/10.1016/j.apsusc.2018.05.205.Search in Google Scholar
Liu, F., Wang, S., Li, J., Tian, X., Wang, X., Chen, H., and Wang, Z. (2017). Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 541: 492–499, https://doi.org/10.1016/j.memsci.2017.07.026.Search in Google Scholar
Lu, S., Xiu, R., Xu, X., Liang, D., Wang, H., and Xiang, Y. (2014). Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 464: 1–7, https://doi.org/10.1016/j.memsci.2014.03.053.Search in Google Scholar
Lv, Y., Li, Z., Song, M., Sun, P., Yin, X., and Wang, S. (2019). Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes. React. Funct. Polym. 137: 57–70, https://doi.org/10.1016/j.reactfunctpolym.2019.01.014.Search in Google Scholar
Maity, S., Singha, S., and Jana, T. (2015). Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polymer 66: 76–85, https://doi.org/10.1016/j.polymer.2015.03.040.Search in Google Scholar
Mao, T., Wang, S., Wang, X., Liu, F., Li, J., Chen, H., Wang, D., Liu, G., Xu, J., and Wang, Z. (2019). High-temperature and all-solid-state flexible supercapacitors with excellent long-term stability based on porous polybenzimidazole/functional ionic liquid electrolyte. ACS Appl. Mater. Interfaces 11: 17742–17750, https://doi.org/10.1021/acsami.9b00452.Search in Google Scholar PubMed
Moradi, M., Moheb, A., Javanbakht, M., and Hooshyari, K. (2016). Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC). Int. J. Hydrogen Energy 41: 2896–2910, https://doi.org/10.1016/j.ijhydene.2015.12.100.Search in Google Scholar
Oh, K., Kwon, O., Son, B., Lee, D.H., and Shanmugam, S. (2019). Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J. Membr. Sci. 583: 103–109, https://doi.org/10.1016/j.memsci.2019.04.031.Search in Google Scholar
Owejan, J.P., Gagliardo, J.J., Sergi, J.M., Kandlikar, S.G., and Trabold, T.A. (2009). Water management studies in PEM fuel cells, part I: fuel cell design and in-situ water distributions. Int. J. Hydrogen Energy 34: 3436–3444, https://doi.org/10.1016/j.ijhydene.2008.12.100.Search in Google Scholar
Özdemir, Y., Özkan, N., and Devrim, Y. (2017). Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim. Acta 245: 1–13, https://doi.org/10.1016/j.electacta.2017.05.111.Search in Google Scholar
Padilha, J.C., Basso, J., da Trindade, L.G., Martini, E.M.A., de Souza, M.O., and de Souza, R.F. (2010). Ionic liquids in proton exchange membrane fuel cells: efficient systems for energy generation. J. Power Sources 195: 6483–6485, https://doi.org/10.1016/j.jpowsour.2010.04.035.Search in Google Scholar
Pan, J., Wu, B., Wu, L., He, Y., Miao, J., Ge, L., and Xu, T. (2016). Proton exchange membrane from tetrazole-based poly (phthalazinone ether sulfone ketone) for high-temperature fuel cells. Int. J. Hydrogen Energy 41: 12337–12346, https://doi.org/10.1016/j.ijhydene.2016.05.148.Search in Google Scholar
Pasupathi, S., Carlos, J., Gomez, C., Su, H., Reddy, H., Bujlo, P., and Sita, C. (2016). Recent advances in high-temperature PEM fuel cells. Elsevier Ltd., London.10.1016/B978-0-12-809989-6.00003-7Search in Google Scholar
Pereiro, A.B., Araújo, J.M.M., Martinho, S., Alves, F., Nunes, S., Matias, A., Duarte, C.M.M., Rebelo, L.P.N., and Marrucho, I.M. (2013). Fluorinated ionic liquids: properties and applications. ACS Sustain. Chem. Eng. 1: 427–439, https://doi.org/10.1021/sc300163n.Search in Google Scholar
Pospiech, B. and Kujawski, W. (2015). Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation. Rev. Chem. Eng. 31: 179–191, https://doi.org/10.1515/revce-2014-0048.Search in Google Scholar
Quartarone, E., Angioni, S., and Mustarelli, P. (2017). Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review. Materials 10: 687, https://doi.org/10.3390/ma10070687.Search in Google Scholar PubMed PubMed Central
Ren, X., Li, H., Liu, K., Lu, H., Yang, J., and He, R. (2018). Preparation and investigation of reinforced PVP blend membranes for high temperature polymer electrolyte membranes. Fibers Polym. 19: 2449–2457, https://doi.org/10.1007/s12221-018-8361-2.Search in Google Scholar
Rosli, R.E., Sulong, A.B., Daud, W.R., Zulkifley, M.A., Rosli, M.I., Majlan, E.H., Haque, M.A., and Radzuan, N.A.M. (2019). The design and development of an HT-PEMFC test cell and test station. Int. J. Hydrogen Energy 44: 30763–30771, https://doi.org/10.1016/j.ijhydene.2018.01.174.Search in Google Scholar
Rynkowska, E., Fatyeyeva, K., Kujawa, J., Dzieszkowski, K., Wolan, A., and Kujawski, W. (2018a). The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes. Polymers 10: 86, https://doi.org/10.3390/polym10010086.Search in Google Scholar PubMed PubMed Central
Rynkowska, E., Fatyeyeva, K., and Kujawski, W. (2018b). Application of polymer-based membranes containing ionic liquids in membrane separation processes: a critical review. Rev. Chem. Eng. 34: 341–363, https://doi.org/10.1515/revce-2016-0054.Search in Google Scholar
Saccà, A., Carbone, A., Gatto, I., Pedicini, R., Freni, A., Patti, A., and Passalacqua, E. (2016). Composites Nafion-titania membranes for polymer electrolyte fuel cell (PEFC) applications at low relative humidity levels: chemical physical properties and electrochemical performance. Polym. Test. 56: 10–18, https://doi.org/10.1016/j.polymertesting.2016.09.015.Search in Google Scholar
Saccà, A., Carbone, A., Passalacqua, E., D’Epifanio, A., Licoccia, S., Traversa, E., Sala, E., Traini, F., and Ornelas, R. (2005). Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J. Power Sources 152: 16–21, https://doi.org/10.1016/j.jpowsour.2004.12.053.Search in Google Scholar
Saccà, A., Gatto, I., Carbone, A., Pedicini, R., and Passalacqua, E. (2006). ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J. Power Sources 163: 47–51, https://doi.org/10.1016/j.jpowsour.2005.12.062.Search in Google Scholar
Sammes, N.M. and Du, Y. (2007). Fabrication and characterization of tubular solid oxide fuel cells. Int. J. Appl. Ceram. Technol. 4: 89–102, https://doi.org/10.1111/j.1744-7402.2007.02127.x.Search in Google Scholar
Shi, H., Yang, G., Liu, Z., Zhang, G., Ran, R., Shao, Z., Zhou, W., and Jin, W. (2012). High performance tubular solid oxide fuel cells with BSCF cathode. Int. J. Hydrogen Energy 37: 13022–13029, https://doi.org/10.1016/j.ijhydene.2012.05.061.Search in Google Scholar
Spiegel, C. (2007). Designing and building fuel cells. McGraw-Hill, New York.Search in Google Scholar
Sun, X., Simonsen, S.C., Norby, T., and Chatzitakis, A. (2019). Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review. Membranes 9: 83, https://doi.org/10.3390/membranes9070083.Search in Google Scholar PubMed PubMed Central
Sundén, B. (2019). Chapter 8-fuel cell types-overview. In: Sundén, B. (Ed.). Hydrogen, batteries and fuel cells. Cambridge, Massachusetts, Academic Press 2019, pp. 123–144.10.1016/B978-0-12-816950-6.00008-7Search in Google Scholar
Taherkhani, Z., Abdollahi, M., and Sharif, A. (2019). Proton conducting porous membranes based on poly (benzimidazole) and poly (acrylic acid) blends for high temperature proton exchange membranes. Solid State Ionics 337: 122–131, https://doi.org/10.1016/j.ssi.2019.04.019.Search in Google Scholar
Tai, C.C., Chen, C.L., and Liu, C.W. (2017). Computer simulation to investigate proton transport and conductivity in perfluorosulfonate ionomeric membrane. Int. J. Hydrogen Energy 42: 3981–3986, https://doi.org/10.1016/j.ijhydene.2016.11.047.Search in Google Scholar
Thanganathan, U. and Nogami, M. (2015). Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 40: 1935–1944, https://doi.org/10.1016/j.ijhydene.2014.11.099.Search in Google Scholar
Tian, X., Wang, S., Li, J., Liu, F., Wang, X., Chen, H., Ni, H., and Wang, Z. (2017). Composite membranes based on polybenzimidazole and ionic liquid functional Si–O–Si network for HT-PEMFC applications. Int. J. Hydrogen Energy 42: 21913–21921, https://doi.org/10.1016/j.ijhydene.2017.07.071.Search in Google Scholar
Tu, C.H., Hsu, S.L.C., Bulycheva, E., and Belomoina, N. (2019). Novel crosslinked AB‐type polyphenylquinoxaline membranes for high‐temperature proton exchange membrane fuel cells. Polym. Eng. Sci. 59: 2169–2173, https://doi.org/10.1002/pen.25219.Search in Google Scholar
van de Ven, E., Chairuna, A., Merle, G., Benito, S.P., Borneman, Z., and Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature proton exchange membrane fuel cell applications. J. Power Sources 222: 202–209, https://doi.org/10.1016/j.jpowsour.2012.07.112.Search in Google Scholar
Wang, J., Jiang, H., Xu, Y., Yang, J., and He, R. (2018a). Quaternized poly (aromatic ether sulfone) with siloxane crosslinking networks as high temperature proton exchange membranes. Appl. Surf. Sci. 452: 473–480, https://doi.org/10.1016/j.apsusc.2018.05.063.Search in Google Scholar
Wang, L., Ni, J., Liu, D., Gong, C., and Wang, L. (2018b). Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 43: 16694–16703, https://doi.org/10.1016/j.ijhydene.2018.06.181.Search in Google Scholar
Wang, P., Liu, Z., Li, X., Peng, J., Hu, W., and Liu, B. (2019). Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chem. Commun. 55: 6491–6494, https://doi.org/10.1039/c9cc02102g.Search in Google Scholar PubMed
Wang, X., Wang, S., Liu, C., Li, J., Liu, F., Tian, X., Chen, H., Mao, T., Xu, J., and Wang, Z. (2018c). Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs. Electrochim. Acta 283: 691–698, https://doi.org/10.1016/j.electacta.2018.06.197.Search in Google Scholar
Wang, Y., Tian, M., Bi, W., and Row, K.H. (2009). Application of ionic liquids in high performance reversed-phase chromatography. Int. J. Mol. Sci. 10: 2591–2610, https://doi.org/10.3390/ijms10062591.Search in Google Scholar PubMed PubMed Central
Wheeler, D. and Sverdrup, G. (2008). 2007 Status of manufacturing: polymer electrolyte membrane (PEM) fuel cells. National Renewable Energy Laboratory. Golden, Colorado.10.2172/924988Search in Google Scholar
Wong, C.Y., Wong, W.Y., Ramya, K., Khalid, M., Loh, K.S., Daud, W.R.W., Lim, K.L., Walvekar, R., and Kadhum, A.A.H. (2019). Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review. Int. J. Hydrogen Energy 44: 6116–6135, https://doi.org/10.1016/j.ijhydene.2019.01.084.Search in Google Scholar
Xiang, J., Chen, R., Wu, F., Li, L., Chen, S., and Zou, Q. (2011). Physicochemical properties of new amide-based protic ionic liquids and their use as materials for anhydrous proton conductors. Electrochim. Acta 56: 7503–7509, https://doi.org/10.1016/j.electacta.2011.06.103.Search in Google Scholar
Xu, C., Liu, X., Cheng, J., and Scott, K. (2015). A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 274: 922–927, https://doi.org/10.1016/j.jpowsour.2014.10.134.Search in Google Scholar
Xu, G., Wei, Z., Li, S., Li, J., Yang, Z., and Grigoriev, S.A. (2019). In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application. Int. J. Hydrogen Energy 44: 29711–29716, https://doi.org/10.1016/j.ijhydene.2019.02.037.Search in Google Scholar
Xu, G., Wu, Z., Wei, Z., Zhang, W., Wu, J., Li, Y., Li, J., Qu, K., and Cai, W. (2020). Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renew. Energy 153: 935–939, https://doi.org/10.1016/j.ijhydene.2020.06.303.Search in Google Scholar
Xu, J., Ma, L., Han, H., Ni, H., Wang, Z., and Zhang, H. (2014). Synthesis and properties of a novel sulfonated poly (arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications. Electrochim. Acta 146: 688–696, https://doi.org/10.1016/j.electacta.2014.09.071.Search in Google Scholar
Yaghini, N., Gómez-González, V., Varela, L.M., and Martinelli, A. (2016). Structural origin of proton mobility in a protic ionic liquid/imidazole mixture: insights from computational and experimental results. Phys. Chem. Chem. Phys. 18: 23195–23206, https://doi.org/10.1039/c6cp03058k.Search in Google Scholar PubMed
Yana, J., Nimmanpipug, P., Chirachanchai, S., Gosalawit, R., Dokmaisrijan, S., Vannarat, S., Vilaithong, T., and Lee, V.S. (2010). Molecular dynamics simulations of Krytox-Silica–Nafion composite for high temperature fuel cell electrolyte membranes. Polymer 51: 4632–4638, https://doi.org/10.1016/j.polymer.2010.07.036.Search in Google Scholar
Yang, C., Srinivasan, S., Bocarsly, A.B., Tulyani, S., and Benziger, J.B. (2004). A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 237: 145–161, https://doi.org/10.1016/j.memsci.2004.03.009.Search in Google Scholar
Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., and He, R. (2017). Strengthening phosphoric acid doped polybenzimidazole membranes with siloxane networks for using as high temperature proton exchange membranes. Macromol. Chem. Phys. 218: 1700009, https://doi.org/10.1002/macp.201700009.Search in Google Scholar
Yang, J., Jiang, H., Gao, L., Wang, J., Ye, N., Xu, Y., and He, R. (2018a). Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene. Polym. Chem. 9: 5462–5469, https://doi.org/10.1039/c8py01148f.Search in Google Scholar
Yang, J., Liu, C., Gao, L., Wang, J., Xu, Y., and He, R. (2015a). Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Adv. 5: 101049–101054, https://doi.org/10.1039/c5ra16554g.Search in Google Scholar
Yang, J., Wang, Y., Yang, G., and Zhan, S. (2018b). New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone) s for high temperature polymer electrolyte fuel cells. Int. J. Hydrogen Energy 43: 8464–8473, https://doi.org/10.1016/j.ijhydene.2018.03.128.Search in Google Scholar
Yang, Y., Gao, H., and Zheng, L. (2015b). Anhydrous proton exchange membranes at elevated temperatures: effect of protic ionic liquids and crosslinker on proton conductivity. RSC Adv. 5: 17683–17689, https://doi.org/10.1039/c4ra16106h.Search in Google Scholar
Yasuda, T., Nakamura, S., Honda, Y., Kinugawa, K., Lee, S.Y., and Watanabe, M. (2012). Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl. Mater. Interfaces 4: 1783–1790, https://doi.org/10.1021/am300031k.Search in Google Scholar PubMed
Ye, H., Huang, J., Xu, J.J., Kodiweera, N.K.A.C., Jayakody, J.R.P., and Greenbaum, S.G. (2008). New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Sources 178: 651–660, https://doi.org/10.1016/j.jpowsour.2007.07.074.Search in Google Scholar
Yi, S., Zhang, F., Li, W., Huang, C., Zhang, H., and Pan, M. (2011). Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids. J. Membr. Sci. 366: 349–355, https://doi.org/10.1016/j.memsci.2010.10.031.Search in Google Scholar
Yoon, J., Lee, H.J., and Stafford, C.M. (2011). Thermoplastic elastomers based on ionic liquid and poly (vinyl alcohol). Macromolecules 44: 2170–2178, https://doi.org/10.1021/ma102682k.Search in Google Scholar
Zhai, Y., Zhang, H., Hu, J., and Yi, B. (2006). Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J. Membr. Sci. 280: 148–155, https://doi.org/10.1016/j.memsci.2006.01.028.Search in Google Scholar
Zhang, H., Wu, W., Li, Y., Liu, Y., Wang, J., Zhang, B., and Liu, J. (2015a). Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. J. Power Sources 279: 667–677, https://doi.org/10.1016/j.jpowsour.2015.01.066.Search in Google Scholar
Zhang, H., Wu, W., Wang, J., Zhang, T., Shi, B., Liu, J., and Cao, S. (2015b). Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. J. Membr. Sci. 476: 136–147, https://doi.org/10.1016/j.memsci.2014.11.033.Search in Google Scholar
Zhang, W., Croiset, E., Douglas, P.L., Fowler, M.W., and Entchev, E. (2005). Simulation of a tubular solid oxide fuel cell stack using AspenPlus™ unit operation models. Energy Convers. Manag. 46: 181–196, https://doi.org/10.1016/j.enconman.2004.03.002.Search in Google Scholar
Zhang, X., Fu, X., Yang, S., Zhang, Y., Zhang, R., Hu, S., Bao, X., Zhao, F., Li, X., and Liu, Q. (2019a). Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. J. Mater. Chem. A 7: 15288–15301, https://doi.org/10.1039/c9ta03666k.Search in Google Scholar
Zhang, X., Liu, Q., Xia, L., Huang, D., Fu, X., Zhang, R., Hu, S., Zhao, F., Li, X., and Bao, X. (2019b). Poly (2, 5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range. J. Membr. Sci. 574: 282–298, https://doi.org/10.1016/j.memsci.2018.12.085.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A review of sustainable lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for separations, catalysis and enzymatic biotransformation processes
- State-of-the-art of CO2 capture with amino acid salt solutions
- Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution
- Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)
- Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering
Articles in the same Issue
- Frontmatter
- A review of sustainable lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for separations, catalysis and enzymatic biotransformation processes
- State-of-the-art of CO2 capture with amino acid salt solutions
- Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution
- Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)
- Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering