Home Technology Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)
Article
Licensed
Unlicensed Requires Authentication

Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)

  • Guoqiang Li , Wojciech Kujawski EMAIL logo and Edyta Rynkowska
Published/Copyright: September 14, 2020
Become an author with De Gruyter Brill

Abstract

The high-temperature proton exchange membrane fuel cell (HT-PEMFC) offers several advantages, such as high proton conductivity, high CO tolerance, good chemical/thermal stability, good mechanical properties, and low cost. The proton exchange membrane (PEM) is the critical component of HT-PEMFC. This work discusses the methods of current PEMs development for HT-PEMFC including modifications of Nafion® membranes and the advancement in composite PEMs based on non-fluorinated polymers. The modified Nafion®-based membranes can be used at temperatures up to 140 °C. Nevertheless, the application of Nafion®-based membranes is limited by their humidification with water molecules acting as proton carriers and, thus, by the operation conditions of membranes under a relative humidity below 20%. To obtain PEMs applied at higher temperatures under non-humidified conditions, phosphoric acid (PA) or ionic liquids (ILs) are used as proton carriers in PEMs based on non-fluorinated polymers. The research discussed in this work provides the approaches to improving the physicochemical properties and performance fuel cell of PEMs. The effects of polymer blending, crosslinking, and the incorporation of inorganic particles on the membrane properties and fuel cell performance have been scrutinized. The incorporation of inorganic particles modified with ILs might be an effective approach to designing high-performance PEMs for HT-PEMFC.


Corresponding author: Wojciech Kujawski, Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7, Gagarina Street, 87-100 Toruń, Poland; and National Research Nuclear University MEPhI, 31, Kashira Hwy, Moscow 115409, Russia,

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project received funding from the Polish National Science Centre (grant agreement 2016/23/N/ST5/01919).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., Hosseini, M.G., and Eikani, M.H. (2010). Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy 35: 9252–9260, https://doi.org/10.1016/j.ijhydene.2010.01.005.Search in Google Scholar

Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., and Sedghi, S. (2012). Preparation, characterization and cell performance of durable Nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J. Power Sources 210: 350–357, https://doi.org/10.1016/j.jpowsour.2012.03.011.Search in Google Scholar

Anahidzade, N., Abdolmaleki, A., Dinari, M., Firouz Tadavani, K., and Zhiani, M. (2018). Metal-organic framework anchored sulfonated poly (ether sulfone) as a high temperature proton exchange membrane for fuel cells. J. Membr. Sci. 565: 281–292, https://doi.org/10.1016/j.memsci.2018.08.037.Search in Google Scholar

Araya, S.S., Zhou, F., Liso, V., Sahlin, S.L., Vang, J.R., Thomas, S., Gao, X., Jeppesen, C., and Kær, S.K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. Int. J. Hydrogen Energy 41: 21310–21344, https://doi.org/10.1016/j.ijhydene.2016.09.024.Search in Google Scholar

Aslan, A. and Bozkurt, A. (2014). Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255: 89–95, https://doi.org/10.1016/j.ssi.2013.11.054.Search in Google Scholar

Authayanun, S., Im-orb, K., and Arpornwichanop, A. (2015). A review of the development of high temperature proton exchange membrane fuel cells. Chin. J. Catal. 36: 473–483, https://doi.org/10.1016/s1872-2067(14)60272-2.Search in Google Scholar

Bai, H., Wang, H., Zhang, J., Wu, C., Zhang, J., Xiang, Y., and Lu, S. (2018). Simultaneously enhancing ionic conduction and mechanical strength of poly (ether sulfones)-poly (vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application. J. Membr. Sci. 558: 26–33, https://doi.org/10.1016/j.memsci.2018.04.039.Search in Google Scholar

Bai, H., Wang, H., Zhang, J., Zhang, J., Lu, S., and Xiang, Y. (2019). High temperature polymer electrolyte membrane achieved by grafting poly (1-vinylimidazole) on polysulfone for fuel cells application. J. Membr. Sci. 592: 117395, https://doi.org/10.1016/j.memsci.2019.117395.Search in Google Scholar

Bakonyi, P., Nemestóthy, N., and Bélafi-Bakó, K. (2013). Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrogen Energy 38: 9673–9687, https://doi.org/10.1016/j.ijhydene.2013.05.158.Search in Google Scholar

Bao, X., Zhang, F., and Liu, Q. (2015). Sulfonated poly (2,5-benzimidazole) (ABPBI)/ MMT/ ionic liquids composite membranes for high temperature PEM applications. Int. J. Hydrogen Energy 40: 16767–16774, https://doi.org/10.1016/j.ijhydene.2015.07.127.Search in Google Scholar

Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.-T., and Lee, J.H. (2011). Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36: 813–843, https://doi.org/10.1016/j.progpolymsci.2011.01.003.Search in Google Scholar

Cai, Y., Yue, Z., Teng, X., and Xu, S. (2018). Radiation grafting graphene oxide reinforced polybenzimidazole membrane with a sandwich structure for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Eur. Polym. J. 103: 207–213, https://doi.org/10.1016/j.eurpolymj.2018.02.020.Search in Google Scholar

Campanari, S. and Guandalini, G. (2019). Chapter 18-fuel cells: opportunities and challenges. In: Basile, A., Centi, G., Falco, M.D., and Iaquaniello, G. (Eds.). Studies in surface science and catalysis. Elsevier, pp. 335–358.10.1016/B978-0-444-64337-7.00018-5Search in Google Scholar

Ceynowa, J. (1978). Electron microscopy investigation of ion exchange membranes. Polymer 19: 73–76, https://doi.org/10.1016/0032-3861(78)90176-3.Search in Google Scholar

Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., and Bujalski, W. (2013). High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–a review. J. Power Sources 231: 264–278, https://doi.org/10.1016/j.jpowsour.2012.11.126.Search in Google Scholar

Che, Q., Chen, N., Yu, J., and Cheng, S. (2016). Sulfonated poly (ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics 289: 199–206, https://doi.org/10.1016/j.ssi.2016.03.009.Search in Google Scholar

Chen, K., Wang, Y., Yao, J., and Li, H. (2018). Equilibrium in protic ionic liquids: the degree of proton transfer and thermodynamic properties. J. Phys. Chem. B 122: 309–315, https://doi.org/10.1021/acs.jpcb.7b10671.Search in Google Scholar

Chu, F., Lin, B., Yan, F., Qiu, L., and Lu, J. (2011). Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. J. Power Sources 196: 7979–7984, https://doi.org/10.1016/j.jpowsour.2011.05.064.Search in Google Scholar

Costamagna, P., Yang, C., Bocarsly, A.B., and Srinivasan, S. (2002). Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C. Electrochim. Acta 47: 1023–1033, https://doi.org/10.1016/s0013-4686(01)00829-5.Search in Google Scholar

Cozzi, D., de Bonis, C., D’Epifanio, A., Mecheri, B., Tavares, A.C., and Licoccia, S. (2014). Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J. Power Sources 248: 1127–1132, https://doi.org/10.1016/j.jpowsour.2013.10.070.Search in Google Scholar

Díaz, M., Ortiz, A., and Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469: 379–396, https://doi.org/10.1016/j.memsci.2014.06.033.Search in Google Scholar

da Trindade, L.G., Borba, K.M.N., Zanchet, L., Lima, D.W., Trench, A.B., Rey, F., Diaz, U., Longo, E., Bernardo-Gusmão, K., and Martini, E.M.A. (2019). SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Mater. Chem. Phys. 236: 121792, https://doi.org/10.1016/j.matchemphys.2019.121792.Search in Google Scholar

del Valle Martínez de Yuso, M., Arango-Díaz, A., Bijani, S., Romero, V., Benavente, J., and Rodríguez-Castellón, E. (2014). Chemical surface, thermal and electrical characterization of Nafion membranes doped with IL-cations. Appl. Sci. 4: 195–206, https://doi.org/10.3390/app4020195.Search in Google Scholar

Diaz, M., Ortiz, A., Vilas, M., Tojo, E., and Ortiz, I. (2014). Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int. J. Hydrogen Energy 39: 3970–3977, https://doi.org/10.1016/j.ijhydene.2013.04.155.Search in Google Scholar

Eguizábal, A., Lemus, J., and Pina, M.P. (2013). On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 222: 483–492, https://doi.org/10.1016/j.jpowsour.2012.07.094.Search in Google Scholar

Elumalai, V., Annapooranan, R., Ganapathikrishnan, M., and Sangeetha, D. (2018). A synthesis study of phosphonated PSEBS for high temperature proton exchange membrane fuel cells. J. Appl. Polym. Sci. 135: 45954, https://doi.org/10.1002/app.45954.Search in Google Scholar

Esmaeili, N., Gray, E.M., and Webb, C.J. (2019). Non-fluorinated polymer composite proton exchange membranes for fuel cell applications–a review. ChemPhysChem 20: 2016–2053, https://doi.org/10.1002/cphc.201900423.Search in Google Scholar PubMed

Gierke, T.D., Munn, G., and Wilson, F. (1981). The morphology in Nafion perfluorinated membrane products, as determined by wide‐and small‐angle x‐ray studies. J. Polym. Sci., Polym. Phys. Ed. 19: 1687–1704, https://doi.org/10.1002/pol.1981.180191103.Search in Google Scholar

Guhan, S., Muruganantham, R., and Sangeetha, D. (2012). Development of a solid polymer electrolyte membrane based on sulfonated poly (ether ether) ketone and polysulfone for fuel cell applications. Can. J. Chem. 90: 205–213, https://doi.org/10.1139/v11-139.Search in Google Scholar

Guo, Z., Xiu, R., Lu, S., Xu, X., Yang, S., and Xiang, Y. (2015). Submicro-pore containing poly (ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications. J. Mater. Chem. A 3: 8847–8854, https://doi.org/10.1039/c5ta00415b.Search in Google Scholar

Haque, M.A., Sulong, A.B., Loh, K.S., Majlan, E.H., Husaini, T., and Rosli, R.E. (2017). Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review. Int. J. Hydrogen Energy 42: 9156–9179, https://doi.org/10.1016/j.ijhydene.2016.03.086.Search in Google Scholar

Hempelmann, R. (1996). Hydrogen diffusion mechanism in proton conducting oxides. Phys. B 226: 72–77, https://doi.org/10.1016/0921-4526(96)00251-7.Search in Google Scholar

Ibrahim, A., Hossain, O., Chaggar, J., Steinberger-Wilckens, R., and El-Kharouf, A. (2020). GO-Nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. Int. J. Hydrogen Energy 45: 5526–5534, https://doi.org/10.1016/j.ijhydene.2019.05.210.Search in Google Scholar

Jheng, L.-C., Chang, W.J.-Y., Hsu, S.L.-C., and Cheng, P.-Y. (2016). Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 323: 57–66, https://doi.org/10.1016/j.jpowsour.2016.05.043.Search in Google Scholar

Jheng, L.-C., Hsu, S.L.-C., Tsai, T.-Y., and Chang, W.J.-Y. (2014). A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J. Mater. Chem. A 2: 4225–4233, https://doi.org/10.1039/c3ta14631f.Search in Google Scholar

Jothi, P.R. and Dharmalingam, S. (2014). An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J. Membr. Sci. 450: 389–396, https://doi.org/10.1016/j.memsci.2013.09.034.Search in Google Scholar

Karimi, M.B., Mohammadi, F., and Hooshyari, K. (2019). Recent approaches to improve Nafion performance for fuel cell applications: a review. Int. J. Hydrogen Energy 44: 28919–28938, https://doi.org/10.1016/j.ijhydene.2019.09.096.Search in Google Scholar

Kraytsberg, A. and Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28: 7303–7330, https://doi.org/10.1021/ef501977k.Search in Google Scholar

Kujawa, J., Rynkowska, E., Fatyeyeva, K., Knozowska, K., Wolan, A., Dzieszkowski, K., Li, G., and Kujawski, W. (2019). Preparation and characterization of cellulose acetate propionate films functionalized with reactive ionic liquids. Polymers 11: 1217, https://doi.org/10.3390/polym11071217.Search in Google Scholar PubMed PubMed Central

Kuo, Y.-J. and Lin, H.-L. (2018). Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells. Int. J. Hydrogen Energy 43: 4448–4457, https://doi.org/10.1016/j.ijhydene.2017.12.128.Search in Google Scholar

Li, J., Wang, S., Liu, F., Tian, X., Wang, X., Chen, H., Mao, T., and Wang, Z. (2018). HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. Int. J. Hydrogen Energy 43: 16248–16257, https://doi.org/10.1016/j.ijhydene.2018.06.165.Search in Google Scholar

Li, Y., Zhang, M., Wang, X., Li, Z., and Zhao, L. (2016). Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange. Electrochim. Acta 222: 1308–1315, https://doi.org/10.1016/j.electacta.2016.11.106.Search in Google Scholar

Liew, C.-W., Ramesh, S., and Arof, A.K. (2014a). Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int. J. Hydrogen Energy 39: 2953–2963, https://doi.org/10.1016/j.ijhydene.2013.06.061.Search in Google Scholar

Liew, C.-W., Ramesh, S., and Arof, A.K. (2014b). A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int. J. Hydrogen Energy 39: 2917–2928, https://doi.org/10.1016/j.ijhydene.2013.07.092.Search in Google Scholar

Lin, B., Cheng, S., Qiu, L., Yan, F., Shang, S., Lu, J. (2010). Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem. Mater. 22: 1807–1813, https://doi.org/10.1021/cm9033758.Search in Google Scholar

Lin, B., Yuan, W., Xu, F., Chen, Q., Zhu, H., Li, X., Yuan, N., Chu, F., and Ding, J. (2018). Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications. Appl. Surf. Sci. 455: 295–301, https://doi.org/10.1016/j.apsusc.2018.05.205.Search in Google Scholar

Liu, F., Wang, S., Li, J., Tian, X., Wang, X., Chen, H., and Wang, Z. (2017). Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 541: 492–499, https://doi.org/10.1016/j.memsci.2017.07.026.Search in Google Scholar

Lu, S., Xiu, R., Xu, X., Liang, D., Wang, H., and Xiang, Y. (2014). Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 464: 1–7, https://doi.org/10.1016/j.memsci.2014.03.053.Search in Google Scholar

Lv, Y., Li, Z., Song, M., Sun, P., Yin, X., and Wang, S. (2019). Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes. React. Funct. Polym. 137: 57–70, https://doi.org/10.1016/j.reactfunctpolym.2019.01.014.Search in Google Scholar

Maity, S., Singha, S., and Jana, T. (2015). Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polymer 66: 76–85, https://doi.org/10.1016/j.polymer.2015.03.040.Search in Google Scholar

Mao, T., Wang, S., Wang, X., Liu, F., Li, J., Chen, H., Wang, D., Liu, G., Xu, J., and Wang, Z. (2019). High-temperature and all-solid-state flexible supercapacitors with excellent long-term stability based on porous polybenzimidazole/functional ionic liquid electrolyte. ACS Appl. Mater. Interfaces 11: 17742–17750, https://doi.org/10.1021/acsami.9b00452.Search in Google Scholar PubMed

Moradi, M., Moheb, A., Javanbakht, M., and Hooshyari, K. (2016). Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC). Int. J. Hydrogen Energy 41: 2896–2910, https://doi.org/10.1016/j.ijhydene.2015.12.100.Search in Google Scholar

Oh, K., Kwon, O., Son, B., Lee, D.H., and Shanmugam, S. (2019). Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J. Membr. Sci. 583: 103–109, https://doi.org/10.1016/j.memsci.2019.04.031.Search in Google Scholar

Owejan, J.P., Gagliardo, J.J., Sergi, J.M., Kandlikar, S.G., and Trabold, T.A. (2009). Water management studies in PEM fuel cells, part I: fuel cell design and in-situ water distributions. Int. J. Hydrogen Energy 34: 3436–3444, https://doi.org/10.1016/j.ijhydene.2008.12.100.Search in Google Scholar

Özdemir, Y., Özkan, N., and Devrim, Y. (2017). Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim. Acta 245: 1–13, https://doi.org/10.1016/j.electacta.2017.05.111.Search in Google Scholar

Padilha, J.C., Basso, J., da Trindade, L.G., Martini, E.M.A., de Souza, M.O., and de Souza, R.F. (2010). Ionic liquids in proton exchange membrane fuel cells: efficient systems for energy generation. J. Power Sources 195: 6483–6485, https://doi.org/10.1016/j.jpowsour.2010.04.035.Search in Google Scholar

Pan, J., Wu, B., Wu, L., He, Y., Miao, J., Ge, L., and Xu, T. (2016). Proton exchange membrane from tetrazole-based poly (phthalazinone ether sulfone ketone) for high-temperature fuel cells. Int. J. Hydrogen Energy 41: 12337–12346, https://doi.org/10.1016/j.ijhydene.2016.05.148.Search in Google Scholar

Pasupathi, S., Carlos, J., Gomez, C., Su, H., Reddy, H., Bujlo, P., and Sita, C. (2016). Recent advances in high-temperature PEM fuel cells. Elsevier Ltd., London.10.1016/B978-0-12-809989-6.00003-7Search in Google Scholar

Pereiro, A.B., Araújo, J.M.M., Martinho, S., Alves, F., Nunes, S., Matias, A., Duarte, C.M.M., Rebelo, L.P.N., and Marrucho, I.M. (2013). Fluorinated ionic liquids: properties and applications. ACS Sustain. Chem. Eng. 1: 427–439, https://doi.org/10.1021/sc300163n.Search in Google Scholar

Pospiech, B. and Kujawski, W. (2015). Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation. Rev. Chem. Eng. 31: 179–191, https://doi.org/10.1515/revce-2014-0048.Search in Google Scholar

Quartarone, E., Angioni, S., and Mustarelli, P. (2017). Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review. Materials 10: 687, https://doi.org/10.3390/ma10070687.Search in Google Scholar PubMed PubMed Central

Ren, X., Li, H., Liu, K., Lu, H., Yang, J., and He, R. (2018). Preparation and investigation of reinforced PVP blend membranes for high temperature polymer electrolyte membranes. Fibers Polym. 19: 2449–2457, https://doi.org/10.1007/s12221-018-8361-2.Search in Google Scholar

Rosli, R.E., Sulong, A.B., Daud, W.R., Zulkifley, M.A., Rosli, M.I., Majlan, E.H., Haque, M.A., and Radzuan, N.A.M. (2019). The design and development of an HT-PEMFC test cell and test station. Int. J. Hydrogen Energy 44: 30763–30771, https://doi.org/10.1016/j.ijhydene.2018.01.174.Search in Google Scholar

Rynkowska, E., Fatyeyeva, K., Kujawa, J., Dzieszkowski, K., Wolan, A., and Kujawski, W. (2018a). The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes. Polymers 10: 86, https://doi.org/10.3390/polym10010086.Search in Google Scholar PubMed PubMed Central

Rynkowska, E., Fatyeyeva, K., and Kujawski, W. (2018b). Application of polymer-based membranes containing ionic liquids in membrane separation processes: a critical review. Rev. Chem. Eng. 34: 341–363, https://doi.org/10.1515/revce-2016-0054.Search in Google Scholar

Saccà, A., Carbone, A., Gatto, I., Pedicini, R., Freni, A., Patti, A., and Passalacqua, E. (2016). Composites Nafion-titania membranes for polymer electrolyte fuel cell (PEFC) applications at low relative humidity levels: chemical physical properties and electrochemical performance. Polym. Test. 56: 10–18, https://doi.org/10.1016/j.polymertesting.2016.09.015.Search in Google Scholar

Saccà, A., Carbone, A., Passalacqua, E., D’Epifanio, A., Licoccia, S., Traversa, E., Sala, E., Traini, F., and Ornelas, R. (2005). Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J. Power Sources 152: 16–21, https://doi.org/10.1016/j.jpowsour.2004.12.053.Search in Google Scholar

Saccà, A., Gatto, I., Carbone, A., Pedicini, R., and Passalacqua, E. (2006). ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J. Power Sources 163: 47–51, https://doi.org/10.1016/j.jpowsour.2005.12.062.Search in Google Scholar

Sammes, N.M. and Du, Y. (2007). Fabrication and characterization of tubular solid oxide fuel cells. Int. J. Appl. Ceram. Technol. 4: 89–102, https://doi.org/10.1111/j.1744-7402.2007.02127.x.Search in Google Scholar

Shi, H., Yang, G., Liu, Z., Zhang, G., Ran, R., Shao, Z., Zhou, W., and Jin, W. (2012). High performance tubular solid oxide fuel cells with BSCF cathode. Int. J. Hydrogen Energy 37: 13022–13029, https://doi.org/10.1016/j.ijhydene.2012.05.061.Search in Google Scholar

Spiegel, C. (2007). Designing and building fuel cells. McGraw-Hill, New York.Search in Google Scholar

Sun, X., Simonsen, S.C., Norby, T., and Chatzitakis, A. (2019). Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review. Membranes 9: 83, https://doi.org/10.3390/membranes9070083.Search in Google Scholar PubMed PubMed Central

Sundén, B. (2019). Chapter 8-fuel cell types-overview. In: Sundén, B. (Ed.). Hydrogen, batteries and fuel cells. Cambridge, Massachusetts, Academic Press 2019, pp. 123–144.10.1016/B978-0-12-816950-6.00008-7Search in Google Scholar

Taherkhani, Z., Abdollahi, M., and Sharif, A. (2019). Proton conducting porous membranes based on poly (benzimidazole) and poly (acrylic acid) blends for high temperature proton exchange membranes. Solid State Ionics 337: 122–131, https://doi.org/10.1016/j.ssi.2019.04.019.Search in Google Scholar

Tai, C.C., Chen, C.L., and Liu, C.W. (2017). Computer simulation to investigate proton transport and conductivity in perfluorosulfonate ionomeric membrane. Int. J. Hydrogen Energy 42: 3981–3986, https://doi.org/10.1016/j.ijhydene.2016.11.047.Search in Google Scholar

Thanganathan, U. and Nogami, M. (2015). Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 40: 1935–1944, https://doi.org/10.1016/j.ijhydene.2014.11.099.Search in Google Scholar

Tian, X., Wang, S., Li, J., Liu, F., Wang, X., Chen, H., Ni, H., and Wang, Z. (2017). Composite membranes based on polybenzimidazole and ionic liquid functional Si–O–Si network for HT-PEMFC applications. Int. J. Hydrogen Energy 42: 21913–21921, https://doi.org/10.1016/j.ijhydene.2017.07.071.Search in Google Scholar

Tu, C.H., Hsu, S.L.C., Bulycheva, E., and Belomoina, N. (2019). Novel crosslinked AB‐type polyphenylquinoxaline membranes for high‐temperature proton exchange membrane fuel cells. Polym. Eng. Sci. 59: 2169–2173, https://doi.org/10.1002/pen.25219.Search in Google Scholar

van de Ven, E., Chairuna, A., Merle, G., Benito, S.P., Borneman, Z., and Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature proton exchange membrane fuel cell applications. J. Power Sources 222: 202–209, https://doi.org/10.1016/j.jpowsour.2012.07.112.Search in Google Scholar

Wang, J., Jiang, H., Xu, Y., Yang, J., and He, R. (2018a). Quaternized poly (aromatic ether sulfone) with siloxane crosslinking networks as high temperature proton exchange membranes. Appl. Surf. Sci. 452: 473–480, https://doi.org/10.1016/j.apsusc.2018.05.063.Search in Google Scholar

Wang, L., Ni, J., Liu, D., Gong, C., and Wang, L. (2018b). Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 43: 16694–16703, https://doi.org/10.1016/j.ijhydene.2018.06.181.Search in Google Scholar

Wang, P., Liu, Z., Li, X., Peng, J., Hu, W., and Liu, B. (2019). Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chem. Commun. 55: 6491–6494, https://doi.org/10.1039/c9cc02102g.Search in Google Scholar PubMed

Wang, X., Wang, S., Liu, C., Li, J., Liu, F., Tian, X., Chen, H., Mao, T., Xu, J., and Wang, Z. (2018c). Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs. Electrochim. Acta 283: 691–698, https://doi.org/10.1016/j.electacta.2018.06.197.Search in Google Scholar

Wang, Y., Tian, M., Bi, W., and Row, K.H. (2009). Application of ionic liquids in high performance reversed-phase chromatography. Int. J. Mol. Sci. 10: 2591–2610, https://doi.org/10.3390/ijms10062591.Search in Google Scholar PubMed PubMed Central

Wheeler, D. and Sverdrup, G. (2008). 2007 Status of manufacturing: polymer electrolyte membrane (PEM) fuel cells. National Renewable Energy Laboratory. Golden, Colorado.10.2172/924988Search in Google Scholar

Wong, C.Y., Wong, W.Y., Ramya, K., Khalid, M., Loh, K.S., Daud, W.R.W., Lim, K.L., Walvekar, R., and Kadhum, A.A.H. (2019). Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review. Int. J. Hydrogen Energy 44: 6116–6135, https://doi.org/10.1016/j.ijhydene.2019.01.084.Search in Google Scholar

Xiang, J., Chen, R., Wu, F., Li, L., Chen, S., and Zou, Q. (2011). Physicochemical properties of new amide-based protic ionic liquids and their use as materials for anhydrous proton conductors. Electrochim. Acta 56: 7503–7509, https://doi.org/10.1016/j.electacta.2011.06.103.Search in Google Scholar

Xu, C., Liu, X., Cheng, J., and Scott, K. (2015). A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 274: 922–927, https://doi.org/10.1016/j.jpowsour.2014.10.134.Search in Google Scholar

Xu, G., Wei, Z., Li, S., Li, J., Yang, Z., and Grigoriev, S.A. (2019). In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application. Int. J. Hydrogen Energy 44: 29711–29716, https://doi.org/10.1016/j.ijhydene.2019.02.037.Search in Google Scholar

Xu, G., Wu, Z., Wei, Z., Zhang, W., Wu, J., Li, Y., Li, J., Qu, K., and Cai, W. (2020). Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renew. Energy 153: 935–939, https://doi.org/10.1016/j.ijhydene.2020.06.303.Search in Google Scholar

Xu, J., Ma, L., Han, H., Ni, H., Wang, Z., and Zhang, H. (2014). Synthesis and properties of a novel sulfonated poly (arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications. Electrochim. Acta 146: 688–696, https://doi.org/10.1016/j.electacta.2014.09.071.Search in Google Scholar

Yaghini, N., Gómez-González, V., Varela, L.M., and Martinelli, A. (2016). Structural origin of proton mobility in a protic ionic liquid/imidazole mixture: insights from computational and experimental results. Phys. Chem. Chem. Phys. 18: 23195–23206, https://doi.org/10.1039/c6cp03058k.Search in Google Scholar PubMed

Yana, J., Nimmanpipug, P., Chirachanchai, S., Gosalawit, R., Dokmaisrijan, S., Vannarat, S., Vilaithong, T., and Lee, V.S. (2010). Molecular dynamics simulations of Krytox-Silica–Nafion composite for high temperature fuel cell electrolyte membranes. Polymer 51: 4632–4638, https://doi.org/10.1016/j.polymer.2010.07.036.Search in Google Scholar

Yang, C., Srinivasan, S., Bocarsly, A.B., Tulyani, S., and Benziger, J.B. (2004). A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 237: 145–161, https://doi.org/10.1016/j.memsci.2004.03.009.Search in Google Scholar

Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., and He, R. (2017). Strengthening phosphoric acid doped polybenzimidazole membranes with siloxane networks for using as high temperature proton exchange membranes. Macromol. Chem. Phys. 218: 1700009, https://doi.org/10.1002/macp.201700009.Search in Google Scholar

Yang, J., Jiang, H., Gao, L., Wang, J., Ye, N., Xu, Y., and He, R. (2018a). Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene. Polym. Chem. 9: 5462–5469, https://doi.org/10.1039/c8py01148f.Search in Google Scholar

Yang, J., Liu, C., Gao, L., Wang, J., Xu, Y., and He, R. (2015a). Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Adv. 5: 101049–101054, https://doi.org/10.1039/c5ra16554g.Search in Google Scholar

Yang, J., Wang, Y., Yang, G., and Zhan, S. (2018b). New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone) s for high temperature polymer electrolyte fuel cells. Int. J. Hydrogen Energy 43: 8464–8473, https://doi.org/10.1016/j.ijhydene.2018.03.128.Search in Google Scholar

Yang, Y., Gao, H., and Zheng, L. (2015b). Anhydrous proton exchange membranes at elevated temperatures: effect of protic ionic liquids and crosslinker on proton conductivity. RSC Adv. 5: 17683–17689, https://doi.org/10.1039/c4ra16106h.Search in Google Scholar

Yasuda, T., Nakamura, S., Honda, Y., Kinugawa, K., Lee, S.Y., and Watanabe, M. (2012). Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl. Mater. Interfaces 4: 1783–1790, https://doi.org/10.1021/am300031k.Search in Google Scholar PubMed

Ye, H., Huang, J., Xu, J.J., Kodiweera, N.K.A.C., Jayakody, J.R.P., and Greenbaum, S.G. (2008). New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Sources 178: 651–660, https://doi.org/10.1016/j.jpowsour.2007.07.074.Search in Google Scholar

Yi, S., Zhang, F., Li, W., Huang, C., Zhang, H., and Pan, M. (2011). Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids. J. Membr. Sci. 366: 349–355, https://doi.org/10.1016/j.memsci.2010.10.031.Search in Google Scholar

Yoon, J., Lee, H.J., and Stafford, C.M. (2011). Thermoplastic elastomers based on ionic liquid and poly (vinyl alcohol). Macromolecules 44: 2170–2178, https://doi.org/10.1021/ma102682k.Search in Google Scholar

Zhai, Y., Zhang, H., Hu, J., and Yi, B. (2006). Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J. Membr. Sci. 280: 148–155, https://doi.org/10.1016/j.memsci.2006.01.028.Search in Google Scholar

Zhang, H., Wu, W., Li, Y., Liu, Y., Wang, J., Zhang, B., and Liu, J. (2015a). Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. J. Power Sources 279: 667–677, https://doi.org/10.1016/j.jpowsour.2015.01.066.Search in Google Scholar

Zhang, H., Wu, W., Wang, J., Zhang, T., Shi, B., Liu, J., and Cao, S. (2015b). Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. J. Membr. Sci. 476: 136–147, https://doi.org/10.1016/j.memsci.2014.11.033.Search in Google Scholar

Zhang, W., Croiset, E., Douglas, P.L., Fowler, M.W., and Entchev, E. (2005). Simulation of a tubular solid oxide fuel cell stack using AspenPlus™ unit operation models. Energy Convers. Manag. 46: 181–196, https://doi.org/10.1016/j.enconman.2004.03.002.Search in Google Scholar

Zhang, X., Fu, X., Yang, S., Zhang, Y., Zhang, R., Hu, S., Bao, X., Zhao, F., Li, X., and Liu, Q. (2019a). Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. J. Mater. Chem. A 7: 15288–15301, https://doi.org/10.1039/c9ta03666k.Search in Google Scholar

Zhang, X., Liu, Q., Xia, L., Huang, D., Fu, X., Zhang, R., Hu, S., Zhao, F., Li, X., and Bao, X. (2019b). Poly (2, 5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range. J. Membr. Sci. 574: 282–298, https://doi.org/10.1016/j.memsci.2018.12.085.Search in Google Scholar

Received: 2019-11-28
Accepted: 2020-07-15
Published Online: 2020-09-14
Published in Print: 2022-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2019-0079/html
Scroll to top button