Home Some Practical Aspects of Nanocellulose Film: Characterization, Expansion and Shrinking Tests, and Techniques to Create Remoistenable Nanocellulose
Article
Licensed
Unlicensed Requires Authentication

Some Practical Aspects of Nanocellulose Film: Characterization, Expansion and Shrinking Tests, and Techniques to Create Remoistenable Nanocellulose

  • Robin Canham ORCID logo EMAIL logo , Alison Murray ORCID logo and Rosaleen Hill
Published/Copyright: June 12, 2023

Abstract

Microfibrillated cellulose (MFC), commonly referred to as nanocellulose, is an emerging conservation material with significant potential for application in a wide range of conservation treatments. Due to its properties of transparency and mechanical strength, nanocellulose film offers novel potential when thin tissues may not be suitable. However, when water or aqueous adhesives are applied to nanocellulose, it loses stability and becomes pulpy, making practical use problematic. Additionally, nanocellulose film can shrink upon drying, causing planar deformation. For these reasons, adhesives used with nanocellulose are limited in published treatments to date. The nanocellulose film used in this study was characterized and expansion and shrinking tests were conducted to better understand how nanocellulose film reacts when water and ethanol are introduced. The potential of using nanocellulose film in a remoistenable form is also explored. Results found that nanocellulose film behaved differently than Japanese tissue when water was introduced. While each expanded when water was introduced, the nanocellulose film shrunk 11 % from its initial size when dry, whereas the Japanese tissue returned to its initial size. Practical techniques are recommended to create remoistenable nanocellulose film with a selection of adhesives. Notably, remoistenable nanocellulose films created with methylcellulose and gelatine showed promising initial results.

Zusammenfassung

Mikrofibrillierte Cellulose (MFC), gemeinhin als Nanocellulose bezeichnet, wird vermehrt in der Restaurierung eingesetzt und hat großes Potenzial für eine Vielzahl unterschiedlicher Anwendungen. Aufgrund ihrer Transparenz und mechanischen Festigkeit bieten Nanocellulose-Filme Alternativen für den Einsatz dünner Papiere. Allerdings verlieren Nanocellulose-Filme bei Feuchtigkeits- oder Wassereintrag bzw. beim Auftrag wässriger Klebstoffe an Stabilität und können sich sogar zu einem Brei auflösen, was die praktische Anwendung erschwert. Außerdem können Nanocellulose-Filme beim Trocknen schrumpfen, was zu Deformierungen des Films führt. Aus diesen Gründen wurden in Publikationen bislang nur eine eingeschränkte Auswahl an Klebstoffen in Kombination mit Nanocellulose beschrieben. Die Eigenschaften der in dieser Studie hergestellten Nanocellulose-Filme wurden beschrieben und ihr Ausdehnungs-und Schrumpfungsverhalten getestet, um besser zu verstehen, wie Nanocellulose-Filme reagieren, wenn Wasser und/oder Ethanol eingebracht wird. Außerdem wurden die Eigenschaften von klebstoffbeschichteten, reaktivierbaren Nanocellulose-Filmen untersucht. Die Ergebnisse zeigen, dass sich Nanocellulose-Filme bei Wassereintrag anders verhalten als Japanpapiere: Beide dehnten sich zwar durch Wassereinwirkung aus, aber Nanocellulose-Filme schrumpften nach dem Trocknen um 11% ihrer ursprünglichen Größe, während Japanpapiere wieder ihre ursprünglichen Dimensionen annahmen. Schließlich werden in dem Beitrag Methoden zur Beschichtung von Nanocellulose-Filmen mit einer Reihe unterschiedlicher Klebstoffe beschrieben. Vor allem die mit Methylcellulose und Gelatine hergestellten reaktivierbaren Nanocellulose-Filme zeigten vielversprechende erste Ergebnisse.


Corresponding author: Robin Canham, Master of Art Conservation, Master of Information Studies, W.D. Jordan Rare Books and Special Collections, Queen’s University Library, Queen’s University, Kingston, Ontario, Canada, E-mail:

Funding source: Queen’s University, Department of Art History and Art Conservation

Funding source: Social Sciences and Humanities Research Council (SSHRC) of Canada

Acknowledgements

The authors would like to thank the following people who have provided expertise, collaboration, idea sharing, and encouragement, including Marissa Bartz, Sandrine Blais, Megan Creamer, Rémy Dreyfuss-Deseigne, Tiffany Eng Moore, Alison Freake, Stefanie Killen, Nataša Krsmanović, Crystal Maitland, Rachel Mochon, Terry O’Reilly, Andrea Pataki-Hundt, Lindsay Sisson, Camille Turner-Hehlen, Diogenes Vedoy, Roger S. Williams, and Richard Yeomans.

  1. Research funding: This research was supported in part by funding from the Social Sciences and Humanities Research Council (SSHRC) and the Queen’s University Department of Art History and Art Conservation.

References

ASTM International. 2014. ASTM D523-08: Standard Test Method for Specular Gloss. Available at: https://www.astm.org/d0523-08.html.Search in Google Scholar

Browning, B. L. 1977. Analysis of Paper, 2nd ed. New York: Marcel Dekker.Search in Google Scholar

Camargos, C., J. Figueiredo Junior, and F. Pereira. 2016. “Nanocellulose for Conservation and Restoration of Graphic Documents.” In Experience and Evidence: ICOM-CC Graphic Documents Working Group Interim Meeting, Paris, France, June 1–3, 2016, 14. Paris: French National Library.Search in Google Scholar

Camargos, C., J. Figueiredo Junior, and F. Pereira. 2017. “Cellulose Nanocrystal-Based Composite for Restoration of Lacunae on Damaged Documents and Artworks on Paper.” Journal of Cultural Heritage 23: 170–5. https://doi.org/10.1016/j.culher.2016.10.007.Search in Google Scholar

Canham, R., and R. Yeomans. 2021. Nanocellulose Calculator. Available at: http://www.burroakbookbinding.com/nanocellulose-calculator.Search in Google Scholar

Dreyfuss-Deseigne, R. 2017a. “A New Mending Material: Nanocellulose Film.” Journal of Paper Conservation 18 (1): 36–7. https://doi.org/10.1080/18680860.2017.1339401.Search in Google Scholar

Dreyfuss-Deseigne, R. 2017b. “Nanocellulose Films: Properties, Development, and New Applications for Translucent and Transparent Artworks and Documents.” Book and Paper Group Annual 36: 108–114. Available at: https://cool.culturalheritage.org/coolaic/sg/bpg/annual/v36/bpga36-20.pdf.Search in Google Scholar

Dreyfuss-Deseigne, R. 2017c. “Nanocellulose Films in Art Conservation: A New and Promising Mending Material for Translucent Paper Objects.” Journal of Paper Conservation 18 (1): 18–29. https://doi.org/10.1080/18680860.2017.1334422.Search in Google Scholar

Harwood, A. 2011a. “Analysis of the Physical Characteristics of Transparent Cellulosic Nanofiber Paper.” Master’s Research Project. Queen’s University, Department of Art Conservation.Search in Google Scholar

Harwood, A. 2011b. “Analysis of the Physical Characteristics of Transparent Cellulosic Nanofiber Paper.” Western Association for Art Conservation (WAAC) Newsletter 33 (2): 12–5. https://cool.culturalheritage.org/waac/wn/wn33/wn33-2/wn33-203.pdf.Search in Google Scholar

Henniges, U., L. Angelova, S. Schwoll, H. Smith, and I. Brückle. 2022. “Microfibrillated Cellulose Films for Mending Translucent Paper: An Assessment of Film Preparation and Treatment Application Options.” Journal of the Institute of Conservation 45 (1): 36–51. https://doi.org/10.1080/19455224.2021.2017314.Search in Google Scholar

Knauf, D., and J. Utter. 2020. “The Gentling Collection: Establishing a Treatment Protocol for Multilayered Works on Transparent Paper.” Book and Paper Group Annual 39: 50–60.Search in Google Scholar

Konica, M. n.d. “Measuring the Color of Fabrics.” Available at: https://sensing.konicaminolta.asia/measuring-the-color-of-fabrics/.Search in Google Scholar

Larsson, P., and L. Wågberg. 2010. “Diffusion-Induced Dimensional Changes in Papers and Fibrillar Films: Influence of Hydrophobicity and Fibre-Wall Cross-Linking.” Cellulose 17: 891–901. https://doi.org/10.1007/s10570-010-9433-7.Search in Google Scholar

Lechuga, K. 2011. “Aquazol-Coated Remoistenable Mending Tissues.” In Symposium 2011 – Adhesives and Consolidants for Conservation: Research and Applications, Ottawa, Ontario, October 17th to 21st, 2011, 1–13. Ottawa: Canadian Conservation Institute (CCI).Search in Google Scholar

Lindner, M. 2018. “Factors Affecting the Hygroexpansion of Paper.” Journal of Materials Science 53: 1–16. https://doi.org/10.1007/s10853-017-1358-1.Search in Google Scholar

Lunning, E., and R. Perkinson. 1996. The Print Council of America Paper Sample Book: A Practical Guide to the Description of Paper. Boston: Print Council of America.Search in Google Scholar

Manninen, M., I. Kajanto, J. Happonen, and J. Paltakari. 2011. “The Effect of Microfibrillated Cellulose Addition on Drying Shrinkage and Dimensional Stability of Wood-Free Paper.” Nordic Pulp and Paper Research Journal 26 (3): 297–305. https://doi.org/10.3183/npprj-2011-26-03-p297-305.Search in Google Scholar

Nicholson, K., and S. Page. 1988. Machine Made Oriental Papers in Western Paper Conservation. The Book and Paper Group Annual 7: 44–51. Available at: https://cool.culturalheritage.org/coolaic/sg/bpg/annual/v07/bpga07-08.pdf.Search in Google Scholar

Pataki-Hundt, A. 2009. “Remoistenable Tissue Preparation and its Practical Aspects.” Restaurator 30: 51–69. https://doi.org/10.1515/rest.004.Search in Google Scholar

Van der Reyden, D., C. Hofmann, and M. Baker. 1993. “Effects of Aging and Solvent Treatments on Some Properties of Contemporary Tracing Papers.” Journal of the American Institute for Conservation 32 (2): 177–206. https://doi.org/10.1179/019713693806176490.Search in Google Scholar

Sokolowski, C. 2018. “Mending Paper with the Lightest Available Japanese Tissue.” Book and Paper Group Annual 37: 165–7. Available at: https://cool.culturalheritage.org/coolaic/sg/bpg/annual/v37/bpga37-28.pdf.Search in Google Scholar

Völkel, L., K. Ahn, U. Hähner, W. Gindl-Altmutter, and A. Potthast. 2017. “Nano Meets the Sheet: Adhesive-free Application of Nanocellulosic Suspensions in Paper Conservation.” Heritage Science 5 (23): 1–17. https://doi.org/10.1186/s40494-017-0134-5.Search in Google Scholar

Völkel, L., M. Beaumont, L.-S. Johansson, C. Czibula, D. Rusakov, A. Mautner, C. Teichert, E. Kontturi, T. Rasenau, and A. Potthast. 2022. “Assessing Fire-Damage in Historical Papers and Alleviating Damage with Soft Cellulose Nanofibers.” Small 18 (13): 1–4. https://doi.org/10.1002/smll.202105420.Search in Google Scholar

Völkel, L., T. Prohaska, and A. Potthast. 2020. “Combining Phytate Treatment and Nanocellulose Stabilization for Mitigating Iron Gall Ink Damage in Historic Papers.” Heritage Science 8 (86): 1–15. https://doi.org/10.1186/s40494-020-00428-6.Search in Google Scholar

Williams, R. S. 2018. “Optically Cleared Repair Tissues for the Treatment of Translucent Papers.” Book and Paper Group Annual 37: 96–110. Available at: https://cool.culturalheritage.org/coolaic/sg/bpg/annual/v37/bpga37-18.pdf.Search in Google Scholar

Published Online: 2023-06-12
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/res-2022-0031/html
Scroll to top button