Abstract
One of the key deterioration factors for porous inorganic building materials are soluble salts. To be able to remediate or mitigate this problem it is fundamental to understand the principal processes governing their behavior. While the actual mechanisms involved in these processes are still under study, the deterioration can be mitigated or remediated by the long practical experience gained in the field. The paper aims to provide an overview of the basic principles that rule the interaction of salts with the porous inorganic material. Understanding these will allow the development of appropriate procedures to control the deterioration process.
Acknowledgements
The authors would like to thank Prof. Josef Pühringer for encouraging us to develop this topic into a summarizing paper. Also to be acknowledged for their comments and suggestions are Dr. José Delgado Rodrigues, Dr. Bénédicte Rousset, and Arq. Marcelo L. Magadán.
References
1. Evans LS. Salt crystallization and rock weathering: a review. Rev Géomorphol Dyn 1969/70;19:153–77.Search in Google Scholar
2. Charola AE. Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 2000;39:327–43.10.1179/019713600806113176Search in Google Scholar
3. Doehne E. Salt weathering: A selective review. In: Siegesmund S, Weiss T, Vollbrecht A, editors. Natural stone, weathering phenomena, conservation strategies and case studies. London: The Geological Society, 2002, 54–64.Search in Google Scholar
4. Leitner H, Laue S, Siedel H, editors. Mauersalze und Architekturoberflächen. Dresden: Hochschule für Bildende Künste, 2003.Search in Google Scholar
5. Simon S, Drdácky M, editors. European research on cultural heritage. State-Of-The-Art-Studies 5. Problems of salts in masonry-SALTeXPERT. Prague: ITAM and Academy of Sciences of the Czech Republic, 2006.Search in Google Scholar
6. Ottosen LM, Rörig-Dalgaard I, Klenz Larsen P, Brajer I, Ballingstuft P, Marciniak M, Svane M, editors. Salt weathering on buildings and stone sculptures. Copenhagen: Technical University of Denmark, 2008.Search in Google Scholar
7. Ioannou I, Theodoridou M, editors. 2nd Int Conf salt weathering on buildings and stone sculptures. Nicosia: Technical University of Cyprus, 2011.Search in Google Scholar
8. De Clercq H, editor. 3rd Int Conf salt weathering on buildings and stone sculptures. Brussels: KIK-IRPA, 2014.Search in Google Scholar
9. Cather S, editor. The conservation of wall paintings. Los Angeles, CA: Getty Conservation Institute, 1991.Search in Google Scholar
10. von Konow T, editor. The study of salt deterioration mechanisms. Decay of brick walls influenced by interior climate changes. Helsinki: The Governing Body of Suomenlinna, 2002.Search in Google Scholar
11. Charola AE, editor. Restoration of Buildings and Monuments 2005:11(6).10.1515/rbm-2005-5997Search in Google Scholar
12. Steiger M, Siegesmund S, editors. Environmental Geology 2007;52(2).10.1007/s00254-006-0591-8Search in Google Scholar
13. Saltwiki Webpage http://www.saltwiki.net/. Accessed: 20 Jan 2015.Search in Google Scholar
14. Price C. An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials. Protection and Conservation of the European Cultural Heritage Research Report No.11. London: Archetype, 2000.Search in Google Scholar
15. Bionda D. Modelling indoor climate and salt behaviour in historical buildings: A case study. PhD thesis, Diss. No.16567. Zürich, ETH, 2006.Search in Google Scholar
16. Sawdy A, Heritage A. Evaluating the influence of mixture composition on the kinetics of salt damage in wall paintings using time lapse video imaging with direct data annotation. Env Geol 2007;52:303–15.10.1007/s00254-006-0496-6Search in Google Scholar
17. Zehnder K, Schoch O. Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. J Cult Her 2009;10:319–30.10.1016/j.culher.2008.10.009Search in Google Scholar
18. Padfield T. 2009. http://www.conservationphysics.org/intro/fundamentals.php/. Accessed: 23 Jan 2015.Search in Google Scholar
19. Bläuer Böhm C. Techniques and tools for conservation investigations. In: Kwiatkowski D, Löfvendahl R, editors. 10th Int Congress deterioration and conservation of stone. Stockholm: ICOMOS Sweden, 2004, 549–59.Search in Google Scholar
20. Cather S. Assessing causes and mechanisms of detrimental change to wall paintings. In: Heritage A, Gowing R, editors. Conserving the painted past. Developing approaches to wall painting conservation. London: English Heritage, 2003, 64–74.Search in Google Scholar
21. Snethlage R. Leitfaden Steinkonservierung. Stuttgart: Fraunhofer IRB Verlag, 1997.Search in Google Scholar
22. Fitzner B. Documentation and evaluation of stone damage on monuments. In: Kwiatkowski D, Löfvendahl R, editors. 10th Int Congress deterioration and conservation of stone. Stockholm: ICOMOS Sweden, 2004, 677–90.Search in Google Scholar
23. Bläuer C, Franzen C, Vergès-Belmin V. Simple field tests in stone conservation. In: Proc. 12th International Congress on the Deterioration and Conservation of Stone 2012. Available at: line at http://iscs.icomos.org/cong-12.html. Accessed: 3 Feb 2015.Search in Google Scholar
24. Commission RILEM-. 25-PEM. Tentative recommendations – recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Matériaux et Construct 1980;13:175–253.Search in Google Scholar
25. Tiano P, Pardini C. Valutazione in situ dei trattamenti protettivi per il materiale lapideo. Proposta di una nuova semplice metodologia. Arkos: Scienza e restauro dell’archittetura 2004;5:30–6.Search in Google Scholar
26. Vandevoorde D, Pamplona M, Schalm O, Vanhellemont Y, Cnudde V, Verhaeven E. Contact sponge method: performance of a promising tool for measuring the initial water absorption. J Cult Herit 2009;10:41–7.10.1016/j.culher.2008.10.002Search in Google Scholar
27. Bläuer Böhm C. Einige Einfache Beobachtungen und Untersuchungen am Objekt. In: Anja Diekamp A, editor. Naturwissenschaft und Denkmalpflege. Insbruck: Innsbruck University Press, 2007, 205–12.Search in Google Scholar
28. Steiger M. Distribution of salt mixtures in a sandstone monument: sources, transport and crystallization properties. In: Zezza F, editor. Origin, mechanisms and effects of salts on degradation of monuments in marine and continental environments. Proceedings, Research Report 4. Bari: European Commission, 1996, 241–6.Search in Google Scholar
29. Steiger M, Neumann H-H, Ulrich A. ChemischeZusammensetzung und Verteilung löslicher Salze in Natursteinmauerwerk. In: Snethlage, R. editor. Jahresberichte Steinzerfall-Steinkonservierung 1991. Stuttgart: Fraunhofer IRB Verlag, 1993, 21–33.Search in Google Scholar
30. Steiger M, Neumann H-H, Grodten T, Wittenburg C, Dannecker W. Salze in Natursteinmauerwerk – Probenahme, Messung und Interpretation. In: Snethlage, R. editor. Denkmapflege und Naturwissenschaft. Natursteinkonservierung II. Stuttgart: Fraunhofer IRB Verlag, 1998, 61–91.Search in Google Scholar
31. Bläuer C, Rousset B. Salt sources revisited. In: De Clercq H, editor. 3rd Int, Conf. Salt weathering of buildings and stone statues. Brussels: KIK-IRPA, 2014, 305–18.Search in Google Scholar
32. Hewlett PC. Lea’s chemistry of cement and concrete, 4th ed. Oxford: Butterworth-Heinemann, 1998.Search in Google Scholar
33. Bläuer Böhm C, Jägers E. Analysis and recognition of dolomitic lime mortars. In: Béarat H, Fuchs M, Maggetti M, Paunier D editors. Roman wall paintings – materials, techniques, analysis and conservation. Fribourg: Institute of Mineralogy and Petrography, Fribourg University, 1997, 223–35.Search in Google Scholar
34. Grassegger G, Schwarz HJ. Salze und Salzschäden an Bauwerken. In: Schwarz JH, Steiger M, editors. Salzschäden an Kulturgütern. Hannover: Deutsche Bundestiftung Umwelt, 2009, 6–21.Search in Google Scholar
35. Laue S, Bläuer Böhm C, Jeannette D. Salt weathering and porosity – examples from the crypt of St. Maria im Kapitol, Cologne. In: Riederer J, editor. 8th Int. Congress deterioration and conservation of stone. Berlin: Möller Druck und Verlag, 1996, 513–22.Search in Google Scholar
36. Livingston RA, Taylor TH. Diagnosis of salt damage at a smokehouse in Colonial Williamsburg. In: Baer S, Fitz S, Livingston RA, editors. Conservation of historic brick structures. Shaftesbury: Donhead, 1998, 445–56.Search in Google Scholar
37. Chabas A, Jeannette D. Weathering of marbles and granites in marine environment: petrophysical properties and special role of atmospheric salts. Environ Geol 2000;40:359–68.10.1007/s002540000157Search in Google Scholar
38. Furlan V, Girardet F. Pollution atmosphérique et réactivité des pierres. In: Delgado Rodrigues J, Henriques F, Telmo Jeremias F editors. 7th Int. Congress deterioration and conservation of stone. Lisbon: Laboratório Nacional de Engenharia Civil, 1991, 153–61.Search in Google Scholar
39. Charola AE, Ware R. Acid deposition and the deterioration of stone: A brief review of a broad topic. In: Siegesmund S, Weiss T, Vollbrecht A, editors. Natural stone, weathering phenomena, conservation strategies and case studies, Special Publication 205. London: The Geological Society, 2002, 393–406.Search in Google Scholar
40. Steiger M, Charola AE, Sterflinger K. Weathering and deterioration. In: Siegesmund S, Snethlage R, editors. Stone in architecture, 5th ed. Berlin: Springer Verlag. 2014. 225–316.10.1007/978-3-642-45155-3_4Search in Google Scholar
41. Arnold A. Salzmineralien in Mauerwerken. Schweiz Mineral Petrograph Mitt 1981;61:147–66.Search in Google Scholar
42. Arnold A, Zehnder K. Verwitterungsschäden durch Ameisensäure. Eine Fallstudie am Erlacherhof in Bern. Schweizer Ingenieur und Architekt 1983;36:841–5.Search in Google Scholar
43. Chwast J, Todorovic J, Janssen H, Elsen J. Gypsum efflorescence on clay brick masonry: field survey and literature study. Construct and Build Mat 2015;85:57–64.10.1016/j.conbuildmat.2015.02.094Search in Google Scholar
44. Arnold A, Küng A, Zehnder K. Deterioration and preservation of Carolingian and medieval mural paintings in the Müstair convent (Switzerland). Part I: decay mechanisms and preservation. In: Bromelle NS, Smith P, editors. Preprints IIC Bologna congress conservation of stone and wall paintings. London: IIC, 1986, 190–4.Search in Google Scholar
45. Weber J. Salt-induced deterioration of Romanesque wall paintings in the church of St. Georgen, Styria, Austria. In: Biscontin G, Graziano L, editors. Conservation of architectural surfaces: stones and wall coverings. Venice: Il Cardo, 1993, 97–103, 28–33.Search in Google Scholar
46. Leitner H. The treatment of wall paintings affected by salts: an interdisciplinary task as seen from a conservator’s perspective. Rest Build Mon 2005;11:365–80.Search in Google Scholar
47. Correns CW. Über die Erklärung der sogenannten Kristallisationskraft. Berichte der Preussischen Akademie der Wissenschaft 1996;11:81–8.Search in Google Scholar
48. Correns CW, Steinborn W. Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. Zeitschrift für Kristallisationskraft 1939;101:117–33.10.1524/zkri.1939.101.1.117Search in Google Scholar
49. Correns CW. Growth and dissolution of crystals under linear pressure. Discussions of the Faraday society 1949;5:267–71.10.1039/df9490500267Search in Google Scholar
50. Mortensen H. Die “Salzsprengung” und ihre Bedeutung für die Regionalklimatische Gliederung der Wüsten. Dr. A. Petermanns Mitteilungen. Justus Perthes in Gotha, 1933;79:130–5.Search in Google Scholar
51. Steiger M. Crystal growth in porous materials − I: the crystallization pressure of large crystals. J Cryst Growth 2005;282:455–69.10.1016/j.jcrysgro.2005.05.007Search in Google Scholar
52. Steiger M. Crystal growth in porous materials − II: influence of crystal size on the crystallization pressure. J Cryst Growth 2005;282:470–81.10.1016/j.jcrysgro.2005.05.008Search in Google Scholar
53. Price C, Brimblecombe P. Preventing salt damage in porous materials. In: Roy A, Smith P, editors. Preprints. Preventive conservation, practice, theory and research. London: IIC, 1994, 90–3.Search in Google Scholar
54. Steiger M, Zeunert A. Crystallization properties of salt mixtures: comparison of experimental results and model calculations. In: Riederer J, editor. 8th Int. Congress deterioration and conservation of stone. Berlin: Möller Druck und Verlag, 1996, 535–44.Search in Google Scholar
55. Howell J. The rising damp myth. Woodbridge, Suffolk: Nosecone Publications, 2008.Search in Google Scholar
56. Charola AE, Wendler E. Overview of the water-porous building materials interactions. Rest Build Mon 2015;21:55–65.10.1515/rbm-2015-2006Search in Google Scholar
57. Weber H. Mauerfeuchtigkeit. Ursachen und Gegenmaßnahmen. Vol. 137 kontakt & studium, 2nd ed. Sindelfingen: Expert Verlag, 1984.Search in Google Scholar
58. Klenz Larsen P. Moisture absorption and transfer through brick contaminated with sodium chloride. In: Le Dessalement des Matériaux Poreux. Champs sur Marne: SFICC, 1996, 33–42.Search in Google Scholar
59. Lubelli B, van Hees RPJ, Brocken HJP. Experimental research on hygroscopic behaviour of porous specimens contaminated with salts. Constr Build Mat 2004;18:339–48.10.1016/j.conbuildmat.2004.02.007Search in Google Scholar
60. Diaz Gonçalves T, Pel L, Delgado Rodrigues J. Drying of salt-contaminated masonry: MRI laboratory monitoring. Env Geol 2007;52:293–302.10.1007/s00254-006-0461-4Search in Google Scholar
61. Sandrolini F, Franzoni E. Repair systems for the restoration of ancient building. Dampness rise problem. Rest Build Mon 2007;13:161–71.Search in Google Scholar
62. Arnold A. Rising damp and saline minerals. In: Gauri KL, Gwinn AJ, editors. 4th Int. Congress deterioration and preservation of stone. Louisville, KY: The University of Louisville, 1982, 11–28.Search in Google Scholar
63. Arnold A, Zehnder K. Salt weathering on monuments. In: Zezza F, editor. The conservation of monuments in the mediterranean basin. Brescia: Grafo, 1990, 31–58.Search in Google Scholar
64. Arnold A, Zehnder K. Monitoring wall paintings affected by soluble salts. In: Cather S, editor. The conservation of wall paintings. Los Angeles, CA: Getty Conservation Institute, 1991, 103–35.Search in Google Scholar
65. Pel L, Huinink H, Kopinga K. Ion transport and crystallization in inorganic building materials as studied by. NMR/Appl Phys Lett 2002;81:2893–5.Search in Google Scholar
66. Pel L, Huinink H, Kopinga K. Salt transport and crystallization in porous building materials. Magnet Reson Imag 2003;21:317–20.10.1016/S0730-725X(03)00161-9Search in Google Scholar
67. Pel L, Huinink H, Kopinga K, van Hees RPJ, Adan OCG. Efflorescence pathway diagram: understanding salt weathering. Constr Build Mat 2004;18:309–13.10.1016/j.conbuildmat.2004.02.003Search in Google Scholar
68. Huinink HP, Pel L, Michels MAJ. How ions distribute in a drying porous medium: A simple model. Phys Fluids 2002;14:1389–95.10.1063/1.1451081Search in Google Scholar
69. Zehnder K, Arnold A. Crystal growth in salt efflorescence. J Cryst Growth 1989;97:513–21.10.1016/0022-0248(89)90234-0Search in Google Scholar
70. Bläuer Böhm C, Küng A, Zehnder K. Salt crystal intergrowth in efflorescence on historic buildings. Chimia 2001;55:996–1001.10.2533/chimia.2001.996Search in Google Scholar
71. Jeannette D. Structures de porosité, mécanismes de transfert des solutions et principales altérations des roches des monuments. In: La pietra dei monumenti in ambiente fisico e culturale. Atti 2° Corso Intensivo Europeo 1994. Bari: Edipuglia, 1997: 49–77.Search in Google Scholar
72. Snethlage R, Wendler E. Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R, editors. Saving our architectural heritage. The conservation of historic stone structures, Dahlem Workshop Reports. Chichester: Wiley and Sons, 1997, 7–24.Search in Google Scholar
73. Benavente D, García del Cura MA, García-Guinea J, Sánchez-Moral S, Ordónez S. Role of pore structure in salt crystallization in unsaturated porous stone. J Cryst Growth 2004;260:532–44.10.1016/j.jcrysgro.2003.09.004Search in Google Scholar
74. Angeli M, Bigas JP, Benavente D, Menéndez B, Hébert R, David C. Salt crystallization in pores: quantification and estimation of damage. Env Geol 2007;52:205–13.10.1007/s00254-006-0474-zSearch in Google Scholar
75. De Castro E. Les méthodes de suction dans l´étude de l´altération des pierres. In: Altération et protection des monuments en pierre. Paris: UNESCO-RILEM, 1978, 2–2.Search in Google Scholar
76. Binda L, Baronio G. Alteration of the mechanical properties of masonry prisms due to ageing. In: McNeilly T, Scriverner JC, editors. Proc. 7th Int. Brick masonry Confer. Melbourne: University of Melbourne, 1985, 605–16.Search in Google Scholar
77. Fitzner B. Porosity properties and weathering behaviour of natural stones – methodology and examples. In: Zezza F, editor. 2nd course stone materials in monuments: diagnosis and conservation. Bari: CUM University School of Conservation, 1993, 43–54.Search in Google Scholar
78. Arnold A, Küng A. Crystallization and habits of salt efflorescences on walls. Part I: methods of investigation and habits. In: Félix G, editor. 5th Int Congress on deterioration and conservation of stone. Lausanne: Presses Polytechniques Romandes, 1985, 255–67.Search in Google Scholar
79. Aires Barros L, Basto MJ, Graça RC, Dionísio A, Delgado Rodrigues J, Henriques FMA, et al. Stone deterioration on the tower of Belém. Rest Build Mon 1998;4:611–26.Search in Google Scholar
80. Bläuer C. Weathering of Bernese sandstones. In: Félix G, editor. 5th Int Congress on deterioration and conservation of stone. Lausanne: Presses Polytechniques Romandes, 1985, 381–90.Search in Google Scholar
81. Bläuer C. Verwitterung der Berner Sandsteine. Ph.D. Thesis, Bern: Universität Bern, 1987.Search in Google Scholar
82. Rousset-Tournier B. Transferts par capillarité et évaporation dans des roches – Rôle des structures de porosité. Ph.D. Thesis. Strasbourg: Université Louis Pasteur, 2001.Search in Google Scholar
83. Petkovic J. Moisture and ion transport in layered porous building materials: A nuclear magnetic resonance study. Ph.D. thesis. Eindhoven: Technical University of Eindhoven, 2005.Search in Google Scholar
84. Garrecht H, Kropp J, Hilsdorf HK. Erhöhte Mauerwerksfeuchte als Folge bauschädlicher Salze.: Erhalten historisch bedeutsamer Bauwerke. In: Wenzel F, editor. Dokumentationsstelle Sonderforschungsberichte 315. Jb. ’87. Karlsruhe: University of Karlsruhe, 1988, 115–36.Search in Google Scholar
85. Franke L, Grabau J. Influence of salt content on the drying behaviour of brick. In: Baer NS, Fitz S, Livingston RA, editors. Conservation of historic brick structures. Dorset: Donehead, 1998, 59–68.Search in Google Scholar
86. Snethlage R, Wendler E. Steinzerfall und Steinkoservierung – neueste Ergebnisse der Münchner Forschungen. In: Altermann W, editor. Beiträge aus der Lagerstättenforschung, Archäometrie, Archäeologie und Denkmalpflege, Münchner Geologische Hefte A, Allgemeine Geologie 1998;23:177–201.Search in Google Scholar
87. Rüdrich J, Bartelsen T, Dohrmann R, Siegesmund S. Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci 2011;63:1545–64.10.1007/s12665-010-0767-0Search in Google Scholar
88. Madsen FT, Müller-Vonmoos M. The swelling behaviour of clays. Appl Clay Sci 1989;4:143–56.10.1016/0169-1317(89)90005-7Search in Google Scholar
89. Wendler E, Klemm DD, Snethlage R. Contour scaling in building facades – dependence on stone type and environmental conditions. Mat Res Soc Symp 1995;185:265–71.10.1557/PROC-185-265Search in Google Scholar
90. Delgado Rodrigues J. Swelling behaviour of stone and its interest in conservation. An appraisal. Materiales de Construcción 2001;51:183–95.10.3989/mc.2001.v51.i263-264.363Search in Google Scholar
91. Jimenez Gonzalez I, Higgins M, Scherer GW. Hygric swelling of Portland sandstone. Mat Res Soc Symp 2002;712:21–7.Search in Google Scholar
92. Sebastian E, Cultrone G, Benavente D, Linares Fernandez L, Elert K, Rodrigues Navarro C. Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (spain). J Cult Her 2008;9:66–76.10.1016/j.culher.2007.09.002Search in Google Scholar
93. Diaz Gonçalves T, Delgado Rodrigues J. Evaluating the salt content of salt-contaminated samples on the basis of their hygroscopic behavior. Part I: Fundamentals, scope and accuracy. J Cult Her 2006;7:79–84.10.1016/j.culher.2006.02.009Search in Google Scholar
94. Diaz Gonçalves T, Delgado Rodrigues J, Marinho Abreu M. Evaluating the salt content of salt-contaminated samples on the basis of their behaviour. Part II. Experiments with nine common soluble salts. J Cult Her 2006;7:193–200.10.1016/j.culher.2006.03.002Search in Google Scholar
95. Goudie A, Viles H. Salt Weathering Hazards. Chichester: Wiley & Sons, 1997.10.1007/978-94-011-5228-0_6Search in Google Scholar
96. Steiger M, Dannecker W. Die Bedingungen für die Kristallisation verschiedener Salzhydrate am Beispiel Thenardit/Mirabilit. In: Snethlage R, editor. Jahresberichte Steinzerfall-Steinkonservierung 1994–1998. Stuttgart: Fraunhofer IRB Verlag, 1988, 123–33.Search in Google Scholar
97. Charola AE, Weber J. The hydration-dehydration mechanism of sodium sulphate. In: Delgado Rodrigues J, Henriques F, Telmo Jeremias T, editors. 7th Int. Congress deterioration and conservation of stone. Lisbon: Laboratório Nacional de Engenharia Civil, 1992, 581–90.Search in Google Scholar
98. Charola AE. Salt deterioration: open questions. In: Leitner H, Laue S, Siedel H, editors. Mauersalze und Architekturoberflächen. Dresden: Hochschule für Bildende Künste, 2003, 19–24.Search in Google Scholar
99. DeFreece SN, Weber J, Charola AE. Hygric behaviour of two of the most deteriorating salts: sodium sulfate and sodium carbonate. Rest Build Mon 2005;11:1–8.Search in Google Scholar
100. Lombardo T, Doehne E, Simon S. The response of NaCl and Umm Ishrin sandstone to humidity cycling: mechanisms of salt weathering. In: Kwiatkowski D, Löfvendahl R, editors. 10th Int. Congress deterioration and conservation of stone. Stockholm: ICOMOS Sweden, 2004, 203–10.Search in Google Scholar
101. Lubelli B, van Hees RPJ, Huinink HP, Groot CJWP. Irreversible dilation of NaCl contaminated lime-cement mortar due To crystallization cycles. Cem Concr Res 2006;36:678–87.10.1016/j.cemconres.2005.10.008Search in Google Scholar
102. Lubelli B. Sodium chloride damage to porous building materials. Ph.D. Thesis. Deilft: Technical University, 2006.Search in Google Scholar
103. Benavente D, Cueto N, Martínez-Martínez J, García del Cura MA, Cañaveras JC. The influence of petrophysical properties on the salt weathering of porous building materials. Env Geol 2007;52:215–24.10.1007/s00254-006-0475-ySearch in Google Scholar
104. Hoffmann L. Untersuchungen zur Ursache des Salzsprengphänomens an Bausteinen, Ph.D. Thesis. Heidelberg, Ruprecht-Karls-Universität, 1994.Search in Google Scholar
105. Pühringer J. Salzwanderung und Verwitterung durch Salze. In: Wittmann FH, editor. Material science and restoration. Filderstadt: Ed. Lack + Chemie, 1983, 361–6.Search in Google Scholar
106. Erlenmeyer H. Über das Klettern von Krystallen. Helv Chim Acta 1927;10:896–9.10.1002/hlca.192701001112Search in Google Scholar
107. Erlenmeyer H. Über das Klettern von Krystallen II. Helv Chim Acta 1929;12:264–9.10.1002/hlca.19290120127Search in Google Scholar
108. Erlenmeyer H. Bemerkungen über die Trachten gekletterter Krystalle. Helv Chim Acta 1930;13:1006–9.10.1002/hlca.19300130521Search in Google Scholar
109. Washburn R. The creeping of solutions. J Phys Chem 1927;31:1246–8.10.1021/j150278a009Search in Google Scholar
110. Hazlehurst TH, Martin HC, Brewer L. The creeping of saturated salt solutions. J Phys Chem 1936;40:439–52.10.1021/j150373a003Search in Google Scholar
111. Pühringer J. Salt disintegration. Salt migration and degradation by salt – a hypothesis, D15:1983. Stockholm: Swedish Council for Building Research, 1983.Search in Google Scholar
112. Albright JG. Psychrometric charts. Mon Weather Rev 1938;6:178–81.10.1175/1520-0493(1938)66<178:PC>2.0.CO;2Search in Google Scholar
113. Pühringer J, Berntsson B, Hedberg H. Hydrate salts and degradation of materials. In: Félix G, editor. 5th Int. Congress stone deterioration and conservation. Lausanne: Presses Polytechniques Romandes, 1985, 231–40.Search in Google Scholar
114. Wendler E. Laboratory measurement of salt-loaded brick samples in periodically changing climate conditions. In: von Konow T, editor. The study of salt deterioration mechanisms. Helskinki: The Governing Body of Suomenlinna, 2002, 81–7.Search in Google Scholar
115. Duttlinger W, Knöfel D. Salzkristallisation und Salzschadensmechanismen. In: Snethlage R, editor. Jahresberichte Steinzerfall – Steinkonservierung 1991. Berlin: Ernst & Sohn, 1993, 197–213.Search in Google Scholar
116. Juling H, Kirchner D, Linnow K, Steiger M, Ackram El Jarad GG. Salt damage of porous materials: A combined theoretical and experimental approach. In: Kwiatkowski D, Löfvendahl R, editors. 10th Int. Congress Deterioration and conservation of stone. Stockholm: ICOMOS Sweden, 2004, 187–94.Search in Google Scholar
117. Nunberg S, Charola AE. Salts in ceramic bodies II: deterioration due to minimal changes in relative humidity. Rest Build Mon 2001;7:131–46.Search in Google Scholar
118. Rousset-Tournier B, Mazerolle F, Géraud V, Jeannette D. Rock drying tests monitored by computerized X-ray tomography. Importance of the saturation method on water location. In: Mees F, Swenner R, Van Geet M, Jacobs P, editors. Application of X-ray computed tomography in the geosciences, Special Publication 215. London: Geological Society, 2003, 117–25.Search in Google Scholar
119. Torraca G. Porous building materials. Rome: ICCROM, 1981, and, Lectures in Materials Science for Architectural Conservation. Los Angeles, CA: GCI, 2009.Search in Google Scholar
120. Massari G, Massari I. Damp buildings, old and new. Rome: ICCROM, 1993.Search in Google Scholar
121. Henriques FMA. Humidade em paredes. Lisbon: LNEC, 1994.Search in Google Scholar
122. Vergès-Belmin V, Bromblet P. La pierre et les sels. Monumental. Paris: Direction du Patrimoine, 2001, 224–62.Search in Google Scholar
123. Heritage A, Heritage A, Zezza F, editors. Desalination of historic buildings, stone and wall paintings. London: Archetype Publications, 2013.Search in Google Scholar
124. Bourguignon E, Bertrand F, Bourgés A, Coussot P, Shahidzadeh-Bonn N. Poultice characterization and MRI study of desalination of model stones. In: Salt weathering on buildings and stone sculptures. Lyngby: Technical University of Denmark, 2008, 329–39.Search in Google Scholar
125. Bourgés A, Vergés-Belmin V. New methodology to determine rheological behavior and mechanical properties of desalinization poultices. In: Lukaszewicz JW, Niemcewicz P, editors. 11th Int Congress deterioration and conservation of stone. Torun: Nicholas Copernicus University Press, 2008, 581–8.Search in Google Scholar
126. Auras M. Poultices and mortars for salt contaminated masonry and stone objects. In: Salt weathering on buildings and stone sculptures. Lyngby: Technical University of Denmark, 2008, 197–217.Search in Google Scholar
127. Bourgés A, Vergés-Belmin V. Comparison and optimization of five desalination systems on the inner walls of Saint Philibert Church in Dijon, France. In: Salt weathering on buildings and stone sculptures. Lyngby: Technical University of Denmark, 2008, 29–40.Search in Google Scholar
128. Auras M, Arnold B, Siedel H. Massnahmen bei Salzschäden: Salzreduzierung, geeignete Putz- und Mörtelsysteme. In: Schwarz HJ, Steiger M, editors. Salzschäden an Kulturgütern. Hannover: Deutsche Bundestiftung Umwelt, 2009, 111–27.Search in Google Scholar
129. Matteini M. In review: an assessment of florentine methods of wall painting conservation based on the use of mineral treatments. In: Cather S, editor. The conservation of wall paintings. Los Angeles, CA: Getty Conservation Institute, 1991, 137–48.Search in Google Scholar
130. Matteini M, Paccagnella F, Pinetti A, Zanini P. Study and synthesis of organic precursors for salt treatments developed to protect and strengthen building materials and “frescoes”. J Cult Her 2005;6:235–43.10.1016/j.culher.2005.02.003Search in Google Scholar
©2015 by Birkhäuser Verlag
Articles in the same Issue
- Frontmatter
- Rehabilitation of Historic Railway Masonry Arch Bridge: A Case Study
- Salts in Masonry: An Overview of the Problem
- The Stratified Significance of a Historic Façade as a Basis for a more Durable Conservation Approach
- Combining Mineral and Polymer Binder Material Science for Sustainability in Construction and Restoration
Articles in the same Issue
- Frontmatter
- Rehabilitation of Historic Railway Masonry Arch Bridge: A Case Study
- Salts in Masonry: An Overview of the Problem
- The Stratified Significance of a Historic Façade as a Basis for a more Durable Conservation Approach
- Combining Mineral and Polymer Binder Material Science for Sustainability in Construction and Restoration